
On the Hannay-Ozorio de Almeida sum formula

M. Pollicott R. Sharp

October 27, 2009

Dedicated to Mauricio Peixoto and David Rand

Abstract

In this note we consider the well known Hannay-Ozorio de Almeida sum formula

from a mathematically rigorous viewpoint. In particular, we discuss situations where

we can obtain the Sinai-Ruelle-Bowen measure as a limit taken over periodic orbits

with periods in an interval which shrinks as it moves to infinity.

1 Introduction

The Hannay-Ozorio de Almeida sum formula is a useful principle in the study of the distribution
of closed orbits for Hamiltonian flows [7]. Roughly speaking, it asserts that an appropriately
weighted sum of measures supported on periodic orbits converges to the physical measure as the
periods become large. This formula was originally introduced and used in the study of Quantum
Chaos. In particular, Berry used the so-called diagonal approximation and the Hannay-Ozorio de
Almeida sum rule to determine the asymptotics of the spectral form factor, which is the Fourier
transform of the two-point correlation function for the eigenvalues of the Laplacian [1], [8], [6].
The traditional setting is in the context of Hamiltonian flows, which include the canonical example
of geodesic flows on negatively curved manifolds.

Let us now give a brief description of the formula in the context of a C2 attracting hyperbolic
flows φt : Λ → Λ, where the attractor Λ is contained in a Riemannian manifold M . Let τ denote
a (prime) periodic orbit and let λ(τ) denote its least period. Let f : Λ → R be a continuous

function, then we can introduce a weighted period λf(τ) =
∫ λ(τ)

0
f(φtxτ )dt, where xτ ∈ τ . In

particular, if we define the expansion coefficient E : Λ → R by

E(x) := lim
t→0

1

t
log |Jac(Dφt|E

u(x))|

then we shall write λu(τ) = λE(τ). In this setting, one version of the Hannay-Ozorio de Almeida
sum formula takes the following form:

lim
T→+∞

1

δ

∑

T− δ
2
≤λ(τ)≤T+ δ

2

λf(τ)e
−λu(τ) =

∫

f dµ, (0.1)
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1 INTRODUCTION

where µ is the SRB (Sinai-Ruelle-Bowen) measure, i.e., the unique φt-invariant probability mea-
sure which is absolutely continuous with respect to the volume on M . William Parry was one of
the first people to make a mathematically rigorous study of such results. In particular, he gave a
completely rigorous proof of (0.1) in the very general setting of weak mixing Axiom A flows and
a general class of Hölder weights [11], [12].

In this note we want to address the question of whether δ = δ(T ) can be allowed to shrink
to zero as T increases and, if so, at what rate. This seems a natural question from both a
mathematical and physical perspective, given that there is no natural choice of scale for δ.

Our main results are the following theorems which strengthen (0.1), in the appropriate settings.
The first theorem is in the special case of geodesic flows.

Theorem 1.1. Let φt : M → M be the geodesic flow on the unit-tangent bundle over a
compact negatively curved surface. If there exists ǫ > 0 such that δ(T )−1 = O(eǫT ) then, for
Hölder continuous functions f : M → R,

lim
T→+∞

1

δ(T )

∑

T−
δ(T )

2
≤λ(τ)≤T+

δ(T )
2

λf (τ)e
−λu(τ) =

∫

f dµ (0.2)

The proof of Theorem 1.1 is based on estimates of Dolgopyat originally used in the proof of
exponential mixing of geodesic flows [4]. In fact, the conclusion actually holds for any contact
Anosov flows for which the stable and unstable foliations which are non-jointly integrable. In
particular, it holds for the geodesic flow on the unit tangent bundle of a compact manifold with
negative sectional curvatures, provided these curvatures are pinched between −1 and −1

4
.

Definition 1.2. We say that β is Diophantine if there exist α > 2 and C > 0 for which
there are no rationals p/q satisfying |β − p/q| ≤ C/qα.

Our second theorem is the following.

Theorem 1.3. Let φt : Λ → Λ be a weak mixing C2 hyperbolic attracting flow. Assume that
we can chose two distinct closed orbits τ1 and τ2 such that β = λ(τ1)/λ(τ2) is Diophantine.
If there exists γ > 0 such that δ(T )−1 = O(T γ) then, for Hölder continuous functions
f : Λ → R,

lim
T→+∞

1

δ(T )

∑

T−
δ(T )

2
≤λ(τ)≤T+

δ(T )
2

λf (τ)e
−λu(τ) =

∫

f dµ (0.3)

The proof of Theorem 1.3 is based on estimates of Dolgopyat used to establish polynomial
rates of mixing in a wider setting [5]. In particular, the conclusion holds for any weak mixing C2

Anosov flow.

Remark 1.4. Complementary results to Theorems 1.1 and 1.3 are obtained by fixing δ > 0
and asking about the rate of convergence in (0.1). However, this follows easily using the
ideas in [14], [15]. The results are the following.

1. Let φt be the geodesic flow on the unit-tangent bundle of a compact negatively curved
surface and let f : M → R be a Hölder continuous function. Then there exists ǫ > 0
such that we have that

1

δ

∑

T− δ
2
≤λ(τ)≤T+ δ

2

λf(τ)e
−λu(τ) =

∫

f dµ+O(e−ǫT ), as T → +∞.
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2. Let φt be a weak mixing hyperbolic attracting flow and let f : M → R be a Hölder
continuous function. Assume that we can find two distinct closed orbits τ1 and τ2 such
that β = λ(τ1)/λ(τ2) is Diophantine. Then there exists η > 0 such that we have that

1

δ

∑

T−
δ(T )

2
≤λ(τ)≤T+

δ(T )
2

λf (τ)e
−λu(τ) =

∫

f dµ+O(T−η), as T → +∞

Throughout the paper, we use the standard Landau big O and little o notation, i.e, we write
A(T ) = O(B(T )) if there exists D > 0 such that |A(T )| ≤ DB(T ) and A(T ) = o(B(T )) if
|A(T )|/B(T ) → 0, as T → +∞.

2 Hyperbolic flows and symbolic dynamics

Let φt : M → M be a C∞ flow on a compact manifold. Let Λ be a closed φ-invariant subset.
We call the set Λ hyperbolic if:

1. there exists a Dφ-invariant splitting TΛM = E0 ⊕ Es ⊕ Eu and constants C > 0 and
λ > 0 such that

(a) E0 is tangent to the direction of the flow,

(b) ‖Dφt|E
u‖ ≤ Ce−λt, for t ≥ 0,

(c) ‖Dφ−t|E
s‖ ≤ Ce−λt, for t ≥ 0;

2. the periodic orbits in Λ are dense;

3. the flow restricted to Λ has a dense orbit; and

4. there exists an open set U ⊃ Λ such that Λ = ∩t∈RφtU .

We call the restriction of the flow φt : Λ → Λ a hyperbolic flow. If Λ = ∩t>0φtU then we
say that φt is an attracting hyperbolic flow or, more succinctly, a hyperbolic attractor. For any
x ∈ Λ we denote the associated unstable manifold by

W u(x) = {y ∈M : lim
t→∞

d(φtx, φty) = 0},

and if Λ is an attractor then W u(x) ⊂ Λ.
If a hyperbolic attractor is C2 then it supports a unique probability measure which is both

invariant and absolutely continuous with respect to the natural volume induced on each unsta-
ble manifold by the ambient Riemannian volume m. This measure, which we denote by µ, is
called the Sinai-Ruelle-Bowen measure and describes the behaviour of m-almost every point in a
neighbourhood of the attractor [3].

Example 2.1 (Geodesic flow). Let M be the unit tangent bundle of a compact C∞ surface
V , i.e., the tangent vectors to V of unit length. The geodesic flow φt : M →M is defined as
follows. Given a unit tangent vector v we consider the unit speed geodesic γv : M →M such
that γ̇v(0) = v. We then define φt(v) = γ̇v(t). If V has negative curvature then the associated
geodesic flow is a hyperbolic attractor with Λ = M . Here µ is the Liouville measure.
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Figure 1: (i) The geodesic flow moves the unit tangent vector v along the geodesic γv to φtv;
(ii) The suspension flow is defined on the area under the graph of r : Ω → R.

Example 2.2 (Suspension flow). Let T : Ω → Ω be a solenoid. Let r : Ω → R
+ be a strictly

positive Hölder continuous function. We define the flow space by

Λ = {(x, u) ∈ Ω × R : 0 ≤ u ≤ r(x)}

where we identify (x, r(x)) and (T (x), 0). We define a flow by φt(x, u) = (x, u + t), subject
to the identifications.

We shall prove our results via the symbolic description of a hyperbolic flow as a suspended
flow over a subshift of finite type. We begin by recalling a few basic definitions and results. Let
A be a k × k aperiodic matrix. We shall then let X be the space

X = {x = (xn)∞n=−∞ ∈ {1, · · · , k}Z : A(xn, xn+1) = 1 for all n ∈ Z}

and define a metric on X by

d(x, y) =

∞
∑

n=−∞

1 − δ(xn, yn)

2|n|
,

where δ(i, j) = 0 if i 6= j and δ(i, i) = 1. The subshift of finite type σ : X → X, defined by
(σx)n = xn+1, n ∈ Z, is a homeomorphism. Given a strictly positive Hölder continuous function
r : X → R+, let us denote

Xr = {(x, u) ∈ X × R : 0 ≤ u ≤ r(x)},

where (x, r(x)) and (σx, 0) are identified. We can define the suspended flow σr
t : Xr → Xr by

σr
t (x, u) = (x, u+ t), subject to the identifcations.

To proceed, we state the following, now classical, result.

Lemma 2.3. Given a hyperbolic flow φt : Λ → Λ, there exists a subshift of finite type
σ : X → X, a strictly positive Hölder continuous function r : X → R+ and a Hölder
continuous semi-conjugacy π : X → Λ such that:
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1. π is one-to-one on a residual set;

2. a closed σ-orbit {x, σx, · · · , σn−1x} projects to a closed orbit τ of period λ(τ) = rn(x) :=
r(x) + r(σx) + ... + r(σn−1x). Moreover, if we define g : X → R by

g(x) = −

∫ r(x)

0

E(π(x, u))du

then g is Hölder continuous and −λu(τ) = gn(x).

Proof. This follows from the work of Bowen [2] and Bowen-Ruelle [3].

3 Dirichet series

In order to understand the limits in Theorems 1.1 and 1.3, we shall need to study the analytic
properties of certain complex functions. We start with the following definition.

Definition 3.1. Given a non-negative Hölder continuous function f : Λ → R, we formally
define an η-function for φt to be the Dirichlet series

η(s) =
∑

τ

∞
∑

m=1

λf(τ)e
m(−λu(τ)−(s−1)λ(τ)), s ∈ C,

where the sum is taken over all prime periodic orbits of φt.

It is not difficult to show that η(s) converges to an analytic function on the half-plane
Re(s) > 1, and thus the definition makes sense on this domain. (We refer the reader to [13]
for the general theory.) The proofs of Theorems 1.1 and 1.3 require showing that η(s) has an
analytic extension to a larger domain. To achieve this we need to relate η(s) to a complex
function defined in terms of X and functions thereon.

Given f : Λ → R we define f0 : X → R by f0(x) =
∫ r(x)

0
f(π(x, u))du.

Definition 3.2. We define a symbolic η-function by

η0(s) =

∞
∑

n=1

1

n

∑

σnx=x

fn
0 (x)egn(x)−(s−1)rn(x).

For a continuous function w : X → R, we define its pressure P (w) by

P (w) = sup

{

hν(σ) +

∫

w dν : ν is a σ-invariant probability measure

}

,

where hν(σ) denotes the entropy of σ with respect to ν. If w is Hölder continuous then there is
a unique measure, called the equilibrium state for w, for which the supremum is attained.

It is a standard result that η0(s) converges to an analytic function for P (g−Re(s− 1)r) < 0
[13]. Since P (g) = 0, this holds for Re(s) > 1.

The following lemma relates η(s) and η0(s).

5



3 DIRICHET SERIES

Lemma 3.3. There exists ǫ > 0 such that η0(s) − η(s) is analytic for Re(s) > 1 − ǫ.

Proof. The functions η(s) and η0(s) agree up to a small discrepancy (due to overcounting
caused by orbits passing through the boundaries of the cross sections used to construct the
symbolic dynamics in Lemma 2.3). This can be easily accounted for using the a construction
of Bowen [2] (following [10]): the difference of the two functions can be written in terms
of functions associated to a finite number of auxiliary subshifts of finite type. There are
Hölder continuous maps from each of these to Λ but, crucially, they are not surjective. This
forces a strict inequality of pressure functions which implies that the difference η0(s) − η(s)
is analytic in a strictly larger half-plane than Re(s) > 1.

One of the interesting features of the present problem is the need to extend the region for
which certain functions of two variable are bi-analytic. To address this problem, it is convenient to
use some classical results in the theory of several complex variables [9]. We recall that a complex
function of two variables is bi-analytic at a point (z, s) ∈ C2 if it has a uniformly convergent
power series expansion (in two variables) in a neighourhood of the point. Let

D(r1, r2) = {(z, w) ∈ C
2 : |z| < r1, |w| < r2}

denote a polydisc in C2, where r1, r2 > 0.

Lemma 3.4 (Hartog’s Theorem). Let F : D(r1, r2) → C be a function such that

(i) F (z, w) is bi-analytic on the smaller polydisc D(r, r2) (0 < r < r1); and

(ii) for each |w| < r2 the functions f(·, w) : {z ∈ C : |z| < r1} → C are analytic.

Then F : D(r1, r2) → C is bi-analytic.

To prove Theorem 1.1 we shall require the following result on η0(s).

Lemma 3.5. Let φt be a geodesic flow on a surface of negative curvature. We can write

η0(s) =

∫

f dµ

s− 1
+ A(s),

where A(s) is analytic for Re(s) > 1 − ǫ, for some ǫ > 0. Furthermore,

|η(s)| = O(max{|Im(s)|ρ, 1}),

for some 0 < ρ < 1.

Proof. Let us define

L(s, z) = exp

(

∞
∑

n=1

1

n

∑

σnx=x

egn(x)−(s−1)rn(x)+zfn
0 (x)

)

with s, z ∈ C where g : X → R and f0 : X → R are as defined above. It is easy to see that
function L(s, z) converges to a non-zero and bi-analytic function in (s, z) provided Re(s) > 0
and |z| sufficiently small [9]. Moreover, it follows from the approach in Dolgopyat’s paper
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[4] (explicitly in the case z = 0, or by a simple modification for any fixed z) that we have
analyticity of L(s, z) in s for Re(s) > 1 − ǫ , where ǫ > 0 can be chosen independently of z.
The key ingredients in this approach are estimates on the transfer operator Lg−zf0−(s−1)r :
Cα(X+) → Cα(X+) defined by

Lg−zf0−(s−1)rw(x) =
∑

σy=x

e(g−zf0−(s−1)r)(y)w(y)

on a suitable family Cα(X+) of Hölder continuous functions on the corresponding one-sided
shift σ : X+ → X+, where

X+ =
{

x = (xn)∞n=0 ∈ {1, · · · , k}Z
+

: A(xn, xn+1) = 1 for all n ∈ Z
+
}

.

(Here we assume that g, f0 and r have been replaced by functions in Cα(X+), chosen so that
their sums around periodic orbits remain unchanged. We refer the reader to [13] for more
details. To avoid complicating the exposition, we do not change the notation.)

The domain of analyticity corresponds to those (z, s) for which 1 is not in the spectrum
of Lg−zf0−(s−1)r. Moreover, one can also show that L(s, z) is analytic in a neighbourhood
of s = 1, provided s 6= s(z), where s(z) is an analytic function with s(0) = 1 satisfying
P (g−zf0 − (s(z)−1)r) = 0, for |z| sufficiently small, where P (·) is the analytic extension of
the pressure function (i.e., the logarithm of the maximal eigenvalue of the associated transfer
operator) [13]. We claim that L(s, z)−1 can be differentiated in the second variable at z = 0.
This is the point in the proof where it is convenient to use the Hartog’s Theorem (Lemma
3.4). We have already observed that L(s, z)−1 is bi-analytic in the pair of variables (s, z) for
Re(s) > 0 and |z| then chosen sufficiently small. We can apply Hartog’s Theorem to extend
the domain of analyticity to Re(s) > 1 − ǫ/2, say, and |z| sufficiently small (independent of
s). It is now routine to show that s = 0 in a simple pole for η0(s) with the claimed residue.
Briefly, for s in a suffciently small neighbourhood of 0 we can write

η0(s) =
∂ logL(s, z)

∂z
|z=0

= −
∂ log(1 − eP (g−zf0−(s−1)r))

∂z
|z=0 + A0(s)

=
1

s− 1

∫

fdµ+ A1(s),

where A0(s), A1(s) are analytic functions in a neighbourhood of s = 1 and
∫

fdµ =
∫

f0dm/
∫

rdm, where m is the equilibrium state on X+ for g [13].
To complete the proof, we need bounds on η0(s). There exists ρ0 > 0 such that in the

same region we have a bound L(s, z) = O(|Im(s)|ρ0) for |Im(s)| ≥ 1. Moreover, the implied
constants are uniform in z (in a small neighbourhood of 0). This is implicit in the details of
the proof of the result cf. [4], [14]. Thus, we can use Cauchy’s Theorem to obtain

η0(s) =
∂

∂z
L(s, z)|z=0 =

1

2πiδ

∫

|ξ|=δ

L(s, ξ)

ξ2
dξ = O(|Im(s)|ρ),

where δ > 0 is chosen suffciently small.
Finally, as in [14], we may use an argument based on the Phragmén-Lindelöf Theorem,

to show that, decreasing ǫ if necessary, ρ may be chosen to be less than 1.
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4 PROOF OF THEOREM 1.1

To prove Theorem 1.3 we shall require the following, somewhat weaker, result on η(s).

Lemma 3.6. Let φ be a hyperbolic flow satisfying the hypotheses of Theorem 1.3. We can
write

η(s) =

∫

fdµ

s− 1
+ A(s),

where A(s) is analytic for Re(s) > 1 − ǫmin{|Im(s)|−α, 1}, for some ǫ, α > 0. Furthermore,

|A(s)| = O(max{|Im(s)|ρ, 1}),

for some ρ > 0.

Proof. The proof is similar to that of Lemma 3.5. Again the function L(s, z) is bi-analytic
in (s, z) for Re(s) > 1 and |z| suffciently small (cf. [13]). This time we apply the approach
in Dolgopyat’s paper [5] and for fixed z (with |z| sufficiently small) we have analyticity
in s for Re(s) > 1 − ǫmin{|Im(s)|−α, 1}, for some uniform (in z) choice of ǫ > 0. The
uniformity of the implied constants for small |z| is implicit in the proofs. We can again
apply Hartog’s theorem for functions of two variables to deduce that L(s, z) is bi-analytic
in (s, z) for Re(s) > 1 − ǫ

2
min{|Im(s)|−α, 1}, say, and |z| sufficiently small. The pole free

region for η(s), the bounds on modulus |η(s)| and the form of the pole and residue at s = 1
follow by arguments analogous to those in the previous case.

4 Proof of Theorem 1.1

Given Lemma 3.5, the proof of Theorem 1.1 now follows fairly traditional lines. We recall the
following standard identity [17].

Lemma 4.1. Let c > 0 and k ≥ 1. Then

1

2πi

∫ c+i∞

c+i∞

T s+k

s(s+ 1) · · · (s+ k)
ds =

{

0 if 0 < T < 1
1
k!

(1 − 1
T
)k if T ≥ 1.

For T > 0, we shall write

ψ0(T ) =
∑

emλ(τ)≤T

λf (τ)e
m(λ(τ)−λu(τ)),

where the summation is taken over all prime periodic orbits τ and all m ≥ 1 satisfying emλ(τ) ≤ T .

Lemma 4.2. Under the hypotheses of Theorem 1.1, there exists ǫ′ > 0 such that

ψ0(T ) =

(
∫

f dµ

)

T +O(T 1−ǫ′).

Proof. We introduce an auxiliary function ψ1(T ) =
∫ T

1
ψ0(u)du. Using Lemma 3.1, with

k = 1, we can write

ψ1(T ) =
1

2πi

∫ c+i∞

c−i∞

η(s)
T s+1

s(s+ 1)
ds,
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4 PROOF OF THEOREM 1.1

for any c > 1. We want to move the curve of integration to d = 1− ǫ′ , say, where 0 < ǫ′ < ǫ,
with ǫ as in Lemma 3.5. Since η(s) has a simple pole at s = 1, we may use the Residue
Theorem and the bound |η(s)| = O(|Im(s)|ρ), for ρ < 1, to obtain

1

2πi

∫ c+i∞

c−i∞

η(s)
T s+1

s(s+ 1)
ds =

(
∫

fdµ

)

T 2

2
+

1

2πi

∫ d+i∞

d−i∞

η(s)
T s+1

s(s+ 1)
ds. (3.1)

Again using the bound on |η(s)|, the second term on the Right Hand Side of (3.1) can
be estimated by

∣

∣

∣

∣

1

2πi

∫ d+i∞

d−i∞

η(s)
T s+1

s(s+ 1)
ds

∣

∣

∣

∣

= O

(

T d+1

∫ ∞

1

tρ

t(t+ 1)
dt

)

= O(T 2−ǫ′),

To finish the proof, we need to replace the estimate on ψ1(T ) with one on ψ0(T ). Since
ψ0(T ) and ψ1(T ) are both monotone increasing, we may write

ψ0(T ) ≤
ψ1(T ) − ψ1(T − ∆)

∆
=

(
∫

f dµ

)(

T 2 − (T − ∆)2

2∆

)

+O

(

T 2−ǫ′

∆

)

=

(
∫

f dµ

)

T +O

(

T 2−ǫ′

∆
,∆

)

.

If we choose ∆ = T 1−ǫ′/2 then we have that

ψ0(T ) ≤

(
∫

f dµ

)

T +O(T 1−ǫ′/2)

Similarly, we can show that

ψ0(T ) ≥

(
∫

f dµ

)

T +O(T 1−ǫ′/2)

and the result follows.

Lemma 4.3. For some ǫ′ > 0, we have

∑

λ(τ)≤T

λf(τ)e
λ(τ)−λu(τ) =

(∫

f dµ

)

eT +O(e(1−ǫ′)T ).

Proof. By Lemma 3.2, we have

∑

mλ(τ)≤T

λf(τ)e
m(λ(τ)−λu(τ)) =

(
∫

f dµ

)

eT +O(e(1−ǫ′)T ),

where m runs over all m ≥ 1. We need to show that the terms with m ≥ 2 make a
contribution of smaller order. By simple estimates

lim sup
T→+∞

1

T
log





∑

m≥2 : mλ(τ)≤T

λf(τ)e
m(λ(τ)−λu(τ))



 ≤ 1 + sup
m≥2

P (−mE)

m
,

where E is the function defined in the introduction and P denotes pressure. It follows from
standard properties of pressure that

9



4 PROOF OF THEOREM 1.1

(a) P (−mE) < 0, for all m ≥ 2;

(b)

lim
m→+∞

P (−mE)

m
= e− := inf

ν

∫

−E dν < 0,

where the infimum is taken over all φt-invariant probability measures.

In particular, there exists N ≥ 1 such that

P (−mE)

m
≤
e−
2

for m > N and so

1 + sup
m≥2

P (−mE)

m
≤ 1 + max

{

P (−2E)

2
, . . . ,

P (−NE)

N
,
e−
2

}

< 1.

Decreasing ǫ′ if necessary, this gives the required result.

Proof of Theorem 1.1. Lemma 4.3 shows that

πf (T ) :=
∑

λ(τ)≤T

λf (τ)e
λ(τ)−λu(τ) =

(∫

f dµ

)

eT +O
(

e(1−ǫ′)T
)

, as T → +∞.

Thus, for δ = δ(T ), we can write that

∑

T−δ/2≤λ(τ)≤T+δ/2

λf(τ)e
λ(τ)−λu(τ) = πf

(

T +
δ

2

)

− πf

(

T −
δ

2

)

=

(
∫

f dµ

)

(

e(T+δ/2) − e(T−δ/2)
)

+O
(

e(1−ǫ′)T
)

=

(
∫

f dµ

)

eT δ +O
(

e(1−ǫ′)T , δ2eT
)

.

We then have the asymptotic upper bound

∑

T−δ/2≤λ(τ)≤T+δ/2

λf(τ)e
−λu(τ) ≤ exp

(

−T +
δ

2

)

∑

T−δ/2≤λ(τ)≤T+δ/2

λf(τ)e
λ(τ)−λu(τ)

=

(
∫

f dµ

)

δ exp

(

δ

2

)

+O
(

e−ǫ′T , δ2
)

=

(
∫

f dµ

)(

δ +
δ2

2

)

+O
(

e−ǫ′T , δ2
)

=

(∫

f dµ

)

δ +O
(

e−ǫ′T , δ2
)

.

10
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Similarly, we have an asymptotic lower bound

∑

T−δ/2≤λ(τ)≤T+δ/2

λf (τ)e
−λu(τ) ≥ exp

(

−T −
δ

2

)

∑

T−δ/2≤λ(τ)≤T+δ/2

λf(τ)e
λ(τ)−λu(τ)

=

(
∫

f dµ

)

δ exp

(

−
δ

2

)

+O
(

e−ǫ′T , δ2
)

=

(
∫

f dµ

)(

δ −
δ2

2

)

+O
(

e−ǫ′T , δ2
)

=

(
∫

f dµ

)

δ +O
(

e−ǫ′T , δ2
)

.

Comparing these estimates, we see that

1

δ

∑

T−δ/2≤λ(τ)≤T+δ/2

λf(τ)e
−λu(τ) =

∫

f dµ+O

(

e−ǫ′T

δ
, δ

)

.

In particular, providing δ(T ) → 0 as T → +∞ with δ(T )−1 = o(eǫ′T ) then the estimate (0.2)
holds, provided f is non-negative. The result for general f follows from considering positive
and negative parts.

5 Proof of Theorem 1.3

We again write ψ0(T ) =
∑

emλ(τ)≤T λf(τ)e
m(λ(τ)−λu(τ)) and ψ1(T ) =

∫ T

1
ψ0(u)du.

Lemma 5.1. There exists a > 0 such that

ψ0(T ) =

(
∫

f dµ

)

T + O

(

T

(logT )a

)

.

Proof. First, let us suppose the exponent ρ > 0 in Lemma 3.6 satisfies 0 < ρ < 1. For c > 1
we can again write

ψ1(T ) =
1

2πi

∫ c+i∞

c−i∞

η(s)
T s+1

s(s+ 1)
ds. (3.1)

As before we want to move the line of integration to left, however, this time to a curve
Γ = Γ(T ) depending on T . More precisely, Γ is the union of the arcs:

1. Γ0 = [1 + iR, 1 + i∞];

2. Γ1 = [d+ iR, 1 + iR];

3. Γ2 = [d− iR, d+ iR];

4. Γ3 = [1 − iR, d− iR]; and

5. Γ4 = [1 − i∞, 1 − iR],

11
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1+iR

1−iR

d+iR

d−iR

Γ

Γ

Γ

Γ

Γ1

2

3

4

5

Figure 2: The curve of integration

where R = R(T ) = (log T )ǫ , with 0 < ǫ < min{α
2
, 1

ρ
} and d = d(T ) = 1 − (log T )−1/2 .

By the Residue Theorem, we can write

1

2πi

∫ c+i∞

c−i∞

η(s)
T s+1

s(s+ 1)
ds =

(
∫

f dµ

)

T 2

2
+

1

2πi

∫

Γ

η(s)
T s+1

s(s+ 1)
ds. (3.2)

Moreover, we can bound

∣

∣

∣

∣

1

2πi

∫

Γ1∪Γ3

T s+1

s(s+ 1)
ds

∣

∣

∣

∣

= O(Rρ−2T 2) = O

(

T 2

(log T )ǫ(2−ρ)

)

, (3.3)

∣

∣

∣

∣

1

2πi

∫

Γ0∪Γ4

T s+1

s(s+ 1)
ds

∣

∣

∣

∣

= O

(

T 2

R1−ρ

)

= O

(

T 2

(logT )ǫ(1−ρ)

)

, (3.4)

∣

∣

∣

∣

1

2πi

∫

Γ2

T s+1

s(s+ 1)
ds

∣

∣

∣

∣

= O

(

T 2−(log T )−1/2

R1−ρ

)

= O

(

T 2e−(log T )
3
2

(logT )ǫ(1−ρ)

)

. (3.5)

We can then estimate

ψ1(T ) =

(∫

f dµ

)

T 2

2
+O

(

T 2

(logT )−a

)

,

for a > 0 chosen sufficiently small.
Using the same method as in the proof of Lemma 3.2 we can write

ψ0(T − ∆) ≤
ψ1(T ) − ψ1(T − ∆)

∆
=

∫

fdµ

(

T 2 − (T − ∆)2

2∆

)

+O

(

T 2

∆(log T )a

)

= T

∫

fdµ+O

(

T 2

∆(log T )a
,∆

)

.

12



5 PROOF OF THEOREM 1.3

If we choose ∆ = T (logT )−a/2 then we have that

ψ0(T − ∆) ≤

(
∫

f dµ

)

T +O

(

T

(log T )a/2

)

and thus

ψ0(T ) ≤

(
∫

f dµ

)

T +O

(

T

(log T )a/2

)

.

Modifying the proof of Lemma 3.2, we can also show that

ψ0(T ) ≥

(∫

f dµ

)

T +O

(

T

(logT )a/2

)

and the result follows.
More generally, if k − 1 ≤ ρ < k then we can inductively define a sequence of functions

ψ2(T ) =

∫ T

1

ψ1(u) du, . . . , ψk(T ) =

∫ T

1

ψk−1(u) du.

By repeatedly using the above arguments we reach the same conclusion.

Proof of Theorem 1.3. Lemma 4.1 and the arguments in Lemma 4.3 show that

πf (x) :=
∑

λ(τ)≤T

λf(τ)e
λ(τ)−λu(τ) =

(
∫

f dµ

)

eT +O

(

eT

T a

)

, as T → +∞,

for some choice of a > 0, and thus we can write that

∑

T−δ/2≤λ(τ)≤T+δ/2

λf(τ)e
λ(τ)−λu(τ) = πf

(

T +
δ

2

)

− πf

(

T −
δ

2

)

=

(
∫

f dµ

)

(

e(T+δ/2) − e(T−δ/2)
)

+O

(

eT

T a

)

=

(
∫

f dµ

)

eT δ +O

(

eT

T a
, δ2eT

)

.

We can then write that

∑

T−δ/2≤λ(τ)≤T+δ/2

λf(τ)e
−λu(τ) ≤ exp

(

−T +
δ

2

)

∑

T−δ/2≤λ(τ)≤T+δ/2

λf(τ)e
λ(τ)−λu(τ)

=

(
∫

f dµ

)

δ exp

(

δ

2

)

+O

(

1

T a
, δ2

)

=

(
∫

f dµ

)(

δ +
δ2

2

)

+O

(

1

T a
, δ2

)

=

(∫

f dµ

)

δ +O

(

1

T a
, δ2

)

,
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with a similar lower bound.
Comparing these estimates, we see that

1

δ

∑

T−δ/2≤λ(τ)≤T+δ/2

λf (τ)e
−λu(τ) =

∫

f dµ+ +O

(

1

δT a
, δ

)

.

In particular, providing δ(T ) → 0 as T → +∞ with δ(T )−1 = o(T−a), then the estimate
(0.3) holds, provided f is non-negative. The result for general f follows from considering
positive and negative parts.
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