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0. Introduction

One of the most natural problems in ergodic theory to understand the asymptotic
behaviour of various orbital averages. Such an approach is particularly fruitful in
the case of hyperbolic systems.

Consider the case of (weak mixing) hyperbolic flows φt : Λ→ Λ. The number of
(prime) periodic orbits τ with least period l(τ) ≤ T satisfies the remarkably simple
asymptotic formula

π(T ) :=
∑

l(τ)≤T

1 ∼ ehT

hT
, as T → +∞

where h > 0 denotes the topological entropy of the flow and the symbol ∼ denotes
that the ratio of the two sides converges to unity [12]. Moreover, there is a simple
hypothesis on lengths of closed orbits which ensures that there is a polynomial error
term, i.e., there exists δ > 0 such that

π(T ) =
ehT

hT
+O

(
ehT

T 1+δ

)
, as T → +∞

[14]. More precisely, we have this error term if we can choose three closed orbits
of least periods l1, l2, l3 such that θ = (l1 − l2)/(l2 − l3) is diophantine, i.e., there
exists C > 0 and β > 0 such that |qθ − p| ≥ Cq−(1+β) for all p ∈ Z and q ∈ N.

In this paper we shall consider compact groups extensions of hyperbolic flows.

Let G be a compact Lie group. Let φ̂t : Λ̂ → Λ̂ be a topologically weak mixing

G-extension of a hyperbolic flow φt : Λ → Λ with projection π : Λ̂ → Λ. Given
a closed φ-orbit and x ∈ τ there exists a unique element g ∈ G such that, for
x̂ ∈ π−1(x), φl(τ)x̂ = gx̃. If we choose another point x′ ∈ τ then the corresponding
group element is conjugate to g. We call the conjugacy class [g] in G the holonomy
class of τ , which we denote by [τ ]. In [11], the following general equidistribution

result was established: if χ ∈ Ĝ is a non-trivial character then

lim
T→+∞

1

π(T )

∑
l(τ)≤T

χ([τ ]) = 0.
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We shall concentrate on the particularly simple case G = SO(2). (In partic-
ular, [τ ] is a single element of SO(2), called the holonomy element.) In order
to state our result we need to formulate an inhomogeneous diophantine condi-
tion. Assume that the three closed orbits above have associated holonomy elements
e2πiΘ1 , e2πiΘ2 , e2πiΘ3 . Let Θ = (Θ2 −Θ3) + θ(Θ1 −Θ2), then we require that there
exists C > 0 and β > 0 such that |qθ− p+ Θ| ≥ Cq−(1+β) for all p ∈ Z and q ∈ N.
For any irrational number θ the set of real numbers Θ satisfying this identity has
full Hausdorff dimension.

Theorem 1. Let φ̂t : Λ̂ → Λ̂ be a weak mixing SO(2)-extension of a hyperbolic
flow. Assume that we can choose three closed orbits satisfying the inhomogeneous
diophantine condition. Let χ be a non-trivial character. Then there exists δ > 0
such that

1

π(T )

∑
l(τ)≤T

χ([τ ]) = O
(
T−δ

)
, as T → +∞. (0.1)

The notation f(T ) = O(g(T )) means that the ratio |f(T )|/g(T ) is bounded
above. Unfortunately, we are not able to describe the dependence on χ of the
implied constant in (0.1). Such information would be required to replace characters
by arbitrary smooth functions.

Theorem 1 has natural generalizations to other compact groups G. However,
there are a number of additional technical details (not least the formulation of the
hypotheses) which we do not discuss here.

Example 1. Perhaps the best know example of a hyperbolic flow is a geodesic flow
φt : M → M , where M = SV is the unit-tangent bundle on a compact negatively
curved manifold V . Provided that the base manifold V is 1/4-pinched, i.e., that all
the curvatures lie in an interval [−κ,−κ/4], for some κ > 0, then there exists ε > 0
such that

π(T ) = li(ehT ) +O(e(h−ε)T ), as T → +∞, (0.2)

where li(x) =
∫ x

2
(log u)−1du. For compact manifolds with constant negative sec-

tional curvature this is a classical result of Huber [8], whose proof made use of the
Selberg trace formula. For the case of variable curvature, the leading asymptotic
for π(T ) is due to Margulis [10], while the present authors obtained (0.2) in [13].

When V has dimension d ≥ 3 we can consider the frame flow φ̂t : M̂ → M̂ ,

where M̂ is the bundle of (positively oriented) orthonormal d-frames over V and

φ̂ is defined by parallel transporting frames [3], [4]. Sarnak and Wakayama [16]
consider the particular case of locally symmetric manifolds with negative sectional
curvature, where they proved in that case that the error term was exponential.
We know of no results on error terms in the general case of manifolds of variable
curvature.

It is simple to choose hyperbolic matrices A,B,C ∈ SL(2,C) which generate a
Schottky group Γ acting on the three dimensional Poincaré upper half disk and for
which the corresponding closed geodesics satisfy the inhomogeneous diophantine
condition. (In particular, the length and the holonomy can be read off from the
action of the matrix at a fixed point of the matrix.) The geodesic flow restricted
to the the non-wandering set is a weak mixing hyperbolic flow, and Theorem 1
applies.
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Example 2. Consider the usual shift map σ : X → X on the spaceX =
∏∞
n=−∞{0, 1}

and a locally constant function r : X → R defined by

r(x) =

{
ω if x0 = 0

1 if x0 = 1

where ω > 0. We denote Xr = {(x, t) : 0 ≤ t ≤ r(x)} with the identification
(x, r(x)) ∼ (σx, 0). We define a suspension flow σrt : Xr → Xr locally by σrt (x, u) =
(x, u+ t), for t ∈ R.

There are hyperbolic flows φt : Λ→ Λ which are conjugate to σrt : Σr → Σr [1].
If ω is irrational then the flow is weak mixing. Given a Hölder continuous function,
Θ : X → G = SO(2) we can associate a skew product σ̂rt : Xr × G → Xr × G
defined by σ̂rt (x, u, g) = (σrt (x, u),Θ(x)g). This is topologically weak mixing if there
are only trivial solutions to F (σx) = eiar(x)F (x), with a > 0 and F ∈ C(Xr).

If ω is diophantine then Theorem 1 applies. On the other hand, if ω is very well
approximable then no such error term will hold for either the hyperbolic flow or
the G-extension [12].

1. Hyperbolic flows

We begin by recalling the definition of a hyperbolic flow φt : Λ → Λ. Let
φt : M →M be a C1 flow on on a C∞ manifold M and let Λ ⊂M be a φ-invariant
compact set. We say that φt : Λ→ Λ is a hyperbolic flow if

(i) there is a splitting TΛM = E0 ⊕ Es ⊕ Eu such that:
(a) there exist constants C, λ > 0 with ||Dφt|Es||, ||Dφ−t|Eu|| ≤ Ce−λt, for
all t ≥ 0;
(b) E0 is one dimensional and tangent to the flow;

(ii) Λ contains a dense orbit;
(iii) the periodic orbit in Λ are dense (and Λ consists of more than a single closed

orbit);
(iv) there exists an open set U ⊃ Λ such that Λ = ∩∞t=−∞φtU .

Suppose that G is a compact Lie group and that π : M̂ → M is a principal

G-bundle over M . If Λ̂ = π−1(Λ) and φ̂t : Λ̂→ Λ̂ is a flow satisfying φt ◦π = π ◦ φ̂t
then we say that φ̂t is a G-extension of φt.

To prove Theorem 1 we need to analyse hyperbolic flows via a symbolic model
(of the same kind as that in Example 2 above). Given a k × k zero-one aperiodic
matrix A we can define a shift space

XA =
{
x = (xn) ∈ {1, . . . , k}Z : A(xn, xn+1) = 1, n ∈ Z

}
with a metric d(x, y) =

∑∞
n=−∞(1− δ(xn, yn))/2|n|, where δ(i, j) is the Kronecker

symbol. The shift map σ : XA → XA given by (σx)n = xn+1 is a homeomorphism.
Assume that r : XA → R a strictly positive Hölder continuous function. Then

we define the r-suspension space

Xr
A = {(x, t) : 0 ≤ t ≤ r(x)},

subject to the identification (x, r(x)) ∼ (σx, 0). We also define the associated sus-
pended flow σrt : Xr

A → Xr
A defined locally by σrt (x, u) = (x, u+ t), and respecting

the above identifications.
It follows by results of Ratner and Bowen that any hyperbolic flow can be mod-

elled by such a symbolic flow. More precisely, we have the following result.
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Proposition 1.1. [2],[15]. Given a hyperbolic flow φt : Λ → Λ there exists an
aperiodic zero-one matrix A, a positive Hölder continuous function r : XA → R
and a Hölder continuous map p : Xr

A → Λ such that

(1) p is a semi-conjugacy, i.e., p ◦ σrt = φt ◦ p,
(2) p is bounded-to-one, and
(3) p one-to-one on a residual set.

Unfortunately, there is not a one-to-one correspondence between periodic orbits
for σrt and φt. However, the following result is sufficient for our purposes [2].

Lemma 1.2. Let υ(T ) denote the number of σrt -periodic orbits of least period at
most T . Then π(T ) = υ(T ) +O(e(h−ε)T ), for some ε > 0.

The symbolic model can be understood in the following way. The image p(XA×
{0}) is a disjoint union

∐k
i=1 Ti of local cross sections for the flow. The return time

between p(x, 0) and p(σx, 0) is equal to r(x). Above each section, we can trivialize

the bundle M̂ and write it as Ti × G. Using this trivialization, we can define a
Hölder continuous function Θ : XA → G by the formula

φ̂r(x)(p(x, 0), e) = (p(σx, 0),Θ(x)),

where e ∈ G is the identity element. (In other words, Θ(x) the skewing function
associated to the hyperbolic flow as the point p(x, 0) flows to p(σx, 0).)

We can define a corresponding one-sided shift space

X+
A = {x ∈ {1, . . . , k}Z

+

: A(xn, xn+1) = 1, n ∈ Z+}

with a metric d(x, y) =
∑∞
n=0

1−δ(xn,yn)
2n . The shift map σ : X+

A → X+
A given by

(σx)n = xn+1 is a local homeomorphism. There is an obvious one-to-one corre-
spondence between periodic orbits for the one-sided and two-sided shift.

We shall need to relate functions on XA to functions on X+
A . To do this need

the following definition. Let Y be either R or a compact Lie group. Two functions
f, f ′ : XA → Y are said to be cohomologous if there exists a continuous function
u : XA → Y such that f ′ = (u ◦ σ)−1 · f · u (where · denotes the group operation
in Y ). A function is called a coboundary if it is cohomologous to the identity. Two
functions are cohomologous if and only if their values around periodic orbits agree.
The following useful lemma is standard.

Lemma 1.3 [12]. Given a Hölder continuous function f : XA → Y , where Y
is either R or a compact Lie group, there exists a cohomologous Hölder continuous
function f ′ : XA → Y which depends only on future co-ordinates (i.e. f ′(x) = f ′(y),
if xn = yn for n ≥ 0) and so may be identified with a function defined on X+

A .

As a result of this lemma, we can replace r and Θ by Holder continuous functions
r : X+

A → R and Θ : X+
A → G without affecting the values around periodic orbits.

Choose an exponent α > 0 so that r ∈ Cα(X+
A ,R) and Θ ∈ Cα(X+

A , G).

For each ξ ∈ R, we can define a bounded linear operator Lξ : Cα(X+
A ,C) →

Cα(X+
A ,C), called the transfer operator, by

Lξw(x) =
∑
σy=x

e−ξr(y)w(y).
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This has an isolated simple eigenvalue equal to its spectral radius, written eP (−ξr)

(where P (−ξr) is the topological pressure of the function −ξr). If h > 0 is the
topological entropy of φt (necessarily equal to the topological entropy of the sus-
pended flow) then eP (−hr) = 1, so Lh has spectral radius 1. The following lemma
is a consequence of the Ruelle operator theorem [12].

Lemma 1.4. By adding a coboundary to r, if necessary, we may assume that Lh
fixes the constant function 1.

We can define a transfer operator for complex parameters and representations
of general compact Lie groups. Let Rχ : G → U(d) be a unitary representation.
For each s ∈ C, we can define a new transfer operator Ls,χ : Cα(X+

A ,Cd) →
Cα(X+

A ,Cd) by

Ls,χw(x) =
∑
σy=x

e−sr(y)Rχ(Θ(y))w(y).

In the particular case that G = SO(2) then χ ∈ ŜO(2) is of the form χ(θ) =
χm(θ) := e2πimθ, for some m ∈ Z. Then, given s ∈ C, we can define a weighted
transfer operator Ls,χ : Cα(X+

A ,C)→ Cα(X+
A ,C) by

Ls,χw(x) =
∑
σy=x

e−sr(y)e2πimΘ(y)w(y).

Subject to the inhomogeneous diophantine condition discussed in the introduc-
tion, the estimate we have on the transfer operator is the following.

Lemma 1.5. There exist constants γ > 0, t0 > 0, C1 > 0 and N > 0, such that
whenever |t| ≥ t0 we have that, for all n ≥ 1,

‖L2nN
s,χ ‖α ≤ C1e

2nNP (−Re(s)r)|Im(s)|
(

1− 1

|Im(s)|γ

)n−1

.

Lemma 1.5 is proved in section 3 by a modification of the argument in [6].
Information about periodic orbits for φt and their holonomy classes may be

encoded in a family of functions of a complex variable called L-functions; the prop-

erties of these will be key to our subsequent analysis. Given a G-extension φ̂t of a
hyperbolic flow φt and unitary representation Rχ : G→ U(n) we can associate an
L-function:

L(s, χ) =
∏
τ

det
(

1−Rχ([τ ])e−shl(τ)
)−1

for s ∈ C,

where the product is taken over all prime periodic orbits for φt. This converges
provided Re(s) > 1. In the particular case that G = SO(2) this takes the simpler
form

L(s, χ) =
∏
τ

det
(

1− χ([τ ])e−shl(τ)
)−1

for s ∈ C.

The proof of Theorem 1 depends on the following results on the analytic domain
of the L-functions.
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Lemma 1.6.

(1) There exists ε > 0 such that L(s, χ) has a non-zero meromorphic extension
to a half-plane Re(s) > 1− ε.

(2) There exist constants c, t0, γ, α > 0 such that L(s, χ) is analytic in a region
Re(s) > 1− c|Im(s)|−γ , |Im(s)| ≥ t0 with a bound∣∣∣∣L′(s, χ)

L(s, χ)

∣∣∣∣ = O(|Im(s)|α)

Proof. The proof of part (1) is easily established using standard techniques. In
particular, we need only obvious modifications to the proof of Lemma 3 in [11].
The bound in part (2) comes from studying the symbolic version of the L-function
defined by

exp

( ∞∑
n=1

1

n
Zn(s, χ)

)
where

Zn(s, χ) :=
∑
σnx=x

χ(Θn(x))e−shr
n(x).

Using the bounds on the transfer operator in Proposition 1.5 we can bound

Zn(s, χ) = O

(
enP (−Re(s)hr)|Im(s)|

(
1− 1

|Im(s)|γ

)[n/N ]
)

for n ≥ 1. The argument is very similar to that for zeta functions, cf. the proof of
Proposition 3 in [14]. We can then derive the bound on the logarithmic derivative
of the L-function using an analogous method to that used for zeta functions, cf.
Proposition 4 in [14] �

2. Proof of Theorem 1

For ease of notation, it will be convenient to consider non-prime periodic orbits
τ ′ = τn, where τ is prime, and let l(τ ′) = nl(τ), [τ ′] = [τ ]n and Λ(τ ′) = l(τ). With
this notation the logarithmic derivative L′(s, χ)/L(s, χ) may be written

L′(s, χ)

L(s, χ)
= −h

∑
τ ′

Λ(τ ′)χ([τ ′])e−shl(τ
′),

for Re(s) > 1.
We shall apply the following identity [9, p.31]:

1

2πi

∫ d+i∞

d−i∞

xs+k

s(s+ 1) · · · (s+ k)
ds =

{
0 for x ≤ 1
1
k! (1− 1/x)k for x ≥ 1,

valid for any d > 0. We shall choose k > α (where α is the exponent appearing in
Lemma 1.6) and d > 1. Then we can integrate L′(s, χ)/L(s, χ) term by term to get∑
ehl(τ′)≤x

χ([τ ′])Λ(τ ′)(x− el(τ
′))k =

−k!

2πih

∫ d+i∞

d−i∞

L′(s, χ)

L(s, χ)

xs+k

s(s+ 1) · · · (s+ k)
ds.

(2.1)
We can use this to deduce the following.
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Lemma 2.1. There exists β > 0 such that∑
ehl(τ′)≤x

χ([τ ′])Λ(τ ′)(x− ehl(τ
′))k = O(xk+1/(log x)β)

Proof. Using the identity (2.1), we can move the line of integration to a piecewise
linear curve connecting d + i∞, d + iR, c + iR, c − iR, d − iR, d − i∞, where
c = h−R−γ . We can bound the integrals over the piecewise linear pieces by:∣∣∣∣∣ k!

2πih

∫ d±i∞

d±iR

L′(s, χ)

L(s, χ)

xs+k

s(s+ 1) · · · (s+ k)
ds

∣∣∣∣∣ = O

(
xd+k

∫ ∞
R

1

tk−α+1
dt

)
= O

(
xd+k 1

Rk−α+1

)
,

∣∣∣∣∣ k!

2πih

∫ d±iR

c±iR

L′(s, χ)

L(s, χ)

xs+k

s(s+ 1) · · · (s+ k)
ds

∣∣∣∣∣ = O

(
xc+k

1

Rk−α+1
dt

)
,

∣∣∣∣∣ k!

2πih

∫ c+iiR

c−iR

L′(s, χ)

L(s, χ)

xs+k

s(s+ 1) · · · (s+ k)
ds

∣∣∣∣∣ = O

(
xc+k

∫ R

1

1

tk−α+1
dt

)
= O

(
xc+k

)
.

If we let d = 1 + (log x)−1 and R = (log x)K for any 0 < K < 1/γ then we see that
the bound in the statement holds for any β < (k − α+ 1)/γ. �

We would like to derive an asymptotic expression for the summatory function∑
ehl(τ)≤x

χ([τ ])l(τ),

where the sum is now taken over prime orbits. First, we remove the multiple orbits
from the estimate in Lemma 2.1. We have∑

ehl(τ′)≤x

χ([τ ′])Λ(τ ′)(x− ehl(τ
′))k =

∑
ehl(τ)≤x

χ([τ ])l(τ)(x− ehl(τ))k

+
∑
n≥2

∑
ehnl(τ)≤x

χ([τn])l(τ)(x− ehnl(τ))k.
(2.2)

Let N0 be a lower bound for the numbers ehl(τ); then ehnl(τ) ≤ x implies that
n ≤ (log x)/N0. Thus there are only O(log x) terms in the second expression on the
Right Hand Side of (2.2) and we have the estimate∑

n≥2

∑
ehnl(τ)≤x

χ([τn])l(τ)(x− ehnl(τ))k = O(xk+1/2(log x)2).

Thus we only need to consider prime periodic orbits τ .
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Assume first that k ≥ 2. For any δ > 0 we can write∑
ehl(τ)≤x(1+δ)

χ([τ ])l(τ)(x(1 + δ)− ehl(τ))k −
∑

ehl(τ)≤x

χ([τ ])l(τ)(x− ehl(τ))k

=
∑

x≤ehl(τ)≤x(1+δ)

χ([τ ])l(τ)(x− ehl(τ))k + kxδ
∑

el(τ)≤x

χ([τ ])l(τ)(x− ehl(τ))k−1

+

k∑
l=2

(xδ)l
k!

l!(k − l)
∑

ehl(τ)≤x

χ([τ ])l(τ)(x− ehl(τ))k−l

By Lemma 2.1 the Left Hand Side of this expression is O(xk+1/(log x)β). Since we
have the basic asymptotic ∑

x≤ehl(τ)≤x(1+δ)

l(τ) ∼ δx

the first term on the Right Hand Side is O
(
(xδ)k+1

)
, and the lth term in the final

summation is O(xk+1δl). Dividing through by kxδ gives

∑
ehl(τ)≤x

χ([τ ])l(τ)(x− ehl(τ))k−1 = O

(
xk

δ(log x)β
, δxk

)
.

Thus if we choose δ = 1/(log x)β/2, say, then we have that∑
ehl(τ)≤x

χ([τ ])l(τ)(x− ehl(τ))k−1 = O(xk/(log x)β/2).

Proceeding inductively, we can can assume the asymptotic in the Lemma 2.1 in the
case k = 1. Then for any δ > 0 let us write∑

ehl(τ)≤x(1+δ)

χ([τ ])l(τ)(x(1 + δ)− ehl(τ))−
∑

ehl(τ)≤x

χ([τ ])l(τ)(x− ehl(τ))

= δx
∑

ehl(τ)≤x

χ([τ ])l(τ)−
∑

x≤ehl(τ)≤x(1+δ)

χ([τ ])l(τ)(x(1 + δ)− ehl(τ))

We can use the Lemma to bound the Left Hand Side by O(x2/(log x)β). The last
term on the Right Hand Side is bounded by∑

x≤ehl(τ)≤x(1+δ)

χ([τ ])l(τ)(x(1 + δ)− ehl(τ)) = O
(
δ2x2

)
using that

∑
x≤ehl(τ)≤x(1+δ) l(τ) = O(δx). In particular, rearranging the terms and

dividing by δx we see that

∑
ehl(τ)≤x

χ([τ ])l(τ) = O

(
1

δ

x

(log x)β
, δx

)
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If we choose δ = 1/(log x)β/2 then this becomes

∑
ehl(τ)≤x

χ([τ ])l(τ) = O

(
x

(log x)β/2

)

or, equivalently,

ψχ(T ) :=
∑

l(τ)≤T

χ([τ ])l(τ) = O

(
ehT

T β/2

)
.

Now write πχ(T ) =
∑
l(τ)≤T χ([τ ]) and observe that

πχ(T ) =

∫ T

1

1

u
dψχ(u) +O(1)

=

[
ψχ(u)

u

]T
1

+

∫ T

1

ψχ(u)
d

du

(
− 1

u

)
du+O(1).

We deduce from this that

πχ(T ) = O

(
ehT

T 1+δ

)
,

for some δ > 0. Finally, we note that

1

π(T )

∑
l(τ)≤T

χ([τ ]) =
πχ(T )

π(T )
= O

(
1

T 1+δ

)
.

This completes the proof of Theorem 1.

3. Proof of Lemma 1.5

Let ‖ · ‖ be the strong norm on Cα(X+
A ,C) given by ‖ · ‖ = | · |α + ‖ · ‖∞, where

|w|α = sup

{
|w(x)− w(y)|
d(x, y)α

: x 6= y, for x, y ∈ X+
A

}
and ‖w‖∞ = sup

{
|w(x)| : x ∈ X+

A

}
.

We shall write s ∈ C in terms of its real and imaginary parts as s = σ + it. We
can assume, by adding a coboundary to −σr, if necessary, that Lσ1 = eP (−σr)1,
and by replacing −σr by −σr − P (−σr) we can further assume Lσ1 = 1.

With this simplification we now need to prove the following result.

Lemma 3.1. There exist γ > 0, t0 > 0, C1 > 0, N > 0, m0 ≥ 1 such that for all
m ≥ m0, |t| > t0 we can bound

‖L2Nm
σ+it,χ‖ ≤ C1|t|

(
1− 1

|t|γ

)m−1

. (3.1)

For later convenience let N = N(t) := [B log t], where B will be chosen later.
The next lemma follows from the spectral gap for Lσ.
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Lemma 3.2. Let µ be an equilibrium measure for −σr. There exists 0 < δ < 1
such that, for all 0 ≤ m ≤ 2N ,

‖L2N
σ+it,χw‖∞ ≤

∫
|Lmσ+it,χw|dµ+O(‖Lmσ+it,χw‖δ2N−m).

Proof. In fact, δ has only to be chosen larger than the radius of the rest of the
spectrum once the maximal eigenvalue has been removed. Given x ∈ X+

A we can
write that, for 0 ≤ n ≤ N we have

|L2N
σ+it,χw(x)| ≤ L2N−m

σ (|Lnσ+it,χw|)(x)

=

∫
|L2N
σ+it,χw|dµ+O(‖Lmσ+it,χw‖δ2N−m). �

The next lemma is a version of the standard Basic Inequality (cf. [12]).

Lemma 3.3. There exists C2 > 0 and 0 < θ < 1 such that

‖Lnσ+it,χw‖ ≤ C2|t|‖w‖∞ + θn|w|α.

The final ingredient is the following.

Lemma 3.4. Assume that

(1) ‖w‖∞ = 1 and ‖w‖α ≤ |t|; and
(2) there exists γ1 > 0 and x such that |L2N

σ+it,χw(x)| ≤ 1− |t|−γ1

then there exists γ > 0 such that

‖L2N
σ+it,χw‖∞ ≤ 1− 1

|t|γ

for |t| sufficiently large.

Proof. By Lemma 3.3 and assumption (1), we know that

‖Lnσ+it,χw‖ ≤ (C2 + 1)|t|,

for all n ≥ 0. If y ∈ Bn(x) := {y : yi = xi, 0 ≤ i ≤ n − 1}, where n = 1 +[
log(2(C2 + 1)|t|γ1+1)/ log θ

]
is chosen so that

θn+1 ≤ 1

2(C2 + 1)|t|γ1+1
< θn

(where 0 < θ < 1 is as in Lemma 3.3). Moreover, if B > 0 is sufficiently large we
can assume n ≤ N . Then we have that

|L2N
σ+it,χw(y)|
≤ |L2N

σ+it,χw(x)|+ (C2 + 1)|t|θn

≤
(
1− |t|−γ1

)
+ (C2 + 1)|t|θn

≤
(

1− 1

2|t|γ1

)
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by hypothesis (1). Since µ is a Gibbs measures there exists c > 0 such that D =
(‖r‖∞ + c)/| log θ| satisfies

µ(Bn(x)) ≥ θnD ≥
(

1

2(C2 + 1)|t|γ1+1

)D
[12]. We then have that∫

|L2N
σ+it,χw|dµ

≤
∫
Bn(x)c

|L2N
σ+it,χw|dµ+

∫
Bn(x)

|L2N
σ+it,χw|dµ

≤ 1− µ(Bn(x))

(
1− 1

2|t|γ1

)
≤ 1−

(
1

2(C2 + 1)|t|γ1+1

)D (
1− 1

2|t|γ1

)
≤ 1− 1

|t|γ2

provided γ2 > D(γ1 +1)+γ1, and |t| is sufficiently large. Thus we see from Lemma
3.3 with m = N that

‖L2N
σ+it,χw‖∞ ≤

(
1− |t|−γ2

)
+O(|t|δN )

≤ 1− |t|−γ

provided γ > γ2 and B > 0 is chosen sufficiently large (i.e., B > (1+γ)/| log δ|). �

We will prove Lemma 3.1 by contradiction. Therefore, we assume for a contra-
diction for all γ > 0 and C1 > 0, there exists mk → +∞ and tk with |tk| → +∞
such that

‖Lmkσ+itk,χ
‖ > C1|tk|

(
1− 1

|tk|γ

)mk−1

. (3.2)

Assuming that (3.2) holds, we first observe the following first step in the proof
of the Lemma 3.1.

Lemma 3.5. Condition (3.2) implies that there exist γ3 > 0, C3 > 0, tk with
|tk| → +∞, wk ∈ Cα(X+

A ,C) with ‖wk‖∞ = 1, |wk|α ≤ |tk| such that

inf
x∈X+

A

|Lnσ+itk,χ
wk(x)| ≥ C3

(
1− 1

|tk|γ3

)
(3.3)

for 0 ≤ n ≤ N .

Proof of Lemma 3.5. The proof of this lemma is also by contradiction. Assume for
contradiction that (3.3) fails. The contrapositive statement is that for all γ > 0 and
C > 0 for all sufficiently large |t| and w ∈ Cα(X+

A ,C) with ‖w‖∞ = 1, |w|α ≤ t,
there exists 0 ≤ n ≤ N such that

inf
x∈X+

A

|Lnσ+it,χwk(x)| ≤ C
(

1− 1

|t|γ

)
, (3.4)
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Using Lemma 3.4 we can deduce that there exists C > 0 such that

‖L2Nm
σ+it,χw‖∞ ≤ C|t|

(
1− 1

|t|γ

)m
,

for all m ≥ 1. Next we can deduce norm convergence (using Lemma 3.3):

‖L2Nm
σ+it,χw‖

≤ C2|t|||Lσ+it,χw||∞ + θ(m−1)||Lσ+it,χw||∞

≤ C2|t|

((
1− 1

|t|γ

)m−1

+ θ(m−1)

)

≤ C2|t|
(

1− 1

|t|γ3

)m−1

,

since ||w|| ≥ ||w||∞ = 1, for γ3 > γ and m sufficiently large. In particular, this
contradicts (3.2), and completes the proof. �

With the proof of Lemma 3.5 complete, we can proceed with the proof of Lemma
3.1. We can now assume that (3.3) holds. Fix 0 < γ′ < γ and let A < (γ −
γ′)/(σ||r||∞) < B/2. Let nk = [A log |tk|] and then 2nk ≤ N = N(tk). For the
functions wk, we can write

wk(x) = Rk,0(x)eiθ0(x)

Lnkσ+itk,χ
wk(x) = Rk,1(x)eiθ1(x)

L2nk
σ+it,χwk(x) = Rk,2(x)eiθ2(x),

where Ri(·), θi(·) (i = 1, 2, 3) are real valued functions corresponding to the moduli
and the arguments. In particular, by (3.3) (and since Lσ1 = 1) we have that

1−Rk,1(x) =
∑

σnky=x

e−σr
nk (y)

(
1−Rk,0(y)eiθ0(x)ei(tkr

nk (y)+2πΘnk (y))e−iθ1(y)
)

= O(|tk|−γ).
(3.5)

Lemma 3.6. Whenever y ∈ X+
A satisfies σnky = x then

|1− eiθ1(y)ei(tkr
nk (y)+2πΘnk (y))e−iθ2(y)| = O(|tk|−γ

′
)

|1− eiθ0(y)ei(tkr
nk (y)+2πΘnk (y))e−iθ1(y)| = O(|tk|−γ

′
)

Proof. The estimate (3.5) implies that, for each y such that σnky = x, we have that

e−σr
nk (y)|1−Rk,0(y)eiθ0(x)ei(tkr

nk (y)+2πΘnk (y))e−iθ1(y)| = O(|tk|−γ).

Thus
|1− eiθ0(x)ei(tkr

nk (y)+2πΘnk (y))e−iθ1(y)| = O(enkσ||r||∞ |tk|−γ)

= O(|tk|−γ
′
).
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Similarly, replacing θ1 by θ2, and θ0 by θ1 gives the second bound. �
We can now finish the proof of Lemma 3.1. Fix a point z and choose y sufficiently

close to z that |θ0(z)− θ0(y)| = O(|tk|−γ
′
) and |θ1(z)− θ1(y)| = O(|tk|−γ

′
). Thus

θ1(y)− θ0(y) = Y +O(|tk|−γ
′
),

where Y = θ1(z)− θ0(z). For nk large we can choose y ∈ σ−nkx. Thus, by Lemma
3.6,

ei(tkr
nk (x)+2πΘnk (x)−θ0(x)+θ0(σnkx))

= ei(tkr
nk (x)+2πΘnk (x)+θ1(x)−θ1(σnkx))

= ei(Y+tkr
nk (y)+2πΘnk (y)+θ2(y)−θ2(σnkx)+θ1(x)) +O(|tk|−γ

′
)

= eiY +O(|tk|−γ
′
).

Let τ1, τ2, τ3 be the three periodic orbits mentioned in the introduction, with least
periods l1, l2, l3 and holonomies e2πiΘ1 , e2πiΘ2 , e2πiΘ3 . For simplicity, suppose that
these correspond to fixed points σxi = xi, i = 1, 2, 3, of the shift map. Evaluating
the above expression on these periodic points, we deduce that tknkli + 2πnkΘi −
2πmi + Y + O(|tk|−γ

′
), where mi ∈ Z. Let α = (l2 − l3)(l1 − l2) and Θ = (Θ2 −

Θ3) + α(Θ1 − Θ2). Let p = m2 − m3 and q = m1 − m2. Then |qα − p + Θ| =

O(|tk|−γ
′
) = O(q−γ

′
). This contradicts the inhomogeneous diophantine condition.

Remark. To generalize this approach to more general compact Lie groups G, we
need to study the spectra of transfer operators Ls,χ : Cα(X+

A ,Cd)→ Cα(X+
A ,Cd),

where Rχ : G→ U(d) is a unitary representation. The inhomogeneous diophantine
condition would then correspond to the existence of periodic orbits σnixi = xi
for which there are no vectors wi ∈ Cd such that 〈wi, eitr

ni (xi)Rχ(Θni(xi))wi〉 =
||wi||+O(|t|−γ).

4. Examples with Exponential Bounds

To complete this note we will briefly describe a mechanism that gives faster
exponential mixing. We begin with a simple class of examples.

Examples. Let T : K → K be a C1expanding map of the circle of degree d ≥ 2.
Assume that r : K → R+ is a C1 function such that for each x ∈ K we can (locally)
choose y1 = y1(x), y2 = y2(x) such that T (y1) = x = T (y2) and such that R(x) =
r(y1(x))− r(y2(x)) has derivative bounded away from zero. Let Θ : K → SO(2) be
any C1 function for which the associated skew product is mixing.

To establish exponential error terms we would need the following stronger version
of Lemma 1.6. For the above examples, this may be proved in a similar way to
corresponding results for zeta functions associated to negatively curved surfaces
[13] (using ideas originating in [5], cf. also [7]).

Lemma 4.1. Assume there exists σ1 < h such that L(σ + it, χ) is non-zero and
analytic in the half-plane σ > σ1. Furthermore, assume there exists t0 > 0 and
0 < γ < 1 such that, in the region σ > σ1, |t| > t0,∣∣∣∣L′(σ + it, χ)

L(σ + it, χ)

∣∣∣∣ = O(|t|γ), |t| → +∞.
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Then there exists ε > 0 such that πχ(T ) = O(e−εT ) as T → +∞.

The proof follows from standard arguments in complex analysis. In particu-
lar, an effective version of the Perron Formula [17, p.132] may be used to relate
L′(s, χ)/L(s, χ) to the function ψχ(T ) (defined in section 2) and show that it sat-

isfies the estimate ψχ(T ) = O(e(h−ε)T ), for some ε > 0. The result then follows
easily (with a smaller value of ε).
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