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0. Introduction

Let V be a smooth compact manifold with first Betti number b > 0 equipped with
a Riemannian metric of (possibly variable) negative curvature. Such a manifold has a
countable infinity of closed geodesics and it is an important problem to understand their
distribution. In this paper we concentrate on the distribution with respect to homology
of V . A natural dynamical generalization of this problem is to study the distribution of
closed orbits of Anosov flows, again with respect to homology.

The problem of the asymptotic estimates on the number of closed geodesics has been
studied by a number of authors. Let γ denote a typical closed geodesic and l(γ) its length.
We denote by π(T ) = {γ : l(γ) ≤ T} the number of closed geodesics of length at most T .
A classical result of Margulis states that π(T ) ∼ ehT /hT , where h > 0 is the topological
entropy of the geodesic flow on the unit-tangent bundle SV [18].

In this note we concentrate on the distribution with respect to homology. More precisely,
for a fixed homology class α ∈ H1(V,Z), we study the asymptotic behaviour of the counting
function

π(T, α) = #{γ : l(γ) ≤ T, [γ] = α},

where [γ] ∈ H1(V,Z) is the homology class of γ. It is well-known that there exists C0 > 0
such that

π(T, α) ∼ C0
ehT

T b/2+1
, as T →∞, (0.1)

cf. [13],[16],[21]. The corresponding result was obtained earlier in the case of constant
curvature in [14] and [20]. In fact, the result in [20] is somewhat more precise. An
outstanding problem is to estimate other terms in the expansion of (0.1).

We say that the Riemannian manifold V is 1/4-pinched if the sectional curvatures lie
in an interval [−k,−k/4], for some k > 0. Our main result is the following.
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Theorem 1. Let V be a compact manifold with first Betti number b > 0 and with negative
sectional curvatures. Furthermore, if dimV ≥ 3 assume that V is 1/4-pinched. Then there
exist C0, C1, C2, . . . (with C0 > 0) such that

π(T, α) =
ehT

T b/2

(
N∑

n=0

Cn

Tn/2
+ o

(
1

TN/2

))
(0.2)

for any N > 0.

The reason for the additional pinching condition in the higher dimensional case is to
ensure the necessary technical condition that the stable and unstable foliations for the
geodesic flow on SV are C1.

Using an alternative approach based on renewal theory, N. Anantharaman has also
obtained this result [1]. In fact, she has shown that the constants Cn vanish if n is odd.

Phillips and Sarnak were able to use non-commutative harmonic analysis (in the form
of the Selberg trace formula) for manifolds of constant curvature, a method not available
to us in the case of manifolds of variable curvature. Instead, we shall use a dynamical
approach based on the geodesic flow on the unit-tangent bundle SV . In this setting we
can identify π(T, α) with a counting function for closed orbits in a prescribed homology
class.

We shall also prove a slightly less precise result in the more general context of (transitive)
Anosov flows φt : M → M . We can associate to each closed orbit γ for φt : M → M a
homology class [γ] ∈ H1(M,Z). We say that the flow φ is homologically full if every element
of H1(M,Z) contains a periodic orbit γ. Given α ∈ H1(M,Z) we denote

π(T, α) = #{γ : l(γ) ≤ T, [γ] = α},

The next result gives a partial generalization of Theorem 1 to Anosov flows.

Theorem 2. Let M be a compact manifold with first Betti number b > 0. Let φt : M →M
be a homologically full transitive Anosov flow. There exists C0 > 0, 0 < h∗ ≤ h and δ > 0
such that

π(T, α) =
C0e

h∗T

T b/2+1

(
1 +O

(
1
T δ

))
(0.3)

The proof of Theorem 2 actually yields a somewhat more precise result. Namely, if
there exists ρ > 0 for which the associated L-functions L(s, χ) have an analytic extension
to the region s = σ + it with |t| ≥ 1 and σ > 1 − 1

|t|ρ , then setting δ = [1/ρ] − 1 and
choosing N < 2δ there exist constants C1, C2, . . . CN such that

π(T, α) =
eh∗T

T b/2+1

(
N∑

n=0

Cn

Tn/2
+O

(
1
T δ

))

The principal asymptotic was obtained by the second author [27]. There is no evidence
that an asymptotic expansion such as the one in (0.2) is valid.
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Remark. The quantity h∗ can be characterized in terms of the winding cycles. These are
elements Φµ ∈ H1(M,R) associated to φ-invariant probability measures µ and defined by
Φµ([ω]) =

∫
ω(X )dµ, where ω is a closed 1-form, and X is the vector field generating the

flow φ. We then have
h∗ = sup{hµ(φ) : Φµ = 0}.

In the case of geodesic flows, the winding cycle associated to the measure of maximal
entropy vanishes so that h∗ is equal to the topological entropy.

The form of the asymptotic expansion is familiar in the context of a well-known problem
in number theory. Consider the asymptotic behaviour of the number of integers less than
x which can be written as the sum of two squares, i.e.,

B(x) = #{1 ≤ n ≤ x : n = u2
1 + u2

2, u1, u2 ∈ Z}.

Landau [17] showed that B(x) ∼ Kx/(log x)1/2, for some K > 0, and the same result ap-
pears in Ramanujan’s famous letter to Hardy in 1913 [2]. The fuller asymptotic expansion
involves studying the complex function

f(s) =
1

1− 2−s

∏
q

1
1− q−s

∏
r

1
1− r−2s

where q runs through all primes equal to 1 (mod 4) and r runs through all primes equal to
3 (mod 4). Observe that this differs from the Riemann zeta function only in the factor of 2
in the last exponent, the result being a singularity of the form (s−1)−1/2. The asymptotic
expansion for B(x) has a similar form to that in (0.2) (after rescaling): for every N ≥ 1

B(x) =
Kx

(log x)1/2

(
1 +

N∑
n=1

αn

(log T )n
+O

(
1

(log x)N

))

[11, pp.61-63], [26]. However, despite the analogy, the nature of the singularity in the
complex function associated to our problem is somewhat more complicated and the detailed
arguments are consequently more elaborate.

1. Geodesic flows and L-functions

Theorem 1 can be formulated in terms of the geodesic flow on of the unit-tangent
bundle of the compact manifold V with negative sectional curvatures. Let SV = {(x, v) ∈
TV : ||v||x = 1} denote the unit-tangent bundle. Given v ∈ SV we can choose a unique
unit speed geodesic γ : R → V with γ′(0) = (x, v). We define the geodesic flow φt : SV →
SV by φt(x, v) = γ′(t) and let h > 0 denote its topological entropy.

There is a natural one-to-one correspondence between closed geodesics on V and closed
orbits for φ. For such a closed orbit γ we denote its least period by l(γ) and write N(γ) =
ehl(γ). We shall also write [γ] ∈ H1(V,Z) for the homology class of the corresponding
closed geodesic.
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For convenience we shall write H = H1(V,Z). Then H ∼= Zb ⊕ G, where G is the
finite torsion group. A key ingredient in our proof is an analysis of a family of L-functions
defined with respect to characters in Ĥ ∼= Rb/Zb ⊕ Ĝ.

For χ ∈ Ĥ, we define the L-function

L(s, χ) =
∏
γ

(
1− χ([γ])N(γ)−s

)−1
,

where s ∈ C. This infinite product converges to an analytic function for Res > 1.
Note that if χ is the trivial character 1 then L(s, 1) is the usual zeta function ζ(s) =∏

γ (1−N(γ)−s)−1.

Proposition 1. For a geodesic flow φt : SV → SV the function L(s, χ) is meromorphic
and non-zero in the domain {s = σ + it : σ > σ0}. for some σ0 < 1.

(1) For χ 6= 1, the function L(s, χ) is analytic and non-zero in the domain {s =
σ + it : σ > σ0, |t| > 1}.

(2) The function L(s, 1) is analytic and non-zero in the domain {s = σ + it : σ > σ0}
apart from a simple pole at s = 1. Furthermore, for all χ ∈ Ĥ, L(σ+it, χ) = O(|t|β)
for some 0 < β < 1, in the region σ0 < σ < 1, |t| > 1.

We defer a proof of this result until section 9.
The following standard lemma enables us to derive a bound on the logarithmic derivative

of L(s, χ).

Lemma 1 ([9 , Theorem 4.2]). Let z ∈ C. Given R > 0 and ε > 0 suppose that F (s) is
analytic on the disk ∆ = {s = σ+ it : |s− z| ≤ R(1 + ε)3} and that there are no zeros for
F (s) on the open subset

{s = σ + it ∈ C : |s− z| ≤ R(1 + ε)2 and σ > Re(z)−R(1 + ε)}.

Suppose in addition that F (z) 6= 0 and there exists a constant U(z) ≥ 0 such that
log |F (s)| ≤ U(z) + log |F (z)| on the set ∆.

Then we have the following bound for the logarithmic derivative on the disk {s = σ +
it : |s− z| ≤ R}:∣∣∣∣F ′(s)

F (s)

∣∣∣∣ ≤ 2 + ε

ε

(∣∣∣∣F ′(z)
F (z)

∣∣∣∣+ (2 +
1

(1 + ε)2 log(1 + ε)

)
U(z)
Rε2

)
. (1.1)

We can apply the above lemma to F (s) = L(s, χ) to obtain a bound at s = σ + it by
using the choices ε = 1, R = (1 − σ0)/12 and z = 1 + (1 − σ0)/24 + it whenever |t| > 1.
Notice that ∣∣∣∣L′(z, χ)

L(z, χ)

∣∣∣∣ ≤ ∣∣∣∣L′(1 + (1− σ0)/24, 1)
L(1 + (1− σ0)/24, 1)

∣∣∣∣ ,
giving a bound on the Left Hand Side independent of t. Moreover, since ε and R are fixed
the only term on the Right Hand Side of (1.1) depending on t is U(z) for which we have
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the bound U(z) = O(|t|β). If we replace σ0 by the larger value 1−(1−σ0)/24 then Lemma
1 gives the bound

L′(σ + it, χ)
L(σ + it, χ)

≤ C|t|β ,

for some 0 < β < 1 and C > 0, in the region {s = σ + it : σ0 < σ < 1, |t| > 1}.
We define functions of a complex variable s by

η(s, χ) =
dg

dsg

L′(s, χ)
L(s, χ)

and η(s) =
∫

Ĥ

χ−1(α)η(s, χ)dχ,

where we denote g = [b/2] . (The choice of the letter g is motivated by the fact that if V
is a surface then b/2 is equal to the genus.)

Observe that by orthogonality, for Res > 1, we have

η(s) =
∑

γ

∞∑
n=1

n[γ]=α

(−hl(γ))g+1nge−shnl(γ).

The next result describes the behaviour of η(s) when the imaginary part of s is large.

Proposition 2. For the geodesic flow φt : SV → SV we have the bound η(s) = O(|t|β),
for some 0 < β < 1, in the region σ1 < σ < 1, |t| > 1, for some σ1 < 1

Proof. It suffices to show the same bound holds for η(s, χ) in the region σ0 < σ < 1,
|t| > 1, We do this by a simple application of Cauchy’s theorem. In particular,

|η(s, χ)| = 1
2π

∣∣∣∣∣
∫
|ξ−s|=δ

L′(ξ, χ)
L(ξ, χ)

1
(s− ξ)g+1

dξ

∣∣∣∣∣
≤ C|t|β(g + 1)!

δg+1
= O

(
|t|β
)

Proposition 3. [13] For a geodesic flow φt : SV → SV there exists a neighbourhood U of
1 ∈ Ĥ and an analytic function U 3 χ 7→ s(χ) such that:

(1) s(χ) is real valued and s(1) = 1;
(2) s(χ) is a simple pole for L(s, χ);
(3) ∇s(1) = 0; and
(4) ∇2s(1) is negative definite.

2. Anosov flows and L-functions

Anosov flows provide a natural generalization of geodesics flows over negatively curved
manifolds. Let M be a C∞ compact manifold with first Betti number b > 0. We call a
C1 flow φt : M →M an Anosov flow if the tangent bundle TM has a continuous splitting
TM = E0 ⊕ Eu ⊕ Es into Dφt-invariant subbundles such that:

(1) E0 is the one-dimensional bundle tangent to the flow;
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(2) there exist C, λ > 0 such that{ ||Dφt|Es|| ≤ Ce−λt for t ≥ 0
||Dφ−t|Eu|| ≤ Ce−λt for t ≥ 0.

In addition, we say that φ is transitive is there is a dense orbit. We shall restrict our
attention to transitive flows.

We shall say that an Anosov flow φ is homologically full if every homology class contains
a closed orbit. If φ is homologically full then it is topologically weak mixing (i.e. there are
no non-trivial continuous solutions w ◦ φt = eiatw).

Given a continuous function f : M → R we define the pressure by P (f) = sup{hµ(φ) +∫
fdµ : µ is a φ-invariant probability measure}. Following [27], we shall use β : H1(M,R) →

R to denote the function β(ω) = P (ω(X )), where X denotes the vector field generating φ.
For homologically full transitive Anosov flows there is unique ξ ∈ H1(M,R) such that

h∗ = β(ξ) = inf{β(ξ′) : ξ′ ∈ H1(M,R)}.

As for geodesic flows, we shall use γ to denote a closed orbit and l(γ) its least period. In
this more general setting we shall write N(γ) = eh∗l(γ). We shall also use [γ] to denote the
its homology class in H = H1(M,Z) (Observe that we are using H to denote two slightly
different homology groups, namely H1(V,Z) and H1(M,Z). We hope that this does not
cause unnecessary confusion.)

In this setting we define the L-function by

L(s, χ) =
∏
γ

(
1− χ([γ])e〈ξ,[γ]〉N(γ)−s

)−1

,

where χ ∈ Ĥ and 〈ξ, [γ]〉 denotes the pairing of ξ with the torsion free part of [γ]. This
converges to an analytic function for Res > 1.

The next result is the analogue of Proposition 1.

Proposition 4. For a homologically full transitive Anosov flow the function L(s, χ) is
meromorphic and non-zero in the domain {s = σ + it : σ > σ0}, for some σ0 < 1.
Moreover, there exists σ0 : R+ → (0, 1) with

σ0(|t|) ≥ 1− C

|t|ρ
, for |t| ≥ 1

for some C > 0 and ρ > 0 such that
(1) for χ 6= 1, the function L(s, χ) is analytic and non-zero in the domain {s = σ +

it : σ > σ0(|t|), |t| > 1},
(2) the function L(s, 1) is analytic and non-zero in the domain {s = σ + it : σ >

σ0(|t|)},
(3) for all χ ∈ Ĥ, L(σ + it, χ) = O(|t|β) for some β > 01, in the region σ0 < σ < 1,

|t| > 1.
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The statement concerning the meromorphic extension is well-known [19]. We defer the
proof of the remainder of the proposition to section 10.

We can apply Lemma 1 to F (s) = L(s, χ) with the choices ε = 1, R = C/(8|t|ρ) and
z = 1 +C/(16|t|ρ), whenever |t| > 1. Observing that |L′(z, χ)/L(z, χ)| = O(|t|ρ) and that
U(z) = O(|t|β), we have the bound∣∣∣∣L′(σ + it, χ)

L(σ + it, χ)

∣∣∣∣ = O
(
|t|ρ+β

)
,

in the region {s = σ + it : σ0(t) < σ < 1, |t| > 1}.
Without loss of generality, the exponent ρ + β of |t| in this bound can be improved to

a value γ arbitrarily close to ρ. This is accomplished by applying the Hadamard Three
Circle Theorem and decreasing the value of C.

Generalizing the case for geodesic flows, we define functions of a complex variable s by

η(s, χ) =
dg

dsg

L′(s, χ)
L(s, χ)

and η(s) =
∫

Ĥ

χ−1(α)η(s, χ)dχ,

where we again denote g = [b/2] .
Observe that by orthogonality, for Res > 1, we have

η(s) =
∑

γ

∞∑
n=1

n[γ]=α

(−h∗l(γ))g+1nge〈ξ,α〉e−sh∗nl(γ).

Proposition 5. For a weak-mixing Anosov flow φt : M → M we have the bound η(s) =
O(|t|γ) in the region {

σ + it : 1− C

|t|ρ
< σ < 1, |t| > 1

}
.

Proof. The proof is similar to that for Proposition 2.

The next result describes the dependence of the L-functions on χ in a neighbourhood
of 1.

Proposition 6. For an Anosov flow there exists a neighbourhood U of 1 ∈ Ĥ and an
analytic function U 3 χ 7→ s(χ) such that s(1) = 1 and

(1) s(χ) is a simple pole for L(s, χ);
(2) ∇Res(1) = 0 and ∇Ims(1) = 0;
(3) ∇2Res(1) is negative definite and ∇2Ims(1) = 0

Proof. This is shown in [15], for example.

We will need to understand how η(s) behaves when s is close to 1. We shall carry out
this analysis in the general setting of Anosov flows. The behaviour depends on whether
the dimension b is even or odd. We shall consider the two cases separately in the next two
sections.
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3. The even dimensional case

In the case where b is even the behaviour of η(s) is described by the following Proposi-
tion.

Proposition 7. In a neighbourhood of s = 1, there exist analytic functions f1(s) and
f2(s) such that

η(s) = f1(s) +
c0

s− 1
+

c1
(s− 1)1/2

+ f2(s) log(s− 1) +
∞∑

n=0

an(s− 1)n+1/2,

where the branches of all functions considered are taken on the cut plane C− (−∞, 1] and
are real for real s > 1. Moreover, the coefficients an satisfy the bound an = O(Rn), for
some R > 0.

Proof. Applying Proposition 6 to the definition of η(s) we obtain

η(s) =
∫

U

χ−1(α)
(−1)gg!

(s− s(χ))g+1
dχ+A1(s) (3.1)

where A1(s) is analytic.
Using the Morse Lemma [12] there exists, without loss of generality, co-ordinates θ =

(θ1, . . . , θ2g) in U and δ > 0 such that

s(θ) = 1− ||θ||22 + iQ(θ)

where Q(θ) is an analytic function of third order in θ, for ||θ||2 ≤ δ, and where ||θ||22 =
θ21 + . . . + θ22g. (In the special case of geodesic flows we have that Q = 0.) Applying this
to (3.1) we may write

η(s) =
∫
||θ||2≤δ

f(θ)
((s− 1) + ||θ||22 + iQ(θ))g+1

dθ +A2(s),

=
∫
||θ||2≤δ

f(θ)
((s− 1) + ||θ||22)g+1

( ∞∑
n=0

(n+ g + 1)!
n!(g + 1)!

(
iQ(θ)

(s− 1) + ||θ||22

)n
)
dθ +A2(s)

where f(θ) and A2(s) are analytic.
Changing to spherical polar co-ordinates, we can obtain the formula

η(s) =
∞∑

n=0

∫ δ

0

Fn(r)
(s− 1 + r2)g+n+1 r

2g−1dr +A2(s), (3.2)

where Fn(r) = in (n+g+1)!
n!(g+1)!

∫
S2g−1 f(rω)Q(rω)ndω and, in particular, F0(0) 6= 0 (compare

[15]). We can take the Taylor’s series expansion Fn(r) =
∑∞

k=3n a
(n)
k rk, where a(n)

k =
O(Rk), for some R > 0. We may now rewrite (3.2) as

η(s) =
∞∑

n=0

∞∑
p=0

a
(n)
3n+p

∫ δ

0

r2g−1+3n+p

(s− 1 + r2)g+n+1 dr +A2(s),
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where a(n)
3n+p = O(R3n+p). Thus we have to estimate the above integrals. Making the

substitution r = (s− 1)1/2x we obtain∫ δ

0

r2g−1+k

(s− 1 + r2)g+n+1 dr = (s− 1)
k
2−n−1Ig+n+1

k+2g−1(s), k ≥ 3n ≥ 0 (3.3)

where I l
m(s) =

∫ ξ(s)

0
xm

(1+x2)l dx, l,m ≥ 0, and we denote ξ(s) = δ/(s− 1)1/2. The analysis
of the singularity of η(s) reduces to understanding these integrals. This will occupy the
remainder of this section.

Case I: k = 0. In this case we also know that n = 0 and the following lemma allows us
to estimate I(g+1)

2g−1 (s).

Lemma 2. We can write

1
(s− 1)

I
(g+1)
2g−1 (s) = − (2g − 2) · · · 2

(2g) · · · 4
1

s− 1
1
2

(
1− s− 1

s− 1 + δ2

)
,

up to an analytic function in a neighbourhood of s = 1.

Proof. By integration by parts we have that

1
(s− 1)

I
(g+1)
2g−1 (s) = Ck(s) +

(2g − 2) · · · 2
(2g) · · · 4

I2
1 (s)

1
(s− 1)

(3.4)

where Al
m(s) = δm−1

(l−1)(s−1+δ)l−1 and

Ck(s) =
{
Ag+1

2g−1(s) +
(

2g − 2
2g

)
Ag

k+2g−3(s) + . . . . . .+
(

(2g − 1) . . . 2
(2g) · · · 4

)
A2

1(s)
}
.

is an analytic function in a neighbourhood of s = 1. Notice that

I2
1 (s) =

∫ ξ(s)

0

x

(1 + x2)2
dx =

1
2

(
1− 1

1 + ξ(s)2

)
=

1
2

(
1− s− 1

s− 1 + δ2

)
. (3.5)

Comparing (3.4) and (3.5) completes the proof of the lemma.

An inductive step. To deal with the case k ≥ 1 it is convenient to reduce the expressions
involving I l

m(s), l,m ≥ 0, to ones involving I1
m(s), m ≥ 0 . Observe that for m ≥ 2 and

l ≥ 1,

I l
m(s) = −Al

m(s)
1

(s− 1)m/2−l+1/2
+

(m− 1)
2(l − 1)

I l−1
m−2(s)

where |Al
m(s)| = O(δm−1). In particular,

Ig+n+1
k+2g−1(s) = −Ag+n+1

k+2g−1(s)
1

(s− 1)(k/2−1−n)
+

(2g + k − 2)
2(g + n)

Ig+n
k+2g−3(s) (3.6)
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where |Ag+n+1
k+2g−1(s)| =

δk+2g−1

2g(s−1+δ)2 = O(δk+2g−1).
A repeated application of (3.6) gives the required reduction. In particular, we have that

(s− 1)k/2−n−1Ig+n+1
k+2g−1(s)

= Bk,n(s) +
(k + 2g − 2) · · · (k − 2n)(k − 2n− 2)

(2g + 2n) · · · 4.2
I1
k−2n−1(s)(s− 1)k/2−n−1

(3.7)

where

Bk,n(s) =
{
Ag+n+1

k+2g−1(s) +
(
k + 2g − 2
2g + 2n

)
Ag+n

k+2g−3(s) + . . .

. . .+
(

(k + 2g − 2) . . . (k − 2n+ 2) · (k − 2n)
(2g + 2n) · · · 6 · 4

)
A2

k−2n+1(s)
}

is an analytic function with |Bk,n(s)| = O
(
δk+1
0

)
for any δ < δ0 < 1.

We are led to estimate expressions of the form I1
m(s), where m = k − 2n− 1.

Case II: m = k − 2n− 1 = 0.
In this case we can directly evaluate

I1
0 (s) =

∫ ξ(s)

0

1
1 + x2

= tan−1ξ(x)

Case III: m = k − 2n− 1 ≥ 1. In this final case, the following lemma gives the required
estimates.

Lemma 3.

(i) If m is odd then

(s− 1)m/2−1/2I1
m(s) =

δm−1

m− 1
− δm−3

m− 3
(s− 1) + · · · ± δ2

2
(s− 1)m/2−3/2

± (s− 1)m/2−1/2 log(s− 1)/2∓ (s− 1)m/2−1/2 log(s− 1 + δ2)/2,

up to an analytic function in a neighbourhood of s = 1 (where, in particular, in the
first part of this expression consists of integer powers of (s− 1)).

(ii) If m is even then

(s− 1)m/2−1/2I1
m(s) =

ξ(s)m−1

m− 1
(s− 1)− ξ(s)m−3

m− 3
+ . . .± ξ(s)(s− 1)m/2−1

∓ tan−1

(
δ

(s− 1)1/2

)
(s− 1)m/2−1/2,

up to an analytic function in a neighbourhood of s = 1.
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Proof. By a simple calculation we have that
(a)

I1
m(s) + I1

m−2(s) =
ξ(s)m−1

m− 1
=

δm−1

m− 1
1

(s− 1)(m−1)/2
,

for m ≥ 2
(b) I1

1 (s) = log(1 + ξ(s)2)/2 = − log(s− 1)/2 + log(s− 1 + δ2)/2
(c) I1

0 (s) = tan−1(ξ(s))

Observe that tan−1
(

δ
(s−1)1/2

)
= π

2 −tan−1
(

(s−1)1/2

δ

)
. For part (i), a repeated application

of part (a) (and a final application of (b)) gives

I1
m(s) =

ξ(s)m−1

m− 1
− ξ(s)m−3

m− 3
+ · · · ± ξ(s)2

2
∓ 1

2
log(1 + ξ(s)2),

up to an analytic function. Similarly, we can estimate I1
m(s) in part (ii). This completes

the proof of the lemma.
Lemma 2 and Lemma 3 correspond to the statements in Proposition 7.

4. The odd dimensional case

A slight modification is required in the case where b = 2g + 1 is odd. The leading
singularity of η(s) at s = 1 takes the form c1(s− 1)−1/2 rather than a simple pole. More
precisely, we have the following result.

Proposition 8. In a neighbourhood of s = 1, there exist analytic functions f1(s) and
f2(s) such that

η(s) = f1(s) +
c1

(s− 1)1/2
+ f2(s) log(s− 1) +

∞∑
n=0

an(s− 1)n+1/2,

where the branches of all functions considered are taken on the cut plane C− (−∞, 1] and
are real for real s > 1.

In this case the analogue of (3.2) is

η(s) =
∞∑

n=0

∫ δ

0

Fn(r)
(s− 1 + r2)g+n+1 r

2gdr +A2(s). (4.1)

Observe that (4.1) differs from (3.2) in that the exponent of r changes from 2g − 1 to 2g.
As before, we can expand Fn(r) =

∑∞
k=3n a

(n)
k rk and rewrite a typical term in (4.1) as

∞∑
k=3n

a
(n)
k

∫ δ

0

r2g+k

(s− 1 + r2)g+n+1 dr.

The result now follows by a similar calculation to that in the previous section, with k
replaced by k + 1.
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5. Auxiliary functions

In order to study the counting function π(T, α) in Theorem 1 we shall introduce an
auxiliary function ψ(T, α) defined by

ψ(T, α) =
∞∑

n=1

∑
N(γ)n≤T

n[γ]=α

′
(h∗l(γ))g+1

ng

where the prime means that for terms where N(γ)n = T the summand is multiplied by
1/2.

We shall relate ψ(T, α) to η(s) by applying the formula

1
2π

∫ d−i∞

d−i∞

ys

s
ds =


0 if 0 < y < 1
1
2 if y = 1
1 y > 1

term by term to the series defining η(s). The functions ψ(T, α) and η(s) are related by
the following lemma.

Lemma 4. For d > 1 we may write

ψ(T, α) =
1

2πi

∫ d−i∞

d+i∞

η(s)
s
T sds. (5.1)

To evaluate this integral, we shall change the contour of integration. The first step is
to replace this integral by a finite integral. Write R = R(T ) = (log T )K , for some fixed
K > 0, and truncate the integral in (5.1) to obtain the estimate∣∣∣∣∣ψ(T )− 1

2πi

∫ d+iR

d−iR

η(s)
s
T sds

∣∣∣∣∣ ≤ |η(d)| T
d

R1/2
(5.2)

(cf. [6, pp. 105-106]). If we choose d = 1 + 1
log T , then since η(d) = O((d − 1)−1) we can

bound the Right Hand Side of (5.2) by a term which is O
(

T log T
R1/2

)
= O

(
T

(log T )K/2−1

)
.

For the remainder of this section, we shall concentrate on the case of geodesic flows.
If we fix c < 1 then we can replace

1
2πi

∫ d+iR

d−iR

η(s)
s
T sds

by the integral along the curves
(i) [c+ iR, d+ iR] and [d− iR, c− iR], for σ0 < c < 1
(ii) [c− iR, c+ iδ] and [c+ iδ, c+ iR]
(iii)

[
c+ iδ, 1− r/

√
1 + (δ/r)2 + iδ

]
and

[
1− r/

√
1 + (δ/r)2 − iδ], c− iδ

]
, for r > 0

arbitrarily small
(iv) Cr = {1 + re2πiθ : −π + tan−1(δ/r) ≤ θ ≤ π − tan−1(δ/r)},

12



where δ = δ(T ) is chosen to decrease exponentially fast as T → +∞. In the subsequent
discussion we shall let r → 0.

We can bound∣∣∣∣∣ 1
2πi

∫
[d+iR,c+iR]∪[c−iR,d−iR]

η(s)
s
T sds

∣∣∣∣∣ = O

(
T d

R1−β

)
= O

(
T

(log T )(1−β)K

)
,

using the estimate |η(s)| = O(|t|β), for s = σ + it.
We can also bound∣∣∣∣∣ 1

2πi

∫
[c−iR,c−iδ]∪[c+iδ,c+iR]

η(s)
s
T sds

∣∣∣∣∣ = O

(
T c

∫ R

1

tβ−1dt

)
= O

(
T cRβ

)
The contribution from the integral around Cr can be evaluated as follows. On this curve

for s = 1 + re2πiθ we can bound∣∣∣∣(η(s)− C0

s− 1

)
T s

s

∣∣∣∣ = O

(
1
r1/2

)
and thus 1

2πi

∫
Cr

η(s)
s T sds = C0T +O(r1/2), by Cauchy’s theorem.

The contribution from (iii) requires a more detailed analysis which will appear in section
6.

Our aim is to prove the following result.

Proposition 9. Let φt : SV → SV be a geodesic flow and let N ≥ 0.
(1) If b is even then we can write

ψ(T, α) =
N∑

n=0

Cn
T

(log T )n/2
+ o

(
T

(log T )N/2

)
(2) If b is odd then we can write

ψ(T, α) =
N∑

n=1

Cn
T

(log T )n/2
+ o

(
T

(log T )N/2

)

The rather involved proof constitutes most of section 6.

6. Contour integrals and the proof of Proposition 9

We shall now evaluate the contribution to the contour integral from the curves in (iii)
by considering the expansion of η(s) for s close to 1. This then leads directly to a proof of
Proposition 9.
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6.1 The contribution from (s − 1)−1. This is the easiest singularity to deal with.
Observe that

1
2πi

∫ 1−r+iδ

c+iδ

T s

s(s− 1)
ds+

1
2πi

∫ 1−r−iδ

c−iδ

T s

s(s− 1)
ds

=
1

2πi

∫ 1−r

c

T s

s(s− 1)
ds+

1
2πi

∫ c

1−r

T s

s(s− 1)
ds+O (Tδ(T ))

It is immediately apparent that the integral 1
2πi

∫ 1−r

c
T s

s(s−1)ds cancels with the integral
1

2πi

∫ c

1−r
T s

s(s−1)ds, to give a contribution which tends to zero exponentially fast as T → +∞.

6.2 The contribution from (s−1)−1/2. The complication in this case is that the function
(s− 1)−1/2 is multiple valued. The term (s− 1)1/2 gives rise to the integral

1
2πi

∫ 1−r/
√

1+(δ/r)2+iδ

c+iδ

(
1

(s− 1)1/2

)
T s

s
ds+

1
2πi

∫ c−iδ

1−r/
√

1+(δ/r)2−iδ

(
1

(s− 1)1/2

)
T s

s
ds

= − 1
π

∫ 1

c

1
σ(1− σ)1/2

eσ(log T )dσ +O (Tδ(T ))

(6.1)

Lemma 5. Given K ≥ 1 there exist constants w2n, n = 0, . . . ,K such that

∫ 1

c

1
σ(1− σ)1/2

eσ(log T )dσ =
K∑

n=0

2w2n
T

(log T )n+1/2
+O

(
1

(log T )K

)

Proof. We can introduce a new variable y and use the substitution 1 − σ = y2/ log T to
rewrite the Left Hand Side of the expression in Lemma 5 as

2T
(log T )1/2

∫ ε(log T )1/2

0

(
e−y2

1− y2

log T

)
dy (6.2)

where ε = (1− c)1/2. For any arbitrary 0 < α < 1/2 we can write

∫ ε(log T )1/2

0

(
e−y2

1− y2

log T

)
dy

=
∫ ε(log T )α

0

(
e−y2

1− y2

log x

)
dy +

∫ ε(log T )1/2

ε(log T )α

(
e−y2

1− y2

log T

)
dy.

(6.3)

Let K be as in the definition of R(T ) and set M = K/(1 − 2α). We can rewrite the first
14



term on the Right Hand Side of (6.3) as∫ ε(log T )α

0

(
e−y2

1− y2

log T

)
dy

=
∫ ε(log T )α

0

(
M∑

n=0

(
y2

log T

)n
)
e−y2

dy +O

((
(log T )2α

log T

)M
)

=
∫ ε(log T )α

0

(
M∑

n=0

(
y2

log T

)n
)
e−y2

dy +O

(
1

(log T )K

)
(6.4)

using
1

1−
(

y2

log T

) =
M∑

n=0

(
y2

log T

)n

+O

((
y2

log T

)M
)

which converges since 0 < y < ε(log T )α. Moreover, observe that for each 0 ≤ n ≤ M we
can write ∫ ε(log T )α

0

y2ne−y2
dy = w2n +O

(
1
T ε2

)
(6.5)

where w2n =
∫∞
0
y2ne−y2

dy. Thus applying (6.5) to (6.4) we see that∫ ε(log T )α

0

(
e−y2

1− y2

log T

)
dy =

M∑
n=0

w2n

(log T )n
+O

(
1

(log T )K

)
. (6.6)

(Observe that the terms involving K < n ≤ N are already dominated by the error term.)
The second term in (6.3) can be bounded by∫ ε(log T )1/2

ε(log T )α

(
e−y2

1− y2

log T

)
dy = O

(∫ ε(log T )1/2

ε(log T )α

e−y2
dy

)
= O

(
1
T ε2

)
. (6.7)

Comparing (6.6) and (6.7) with (6.3) we see that we obtain∫ 1

c

1
σ(1− σ)1/2

eσ(log T )dσ =
K∑

n=0

2w2n
T

(log T )n+1/2
+O

(
1

(log T )K

)
(6.8)

This completes the proof of lemma.

6.3 The contribution from (s−1)n log(s−1). The function log(s−1) is again multiple
valued and so the integrals contribute

1
2πi

∫ 1−r/
√

1+(δ/r)2+iδ

c+iδ

(s− 1)n log(s− 1)
T s

s
ds+

1
2πi

∫ c

1

(s− 1)n log(s− 1)
T s

s
ds

=
∫ c−iδ

1−r/
√

1+(δ/r)2−iδ

(σ − 1)neσ log T

σ
dσ +O (Tδ(T )) .

(6.9)
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Lemma 6. Given K ≥ n+ 1, there exist constants cm, m = n+ 1, . . . ,K such that

∫ 1

c

(σ − 1)neσ log T

σ
dσ =

K∑
m=n+1

cm
T

(log T )m
+O

(
T

(log T )K

)
.

Proof. Consider first the case n = 0. We can easily evaluate the integral on the Right
Hand Side of (6.9) to have the estimate

∫ 1

c

eσ log T

σ
dσ =

T

log T
+

T

(log T )2
+ · · ·+ (K − 1)!

T

(log T )K
+O

(
T

(log T )K+1

)
(6.10)

by a simple inductive argument.
More generally, if n ≥ 1 then we can rewrite the Right Hand Side of (6.9) as

∫ 1

c

(σ − 1)neσ log T

σ
dσ

=
∫ 1

c

(σ − 1)n−1eσ log T dσ −
∫ 1

c

(σ − 1)n−1eσ log T

σ
dσ

=

(
n−1∑
k=0

(−1)n−1−k

(
n− 1
k

)∫ 1

c

σkeσ(log T )dσ

−
∫ 1

c

(σ − 1)n−1eσ log T

σ
dσ

)
(6.11)

The integrals which appear in the first term on the Right Hand Side of (6.11) can easily
be shown to satisfy the estimate

∫ 1

c

σkeσ(log T )dσ =
T

log T
− k

T

(log T )2
+ k(k − 1)

T

(log T )3
+ · · ·+O

(
T

(log T )K

)
.

Furthermore, letting ε(T ) = min{1− c, 1/ log T} we can bound

∫ 1

c

(1− σ)neσ log T

σ
dσ =

∫ 1

1−ε(T )

(1− σ)neσ log T

σ
dσ +

∫ 1−ε(T )

c

(1− σ)neσ log T

σ
dσ

= O

(
T

(log T )n+1

)
+O (T c)

= O

(
T

(log T )n+1

)
.

This completes the proof of the lemma.
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6.4 The contribution of terms (s − 1)n+1/2, n ≥ 1. Finally we have to consider the
contribution of terms (s− 1)n+1/2, n ≥ 0 to the integrals in (iii). The integral in question
has the following estimate

1
2πi

∫ 1−r/
√

1+(δ/r)2+iδ

c+iδ

(s− 1)n+1/2T
s

s
ds+

1
2πi

∫ c−iδ

1−r/
√

1+(δ/r)2−iδ

(s− 1)n+1/2T
s

s
ds

=
1
π

∫ 1

c

(1− σ)n+1/2

σ
eσ(log T )dσ +O (Tδ(T ))

(6.12)

Lemma 7. Given K ≥ n+ 1, there exists constants dm, m = n+ 1, . . . ,K such that∫ 1

c

(1− σ)n+1/2

σ
eσ(log T )dσ =

K∑
m=n+1

dm
T

(log T )m+1/2
+O

(
T

(log T )K

)
.

Proof. We consider first the case n = 0. Using the simple identity

(1− σ)1/2 =
−σ

(1− σ)1/2
+

1
(1− σ)1/2

we can write ∫ 1

c

(1− σ)1/2

σ
eσ(log T )dσ

= −
∫ 1

c

1
(1− σ)1/2

eσ(log T )dσ +
∫ 1

c

1
σ(1− σ)1/2

eσ(log T )dσ.

(6.13)

We recall that by (6.8) we can estimate the second term on the Right Hand Side of (6.13)
by ∫ 1

c

1
σ(1− σ)1/2

eσ(log T )dσ =
K∑

m=0

2w2m
T

(log T )m+1/2
+O

(
T

(log T )K

)
(6.14)

To estimate the the first term on the Right Hand Side of (6.13) we can substitute 1−σ = y2

to get ∫ 1

c

1
(1− σ)1/2

eσ(log T )dσ = 2T
∫ (1−c)1/2

0

e−y2(log T )dy

=
2T

(log T )1/2

(
w0 +O

(
1
T ε2

)) (6.15)

where w0 =
∫∞
0
e−y2

dy.
Thus we see that the terms with m = 0 cancel and we have∫ 1

c

(1− σ)1/2

σ
eσ(log T )dσ =

K∑
m=1

2w2m
T

(log T )m+1/2
+O

(
T

(log T )K

)
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We shall now consider the terms (s− 1)n+1/2 for n ≥ 1. Let us denote

Bk+1 =
∫ 1

c

(1− σ)k+1/2

σ
eσ(log T )dσ

for 0 ≤ k ≤ n then using integration by parts we see that

Bk+1 = Bk +
2T

(log T )k+3/2

∫ ε(log T )1/2

0

y2k+2e−y2
dy

= Bk +
2T

(log T )k+3/2
w2k+2 +O

(
1
T ε2

)
(using (6.5)). Hence

Bn+1 =
n∑

k=1

(Bk+1 −Bk) +B1

=
K∑

k=1

2T
(log T )k+3/2

w2k+2 +O

(
T

(log T )K

)
Furthermore, again setting ε(T ) = min{1− c, 1/ log T}, we have the bound∫ 1

c

(1− σ)n+1/2eσ log T

σ
dσ

=
∫ 1

1−ε(T )

(1− σ)n+1/2eσ log T

σ
dσ +

∫ (1−ε(T ))

c

(1− σ)n+1/2eσ log T

σ
dσ

= O

(
T

(log T )n+3/2

)
This completes the proof of Lemma 7.

Comparing Lemmas 5, 6 and 7 completes the proof of Proposition 9.

7. Proof of Theorem 1

We are now in a position to prove Theorem 1, modulo the proof of Proposition 1 (which
will appear in section 9). It is convenient to work with the auxiliary function

Π(T, α) = #{γ : N(γ) ≤ T, [γ] = α}.

This may be expressed as a Stieltjes integral

Π(T, α) =
∫ T

2

1
(log x)g+1

dψ̃(x, α) +O(1),

where
ψ̃(T, α) =

∑
N(γ)≤T
[γ]=α

(hl(γ))g+1
.

The following lemma tells us that the asymptotic expression that we have obtained for
ψ(T, α) also holds for ψ̃(T, α).
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Lemma 8. ψ̃(T, α) = ψ(T, α) +O
(
T θ
)
, for any θ > 1/2.

Proof. We can write

|ψ(T, α)− ψ̃(T, α)| =
∞∑

n=2

∑
N(γ)n≤T

n[γ]=α

(hl(γ))g+1ng

= O
(
Π(T 1/2)(log T )2g+2

)
= O

(
T 1/2(log T )2g+1

)
by Margulis’ theorem [18].

In particular, by Proposition 9 we have the following.

Proposition 10. Let N ≥ 0.
(1) If b is even then we can write

ψ̃(T, α) =
N∑

n=0

Cn
T

(log T )n/2
+ o

(
T

(log T )N/2

)
(2) If b is odd then we can write

ψ̃(T, α) =
N∑

n=1

Cn
T

(log T )n/2
+ o

(
T

(log T )N/2

)

We may calculate

Π(T, α) =
∫ T

2

1
(log x)g+1

dψ̃(x, α) +O(1)

=
ψ̃(T, α)

(log T )g+1
+ (g + 1)

∫ T

2

ψ̃(x, α)
x(log x)g+2

dx+O(1)

=
ψ̃(T, α)

(log T )g+1
+ (g + 1)

(
N∑

n=0

Cn

∫ T

2

1
(log x)n/2+g+2

dx

)

+O

(∫ T

2

1
(log x)N/2+g+2

)
(7.1)

using Proposition 10.
We can estimate the error term in (7.1) by splitting∫ T

2

1
(log x)N/2+g+2

dx =
∫ T 1/2

2

1
(log x)N/2+g+2

dx+
∫ T

T 1/2

1
(log x)N/2+g+2

dx.

Observe that:

(1)
∫ T 1/2

2
1

(log x)N/2+g+2 dx = O
(
(log T )T 1/2

)
; and

(2)
∫ T

T 1/2
1

(log x)N/2+g+2 dx = O
(

T
(log T )N/2+g+2

)
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and so we see that the error term is of order O
(

T
(log T )N/2+g+2

)
.

To deal with the terms =
∫ T

2
1

(log x)n/2+g+2 dx we can integrate by parts to write

∫ T

2

1
(log x)n/2+g+2

dx

=
li(T )

(log T )n/2+g+1
−
(n

2
+ g + 1

)∫ T

2

li(x)
x(log x)n/2+g+2

dx

=
N∑

k=0

(k − 1)!T
(log T )n/2+g+1+k

−
(n

2
+ g + 1

) N∑
k=0

∫ T

2

1
(log x)n/2+g+3+k

dx

+O

(
T

(log T )N

)
(7.2)

where we have used the well-know identities

li(T ) =
∫ T

2

1
log x

dx =
T

log T
+

T

(log T )2
+ . . .+

(k − 1)!T
(log T )k

+ . . .

(cf. [9].)
By induction on (7.2) we see that we can write

∫ T

2

1
(log x)n/2+g+2

dx =
N∑

k=0

ck
T

(log T )n/2+g+1+k
+O

(
T

(log T )N

)
, (7.3)

for some ck, k ≥ 0.
Comparing (7.1), (7.2) and (7.3) completes the proof of Theorem 1.

8. Proof of Theorem 2

The general method of the proof of Theorem 1 applies for Anosov flows in the case that
0 < ρ < 1. However, for Anosov flows we have available to us only the information on η(s)
contained in Proposition 4, rather than the stronger results in Proposition 1. In particular,
we can replace the integral

ψ(T, α) =
1

2πi

∫ d+i∞

d−i∞

η(s)
s
T sds. (8.1)

by the integral along the curves

(i) [c(R) + iR, d+ iR] and [d− iR, c(R)− iR],
(ii) [c(R)− iR, c(R) + iR]
(iii) [c(R), 1− r] and [1− r, c(R)], for r > 0 arbitrarily small
(iv) Cr = {1 + re2πiθ : −π ≤ θ ≤ π},
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where c(R) = 1− c
Rρ .

Consider first the integral along the line segment [c(R) − iR, c(R) + iR]. We have the
estimate ∣∣∣∣∣ 1

2πi

∫
[c(R)−iR,c(R)+iR]

η(s)
s
T sds

∣∣∣∣∣ = O

(
T c(R)

∫ R

1

tγ−1dt

)
= O

(
T c(R)Rγ

)
.

Since R(T ) = (log T )K , for some K > 0, we can bound

T c(R)Rγ = T
1− 1

(log T )Kρ (log T )Kγ = T

(
e
− c log T

(log T )Kρ (log T )Kγ

)
.

Thus, providing K < ρ−1 we see that the contribution to ψ(T, α) is O(T/(log T )N ), for
any N > 0. Unfortunately, the restriction on K leads to a less satisfactory estimate on
the next contribution.

More precisely, if we consider the contours [c(R) + iR, d + iR] and [d − iR, c(R) − iR]
then we have the bound∣∣∣∣∣

∫
[c(R)+iR,d+iR]∪[d−iR,c(R)−iR]

η(s)
s
T sds

∣∣∣∣∣ = O
(
R(γ−1)T d

)
= O

(
T

(log T )(1−γ)K

)
.

Since we must take K < 1/ρ this gives us an error term which is not better than

O

(
T

(log T )[(1−γ)1/ρ]

)
.

The other contributions can be estimated as in section 6 to give us

ψ(T, α) =
[1/ρ]−1∑

n=0

Cn
T

(log T )n/2
+ o

(
T

(log T )[1/ρ−γ/ρ]

)
.

Recall that we can choose γ/ρ arbitrarily close to 1. Theorem 2 can now be deduced using
a similar argument to that in section 7.

If, on the other hand, ρ ≥ 1 then we need to slightly modify the above analysis. Let
k = [γ] + 1 and define ψk inductively by ψk(T, α) =

∫ T

0
ψk−1(u, α)du, where ψ1(T, α) =

ψ(T, α). We then have the identity

ψk(T, α) =
1

2πi

∫ d+i∞

d−i∞

η(s)
s(s+ 1) · · · (s+ k)

T sds.

By an analysis similar to the above, we obtain the following estimates
(1) If b is even then we can choose 0 < δ < 1 such that

ψk(T, α) = C0T

(
1 + +O

(
1

(log T )δ

))
(2) If b is odd then we can choose 0 < δ < 1 such that

ψk(T, α) = C0
T

(log T )1/2

(
+O

(
1

(log T )δ

))
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The required estimates for Π(T ), and hence π(t), now follow by iterating a standard
argument, to be found, for example, in [9, p. 52]. Note that the value of δ above will be
reduced by a factor of 2 at each of the k steps.

9. Proof of Proposition 1

In this section we outline the proof of Proposition 1. In the interests of clarity, we shall
assume that H1(V,Z) is torsion free, however this is no great loss in generality.

Poincaré sections to the flow give rise to an C1 expanding map f :
∐k

i=1 Ui →
∐k

i=1 Ui,
where {Ui} are the projections onto the unstable directions of the Markov sections [3],
[23]. The pinching condition on the curvatures ensures that f is C1 [7].

We fix n0 > 0 such that for n ≥ n0 we can find distinct points y1, y2 ∈
∐k

i=1 Ui such
that there exists 1 ≤ i ≤ k with fn(y1), fn(y2) ∈ Ui and fn(y1) = fn(y2). We can fix
a reference point x0 ∈

∐k
i=1 Ui and choose y0

1 , y0
2 (corresponding to y1, y2, respectively)

such that x0 = fn(y0
1) = fn(y0

2).
Let r :

∐k
i=1 Ui → R be given by the return time between sections and define a function

ψ(x, x0) = (rn(y1)− rn(y2))−
(
rn(y0

1)− rn(y0
2)
)
,

where rn(z) = r(z) + r(fz) + · · ·+ r(fn−1z).
For each x0 (and all sufficiently close x), and choices of y1, y2, y0

1 , y
0
2 as above, the maps

Ui 3 x 7→ ψ(x, x0) are C1. An essential feature of the stable and unstable foliations for
the geodesic flow is their uniform non-integrability [5], [10]. In particular, there exists
constants B1, B2 > 0 such that if we look at the one dimensional gradient lines for ψ
restricted to Ui then along these curves

B1|x− x0| ≤ |ψ(x, x0)| ≤ B2|x− x0|. (9.1)

Periodic points fn(x) = x correspond to closed orbits γ in M , with associated homology
classes [γ] ∈ Zb. We can choose a function g :

∐∞
i=1 Ui → Rb such that g is constant on

each set Ui and gn(x) = g(x)+g(fx)+. . .+g(fn−1x) = [γ]. In particular, given ω ∈ Rb/Zb

we can associate a character χω : H1(M,Z) → R such that χω([γ]) = e2πi〈ω,gn(x)〉.
We can consider the transfer operators L−sr+2πi〈ω,g〉 : C1(

∐k
i=1 Ui) → C1(

∐k
i=1 Ui)

defined by

L−sr+2πi〈ω,g〉w(x) =
∑

fy=x

e−sr(y)+2πi〈ω,g(y)〉w(y)

for ω ∈ Rb/Zb. Our proof of Proposition 1 involves a bound on the norm of iterates of
L−sr+2πi〈ω,g〉.

In the proof the function r must be replaced by a function rσ, which depends on σ. In
fact, rσ differs from r by a coboundary and for σ0 ≤ σ ≤ h, we have L−σrσ1 = eP (−σrσ)1,
where P (−σrσ) denotes the pressure of −σrσ [4]. In particular, rh = r and L−hrh

1 = 1
[19].
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Lemma 9. There exists C > 1 and 0 < θ < 1 (both independent of |t| ≥ 1 and σ0 ≤ σ ≤ h)
such that

||D(Ln
−(σ+it)rσ+2πi〈ω,g〉w)||∞ ≤ enP (−σrσ) (C|t|||w||∞ + θn||Dw||∞) , for n ≥ 0.

Remark. For simplicity, we will ignore the contributions of eP (−σrσ) (since this can be
made to grow at arbitrarily slow rates by choosing σ sufficiently close to 1).

We shall show that the operator L−(σ+2πit)rσ
is a contraction in norm ||w|| = ||w||∞ +

1
|t| ||Dw||∞ on C1-functions. There are two separate cases depending on whether 2C|t|||w||∞
is bigger or smaller than ||Dw||∞.

Case I: 2C|t|||w||∞ ≤ ||Dw||∞. We can fix 1
2 < η < 1 and choose k > 0 and σ0 < h

sufficiently large that
(

1
2 + θk

)
< η. Lemma 9 gives that

1
|t|
||D(Lk

−(σ+2πit)rσ+i〈ω,g〉>w)||∞ ≤ C||w||∞ + θk 1
|t|
||Dw||∞ ≤

(
1
2

+ θk

)
1
|t|
||Dw||∞.

In addition, ||Lk
−(σ+2πit)rσ+i〈ω,g〉>w||∞ ≤ ||w||∞ ≤ 1

2C
1
|t| ||Dw||∞.

Case II : 2C|t|||w||∞ ≥ ||Dw||∞. To prove || · ||∞-contraction (and subsequently || · ||-
contraction) we first establish L1(µσ)-contraction with respect to an appropriate measure
µσ.

We want to associate a sequence of functions uN > 0, N ≥ 0, such that:

(1) 0 ≤ |LnN
−(σ+2πit)rσ+i〈ω,g〉w(x)| ≤ uN (x);

(2) there exists 0 < β < 1 such that
∫
uN (x)dµ(x) ≤ βN (and β is independent of w,

t and σ).

In addition, the functions uN are constructed so that they are C1 on each set Ui and

(3) ||DuN (x)|| ≤ 2C|t||uN (x)|.

The functions uN are defined inductively as follows:

(i) Fix u0 = 1;
(ii) Given the C1 function uN (x) we want to choose a pair of pre-images y1, y2, say,

for each point x. Consider the corresponding terms in (Ln
−(σ+it)rσ+2πi〈ω,g〉uN )(x).

We can choose 0 < η0 < 1, π/2 ≤ θ0 ≤ 3π/2 and π
2 > δ > 0 such that whenever

|t[rn(y1)− rn(y2)] + 2π[〈ω, gn(y1)〉 − 〈ω, gn(y2)〉]| ∈ [θ0 − δ, θ0 + δ] (9.2)

(mod 2π) then we have

|e2π〈ω,gn(y1)〉−(σ+it)rn(y1)uN (y1) + e2π〈ω,gn(y1)〉−(σ+it)rn(y2)uN (y2)|

≤ η0

(
e2π〈ω,gn(y1)〉−σrn(y1)uN (y1) + e2π〈ω,gn(y2)〉−σrn(y2)uN (y2)

)
.
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Let At,θ0,δ denote the set of x with pre-images y1 and y2 satisfying (9.2) then we
can choose a smooth function η0 ≤ η(y) ≤ 1 such that

η(y) =

{
η0 if x ∈ At,θ0, δ

2

1 if x ∈
(
∪k

i=1Ui

)
−At,θ0,δ

.

We then set uN+1(x) = Ln
−σrσ

(ηuN ) (x).
The following lemma gives important estimates on the properties of the probability mea-
sures satisfying L∗−σrσ

µσ = µσ cf. [7].

Lemma 10. There exist R1, R2 > 0 such that for any x ∈
∐k

i=1 Ui there exists x′ ∈∐k
i=1 Ui with d(x, x′) ≤ R1/|t| and B(x′, R2/|t|) ⊂ At,θ0, δ

2
such that for all σ0 < σ < h:

(a) There exists 0 < C1 < C2 < 1 such that

C1 ≤
µσ(B(x′, R2/|t|))
µσ(B(x,R1/|t|))

≤ C2;

(b) There exists C3, C4 > 0 such that

C3 ≤
∣∣∣∣un(z′)
un(z)

∣∣∣∣ ≤ C4,

for d(z, z′) ≤ R1/|t| and for all n ≥ 0; and
(c) There exists 0 < α < 1 such that∫

A
t,θ0, δ

2

un+1(x)dµσ ≤ α

∫
A

t,θ0, δ
2

un(x)dµσ, and

∫
Ac

t,θ0, δ
2

un+1(x)dµσ ≤
∫
Ac

t,θ0, δ
2

un(x)dµσ.

In the proof of this lemma, the point x′ is chosen to lie on the same gradient line for ψ
as x. This enables us to employ (9.1).

We now establish contraction in L1(µσ). From estimates (a) and (b) above we have

C1C3 ≤

∫
A

t,θ0, δ
2

uNdµσ∫
Ac

t,θ0, δ
2

uNdµσ
≤ C2C4.

Estimate (c) then shows that for some α < β < 1 we have
∫
uN+1(x)dµσ ≤ β

∫
uN (x)dµσ

and so ∫
|LnN

−(σ+it)rσ+2πi〈ω,g〉w|dµ ≤ βN ,
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where we can assume for simplicity the normalization ||w||∞ = 1. We refer the reader to
[7] for details.

We now establish uniform contraction of L−(σ+it)rσ+2πi〈ω,g〉. We can use the quasi-
compactness of L−σrσ

to choose c > 0 and 0 < ρ < 1 (independent of σ0 ≤ σ ≤ h) such
that ∣∣∣∣∣∣∣∣Ln

−σrσ
w −

∫
wdµσ

∣∣∣∣∣∣∣∣
∞
≤ c||w||ρn, ∀n ≥ 0

We can use this to write
||L2nN

−(σ+it)rσ+2πi〈ω,g〉w||∞

≤ ||LnN
−σrσ

(
LnN
−(σ+it)rσ+2πi〈ω,g〉w

)
||∞

≤
∫
|LnN

−(σ+it)rσ+2πi〈ω,g〉w|dµσ + c||LnN
−(σ+it)rσ+2πi〈ω,g〉w||ρ

nN

≤ βN + c (C|t|||w||∞ + ||Dw||∞) ρnN

≤
(
βN + 3cC|t|

)
ρnN

≤ EγN = EγN ||w||∞

(9.3)

with E > 0 and max(β, ρn) < γ < 1 (and where E > 0 can be assumed to be independent
of |t| provided we allow that N does depend on |t| i.e. N = O(log |t|)).

We now establish norm contraction of L−(σ+it)rσ++2πi〈ω,g〉 in Case II. We can use
Lemma 9 to write

1
|t|
||D(L2nN

−(σ+it)rσ+2πi〈ω,g〉w)||∞

≤
(
C||LNn

−(σ+it)rσ+2πi〈ω,g〉w||∞ + θNn 1
|t|
||D(LNn

−(σ+it)rσ
w)||∞

)
≤ CEγN/2||w||∞ + θNn

(
C||w||∞ +

1
|t|
||Dw||∞

)
≤ FτN ||w||

using (9.3), with F > 0 and max(γ1/2, θn) < τ < 1. Finally, all that remains is to convert
this spectral estimate into a bound on the L-function, which can be expressed as

L(s, χω) = exp

 ∞∑
n=1

1
n

∑
fnx=x

e−srn(x)+2πi〈ω,gn(x)〉

 .

This uses the following result, which is essentially due to Ruelle.

Lemma 11. [22], [25] There exists 0 < α < 1 such that for any points xi ∈ Ui (i =
1, . . . , k) we can estimate∑

T nx=x

e−srn(x)+2πi〈ω,gn(x)〉 =
k∑

i=1

(
Ln
−sr+2πi〈ω,g〉χUi

)
(xi) +O (|t|γn)

for n ≥ 1.
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10. Proof of Proposition 4

In this section we give the proof of Proposition 4, which gives bounds on the L-functions
in the greater generality of Anosov flows. This method is due to Dolgopyat [8]. In this
situation, the bounds we obtain are somewhat weaker. For convenience we shall assume
that H1(M,Z) is torsion free.

Our proof depends on the reduction to a symbolic model. Given a k × k aperiodic
matrix A we can define a space

XA = {x ∈
∞∏

n=−∞
{1, . . . , k} : A(xn, xn+1) = 1, n ∈ Z}

with a metric d(x, y) =
∑∞

n=−∞
1−δ(xn,yn)

2|n|
, where δ(i, j) is the Kronecker symbol. The shift

map σ : XA → XA given by (σx)n = xn+1 is a homeomorphism. Assume that r : XA → R
a strictly positive Hölder continuous function then we define Xr

A = {(x, t) : 0 ≤ t ≤ r(x)},
subject to the identification (x, r(x)) ∼ (σx, 0), and a flow σr

t : Xr
A → Xr

A defined locally
by σr

t (x, u) = (x, u+t), up to the identifications. It follows by results of Ratner and Bowen
that any Anosov flow can be modeled by such a symbolic flow (for complete details see
[3], [23]). In particular, periodic points σnx = x correspond to periodic orbits γ for the
Anosov flow φ : M →M with l(γ) = rn(x). (In fact, this correspondence is not one-to-one
but there is a standard technique for dealing with this discrepancy and we will ignore it
[3].)

We can also define a corresponding one-sided shift space

X+
A = {x ∈

∞∏
n=0

{1, . . . , k} : A(xn, xn+1) = 1, n ∈ Z}

with a metric d(x, y) =
∑∞

n=0
1−δ(xn,yn)

2n . The shift map σ : XA → XA given by (σx)n =
xn+1 is a local homeomorphism. Given the Hölder continuous function r : XA → R above,
we may assume without loss of generality that it depends only on future co-ordinates (i.e.
r(x) = r(y), if xn = yn for n ≥ 0). We may therefore consider it defined as a function
r : X+

A → R+.
There is a locally constant function g : XA → Zb such that if the periodic orbit σnx = x

corresponds to a closed orbit γ for φt : M → M then gn(x) = [γ] ∈ H1(M,Z) ∼= Zb. In
particular, we have

L(s, χω) = exp

( ∞∑
n=1

1
n

∑
σnx=x

e−srn(x)+2πi〈ω,gn(x)〉

)
, w ∈ Rd/Zd

Given α > 0, let Cα(X+
A ) denote the space of Hölder continuous functions w : X+

A → C
with exponent α. This is a Banach space with respect to the norm ||w|| = ||w||∞ + ||w||α,
where

||w||∞ = sup{|w(x)| : x ∈ X+
A} and ||w||α = sup

{
|w(x)− w(y)|
d(x, y)α

: x 6= y

}
.
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We can consider the transfer operator Ls,ω : Cα(X+
A ) → Cα(X+

A ) defined as before by
the formula

Ls,ωw(x) =
∑

σy=x

e−sh∗r(y)+2πi〈ω,g(y)〉+〈ξ,g〉w(y).

The following lemma links the transfer operator and the L-function.

Lemma 12. For each one cylinder [i] =
{
x ∈ X+

A : x0 = i
}

fix a point xi ∈ [i] (i.e. the
first term of the sequence is (xi)0 = i). There exists a constant K > 0 such that∣∣∣∣∣ ∑

σnx=x

e−sh∗rn(x)+2πi〈ω,gn(x)〉+〈ξ,gn(x)〉 −
k∑

i=1

Ln
s,ωχ[i](xi)

∣∣∣∣∣ ≤ K|t|2enP (−σr)

(
1− 1

|t|τ

) n
2N

where χ[i] is the characteristic function for [i], and where N = [C log |t|] for some C > 0.

Lemma 12 is a consequence of an estimate Ruelle in [25], and Proposition 11 below.
From Lemma 12, the bounds in Proposition 4 readily follow.

The next three lemmas give estimates which will be useful to us later.

Lemma 13. (cf. [24]) Let µ be the unique equilibrium measure for −h∗r+ 〈ξ, g〉 Assume
w ∈ Cα(X+

A ) satisfies ||w||∞ ≤ 1 and ||w||α ≤ |t| then for 0 ≤ n ≤ 2N :

||L2N
1+it,ωw||∞ ≤

∫
|Ln

1+it,ωw|dµ+O
(
||Ln

1+it,ω||δ2N−n
)

(10.1)

for any δ chosen larger than the modulus of the second eigenvalue of L−hr.

Proof. For x ∈ X+
A , we can bound

|L2N
1+it,ωw(x)| ≤ L2N−n

1,0 (|Ln
1+it,ωw|)(x)

≤
∫
|Ln

1+it,ωw|dµ+O
(
||Ln

1+it,ω||δ2N−n
)
.

We can assume for simplicity that Lσ,01 = 1, by replacing −σh∗r + 〈ξ, g〉 by −σh∗r +
〈ξ, g〉+ u ◦ σ − u− P (−σr), for appropriate u [19]. With this simplification the following
result is well-known.

Lemma 14. There exists C0 > 0 such that

||Ln
1+it,ωw|| ≤ C0|t|||w||∞ +

(
1
2

)nα

||w||α, ∀n ≥ 0 (10.2)

(The constant C0 > 0 will be the constant in the statement of Proposition 11. It is
independent of w and n [19].)
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Lemma 15. Given τ > 0 there exists τ0 > 0 such that provided
(1) ||w||∞ = 1 and ||w||α ≤ |t|,
(2) there exists x ∈ X+

A and 0 ≤ n ≤ N with |L2N
1+it,ωw(x)| ≤ 1− 1

|t|τ ,

then
||L2N

1+it,ωw||∞ ≤ 1− 1
|t|τ0

(10.3)

for |t| sufficiently large.

Proof. As is easily observed from (10.2), ||Ln
1+it,ω|| ≤ (C0+1)|t|, for all n ≥ 0. In particular,

we see that whenever y ∈ B(x, ε) = {y : d(x, y) ≤ ε}, where ε > 0 is chosen such that
εα = 1

2(C0+1)|t|τ+1 , we have by hypothesis

|L2N
1+it,ωw(y)| ≤ |L2N

1+it,ωw(x)|+ (C0 + 1)|t|εα

≤
(

1− 1
|t|τ

)
+ (C0 + 1)|t|εα,

(10.4)

for n ≥ 0 and w with ||w||∞ = 1 and ||w||α ≤ |t|. Furthermore, from the definition of
Gibbs measures, we see that there exists D > 0 (independent of ε > 0)

µ(B(x, ε)) ≥ εDα =
(

1
2(C0 + 1)|t|τ+1

)D

(10.5)

Thus we have from (10.4) and (10.5) that∫
|L2N

1+it,ωw|dµ ≤
∫

B(x,ε)c

|L2N
1+it,ωw|dµ+

∫
B(x,ε)

|L2N
1+it,ωw|dµ

≤ (1− µ (B (x, ε))) + µ (B (x, ε))
(

1− 1
2|t|τ

)
≤ 1− 1

21+D(C0 + 1)D|t|τ(1+D)+D

(10.7)

for |t| sufficiently large. Thus comparing (10.1) and (10.7) we see that

||L2N
1+it,ωw||∞ ≤

(
1− 1

21+D(C0 + 1)D|t|τ(1+D)+D

)
+O

(
|t|δN

)
≤
(

1− 1
21+D(C0 + 1)D|t|τ(1+D)+D

)
+O

(
|t||t|C log δ

)
≤ 1− 1

|t|τ0

(10.8)

for |t| sufficiently large, where we choose τ0 > min{τ(1 +D) +D,C| log δ| − 1}, provided
only that we previously choose C > 0 sufficiently large that C| log δ| > 1. This completes
the proof of Lemma 15.

The next result gives important information on the spectrum of the operator.
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Proposition 11. ∃τ > 0 , ∃C0 > 0, and ∃C > 0, such that ∀|t| ≥ 1, ∀n ≥ 1,

||L2Nn
σ+it,ω|| ≤ C0|t|e2NnP (−σr)

(
1− 1

|t|τ

)n−1

where σ ≥ 1− 1
|t|ρ and N = [C log |t|].

Proof. With the earlier reductions it suffices to show that there exist τ > 0, and C > 0
such that for m ≥ 1,

||L2mN
1+itk,ω|| ≤ C0|t|

(
1− 1

|t|τ

)m−1

, (10.9)

where and |t| is sufficiently large. The proof is by contradiction. The first step is to show
that if we assume that (10.9) does not hold then there exist

(1) τ > ||r||∞/| log δ|,
(2) 1/| log δ| < C < τ/||r||∞,
(3) |tk| → +∞,
(4) wk ∈ Cα(X+

A ), with ||wk||∞ = 1 and ||wk||α ≤ tk

such that for all 0 ≤ n ≤ N ,

inf
x∈X+

A

|Ln
1+itk,ωwk(x)| ≥ 1− 1

|tk|τ
. (10.10)

From the assumption that (10.9) is false we can deduce that for all τ > ||r||∞/| log δ| , and
C > 0 there exist sequences tk with |tk| → +∞ and mk → +∞ such that

||LmkN
1+itk,ω|| > 2C0|t|

(
1− 1

|tτk|

)mk−1

.

In order to establish the existence of objects in (1)-(4) satisfying (10.10) let us assume, for
a contradiction, that it is false. In particular, we then have for all τ > ||r||∞/| log δ| and
1/| log δ| < C < τ/||r||∞, for all sufficiently large |t| and functions w with ||w||∞ = 1 and
||w||α ≤ |t| there exists 0 ≤ n ≤ N and x ∈ X+

A such that

|Ln
1+itk,ωw(x)| ≤ 1− 1

|t|τ
.

We can apply Lemma 15 to get the supremum bound in (10.3). Moreover, we can
improve this to a norm estimate as follows. By (10.2) we have for any m ≥ 1,

||L2Nm
1+it,ωw||

≤ C0|t|||L2N(m−1)
1+itk,ω w||∞ +

(
1
2

)2N(m−1)

||L2N
1+itk,ωw||α

≤ C0|t|

((
1− 1

|t|τ0

)(m−1)

+
(

1
2

)2N(m−1)
)

≤ C0|t|
(

1− 1
|t|τ1

)(m−1)

,
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for any τ1 > min{τ0, C log 4}, and we assume that |t| is sufficiently large. However, this
contradicts our assumption that (10.9) does not hold, and thus shows the validity of (10.10).

For the second step in the proof of Proposition 11 let wk ∈ Cα(X+
A ) and tk be the

sequences we have just established for (10.10). Then we can write:

wk(x) = R0(x)eiθ0(x),

LN
1+itk,ωwk(x) = R1(x)eiθ1(x), and

L2N
1+itk,ωwk(x) = R2(x)eiθ2(x),

where R0, R1, R2 are the moduli of these functions, and θ0, θ1, θ2 are the arguments. We
now show the existence of such wk leads to an estimate (denoted (10.11) below) which we
shall subsequently show cannot hold in the case of weak-mixing transitive Anosov flows.
This contradiction will complete the proof of Proposition 11.

Set τ ′ = τ − C||r||∞ > 0 and nk = [log |tk|]. We claim that whenever σnky = x then

exp (iΘ1(y, x)) = 1 +O

(
1

|tk|τ ′
)

and exp (iΘ2(y, x)) = 1 +O

(
1

|tk|τ ′
)
. (10.11)

where we denote

Θ1(y, x) = tkr
nk(y) + 2π〈w, gnk(y)〉 − θ1(x) + θ0(y),

Θ2(y, x) = tkr
nk(y) + 2π〈w, gnk(y)〉 − θ2(x) + θ1(y).

Since we are assuming Lnk
1,01 = 1 we can write

∑
σnk y1=x

e−rnk (y1) (1− exp (−iΘ1(y1, x)) r0(y1))

= 1− e−iθ1(x)Lnk
1+itk,ωw(x)

= 1− r1(x).

(10.12)

Since by estimate (10.10) we can bound 1 − r1(x) = O (1/|tk|τ ), we can estimate from
(10.12) that for each σnky1 = x:

1− exp (−iΘ1(y1, x)) r(y1) = O

(
enk||r||∞

|tk|τ

)
= O

(
|tk|C||r||∞

1
|tk|τ

)
= O

(
1

|tk|τ ′
)
.

This proves the first part of (10.11). The second part follows similarly.

Finally, we shall show that (10.11) is inconsistent with φt : M → M being a transitive
weak-mixing Anosov flow. We begin by making choices such that σnky0 = σnky1 = x and
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σnky2 = σnky3 = z where d(y0, y2) =
(

1
2

)nk and d(y1, y3) =
(

1
2

)nk . We shall use Ξ to
denote the set of values

∆(y0, y1, y2, y3) = rnk(y0) + rnk(y3)− rnk(y1)− rnk(y2),

where y0, y1, y2, y3 range over the above choices. For transitive Anosov flows it is obvious
that Ξ contains an interval. However, we shall show that if (10.11) holds then we obtain
a contradiction.

From (10.11) we see that:

exp (iΘ1(y0, x)) = 1 +O

(
1

|tk|τ ′
)

and exp (iΘ2(y2, z))) = 1 +O

(
1

|tk|τ ′
)

;

exp (iΘ1(y1, x)) = 1 +O

(
1
|t|τ ′

)
and exp (iΘ2(y3, z)) = 1 +O

(
1

|tk|τ ′
)
.

Taking ratios of the first pair of expressions we see that

exp (i(Θ1(y0, x)−Θ2(y2, z))) = 1 +O

(
1

|tk|τ ′
)

and taking ratios of the second pair of expressions we see that

exp (i(Θ1(y1, x)−Θ2(y3, z))) = 1 +O

(
1

|tk|τ ′
)
.

Taking further ratios we get

exp (i(Θ1(y0, x)−Θ2(y2, z))− i(Θ1(y1, x)−Θ2(y3, z)))

= exp (itk∆(y0, y1, y2, y3)) exp (2πi〈ω, gnk(y0) + gnk(y3)− gnk(y1)− gnk(y2)〉))

= 1 +O

(
1

|tk|τ ′
) (10.13)

Since the range of g is a finite set, we can take it to be equal to Λ = {λ1, . . . , λN}, say,
then

〈ω, gnk(y0) + gnk(y3)− gnk(y1)− gnk(y2)〉 ∈ Λ2nk − Λ2nk

where Λ2nk = {λi0 + . . .+ λi2nk
: λi0 , . . . , λi2nk

∈ Λ}.
In particular, we can assume that for |tk| sufficiently large,

Ξ ⊂
⋃
n∈Z

⋃
λ∈Λ2nk−Λ2nk

[
2πn+ λ

|tk|
− 1
|tk|τ ′

,
2πn+ λ

|tk|
+

1
|tk|τ ′

]

However, the cardinality of Λ2nk − Λ2nk is at most N4nk . Since nk � log |tk|, we see that
provided τ ′ is sufficiently large this contradicts Ξ containing an interval.

This contradiction completes the proof of Proposition 11.
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