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Abstract. In this note we study large deviation results for the Manneville-Pomeau
map and related transformations with indifferent fixed points. In particular, we
consider conditions under which the associated error term is polynomial or even
exponential. For typical observables, polynomial estimates are optimal. However,
under suitable conditions, the exponential error term arises from the compactness of
the space of measures, despite the indifference of the fixed point.

0. Introduction

In this note we shall consider a standard example of intermittent behaviour,
namely interval maps with indifferent fixed points, and the large deviation be-
haviour of its orbits. This complements our earlier work on the distribution of
pre-images for such maps.

More precisely, let T : I → I be a map of the interval I = [0, 1] which is
expanding, except for an indifferent fixed point at x = 0 and assume that there is a
unique finite absolutely continuous invariant probability measure µ. The classical
example is the well-known Manneville-Pomeau map T (x) = x + x1+α, where 0 <
α < 1.
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Figure 1. The Manneville Pomeau map
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More generally, we can consider interval maps T : I → I such that:
(1) T (0) = 0;
(2) T ′(x) ≥ 1, with equality only at x = 0; and
(3) T (x) = x + rx1+α(1 + u(x)), where u(x) is C1 function for which u′(x) =

O(xt−1), for some t > 0.
These conditions are now fairly standard (cf. [5], [7], [12]).

It is well known that for such maps the decay of correlations is typically polyno-
mial. However, as we will see, large deviation estimates may be either polynomial
or exponential. We shall consider two different formulations of large deviation re-
sults [2],[3]. The first so-called Level I results are for functions. The second, more
general but perhaps less well-known, Level II results are for measures.

We start by discussing Level I results. Let f : I → R be a Hölder continuous
function and assume without loss of generality that

∫
fdµ = 0. We state our

polynomial and exponential estimates separately.
To simplify notation, we shall write

Eα(n) =

{
(log n)2(

1
α−1)n−( 1

α−1) if 0 < α ≤ 1
2

n−( 1
α−1) if 1

2 < α < 1.

Theorem 1 (Polynomial Level I result). Suppose that f : I → R is Hölder
continuous and let ε > 0.
(a) Lower bound: If |f(0)| ≥ ε then there exist C > 0 such that

C

n( 1
α−1) ≤ µ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

}
.

(b) Upper bound: If |f(0)| ≥ ε then

µ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

}
= O(Eα(n)).

Theorem 2 (Exponential Level I result). Suppose that f : I → R is Hölder
continuous and let ε > 0. If |f(0)| < ε then there exists β > 0 such that

µ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

}
= O(e−βn).

In Theorem 1, the hypotheses preclude the function f being identically zero and
give the possibility of a lower bound. However, in Theorem 2 it is still possible for
f to be identically zero and thus to have no non-trivial lower bound.

Remark. Cases (a) and (b) in Theorem 1, had already been considered by Mel-
bourne and Nicol [10], under the additional assumption that 0 < α < 1

2 . There
they show that for any δ > 0 there are constants C1, C2 > 0 such that

C1

n( 1
α−1)+δ

≤ µ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

}
≤ C2

n( 1
α−1)−δ

.
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After this paper was written, we became aware that, using different methods, Mel-
bourne [9] had independently obtained the estimate

µ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

}
= O(n−( 1

α−1)),

for 0 < α < 1, which is stronger than ours in the range 0 < α ≤ 1
2 .

We shall now discuss the Level II results for measures. Let M denote the compact
and convex set of Borel probability measures (with the weak∗ topology) and MT

the subset of T -invariant probability measures. We shall let δx denote the Dirac
measure supported on the point x. In particular, δ0 denotes the ergodic measure
supported on the fixed point at 0 and we write A = {λµ + (1 − λ)δ0 : 0 ≤ λ ≤ 1},
the set of convex combinations of these measures.

Theorem 3 (Polynomial Level II result). Let K ⊂M be a compact set. If
µ '∈ K then

µ

{
x ∈ I :

1
n

n−1∑

i=0

δT ix ∈ K
}

=






O
(
(log n)2(

1
α−1)n−( 1

α−1)
)

if 0 < α ≤ 1
2

O
(
n−( 1

α−1)
)

if 1
2 < α < 1.

Theorem 4 (Exponential Level II result). Let K ⊂ M be a compact set. If K
is disjoint from A then there exists β > 0 such that

µ

{
x ∈ I :

1
n

n−1∑

i=0

δT ix ∈ K
}

= O(e−βn).

The method of proof of the exponential estimates is to adapt the approach
previously used in [12] for pre-images. It involves a simple argument using thermo-
dynamic ideas, such as pressure and equilibrium states.

We now briefly outline the contents of the paper. In the next section we discuss
some examples, including some numerical plots. In section 2 we prove Theorem 1,
in particular using recent work of Peligrad, Utev and Wu to obtain our upper bound
for 0 < α < 1

2 . In section 2 we prove Theorem 3 as a consequence of Theorem 1. In
section 4, we use the thermodynamic formalism associated to T to prove Theorem
4, from which Theorem 2 follows as a simple corollary. In section 5, we discuss
some higher dimensional results. We end the paper with some remarks.

1. Examples

It is easy to see the different behaviour in parts (a) and (b) of Theorem 2, say,
by considering a simple class of examples. In this section we begin by empirically
studying examples of Manneville-Pomeau maps for different choices of 0 < α < 1.

Example 1. Let 0 < α < 1 and consider the map T : [0, 1] → [0, 1] defined by
T (x) = x+x1+α (mod 1) where 0 < α < 1. T is called the Manneville Pomeau map
and within this range of parameters α the map has a unique absolutely continuous
invariant measure µ.
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In practice, it is easier to estimate the size of the sets with respect to the Lebesgue
measure λ, since we do not have an explicit expression for the density. However, if
|f(0)| ≥ ε then Theorem 1 gives that

λ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

}
= O

(
µ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

})

= O
(
n− 1

α

)
.

On the other hand, if |f(0)| < ε then Theorem 2 gives that

λ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

}
= O

(
µ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

})

= O
(
e−βn

)
.

Thus the same characteristic polynomial, or exponential, decay can be seen with
the Lebesgue measure of the sets.

In figures 2-4 we present some numerical estimates in the three cases α = 0.5,
α = 0.25 and α = 0.1. In each case we takes ε = 0.5. Furthermore, we consider
the the two functions f1(x) = cos(2πx) and f2(x) = sin(2πx). Since |

∫
f1dµ| < ε

and f1(0) = 1 > ε we see that case (a) applies and the first of the plots for each of
parameter values exhibits the characteristic polynomial decay.

Since |
∫

f2dµ| < ε and f2(0) = 0 < ε we see that case (b) applies and the first
of the plots for each of parameter values exhibits characteristic exponential decay.
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Figure 2. Empirical plots for λ
{

x ∈ I :
∣∣∣ 1n
∑n−1

i=0 f(T ix)
∣∣∣ ≥ ε

}
in the

case of the Manneville-Pomeau map with α = 0.5 and ε = 0.5; where a)
f1(x) = cos(2πx); and b) f2(x) = sin(2πx).

Example 2. Another related class of interval maps were studied by Yuri in [17].
These are of the general form

T (x) =

{ x
(1−xα)1/α if 0 ≤ x ≤ 2−1/α

x
2−1/α−1

− 1
1−2−1/α if 2−1/α < x ≤ 1,
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Figure 3. Empirical plots for λ
{

x ∈ I :
∣∣∣ 1n
∑n−1

i=0 f(T ix)
∣∣∣ ≥ ε

}
in the

case of the Manneville-Pomeau map with α = 0.25 and ε = 0.5; where
a) f1(x) = cos(2πx); and b) f2(x) = sin(2πx).
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Figure 4. Empirical plots for λ
{

x ∈ I :
∣∣∣ 1n
∑n−1

i=0 f(T ix)
∣∣∣ ≥ ε

}
in the

case of the Manneville-Pomeau map with α = 0.1 and ε = 0.5; where a)
f1(x) = cos(2πx); and b) f2(x) = sin(2πx).

where 0 < α < 1. This map has a finite ergodic absolutely continuous probability
measure. These satisfy the hypotheses of Theorems 1-4 and the conclusions of these
results apply.

In practice, we do not have an explicit formula for the density of the measure
µ. Therefore, we make numerical estimates using Lebesgue measure on the unit
interval which gives some approximation to the true value using µ. The plots are
then based on the behaviour of Birkhoff averages for a large number of randomly
chosen points.

Finally, we mention that the same method applies to related higher dimensional
examples using the methods described

2. Proof of Theorem 1

Part (a). We begin with some simple properties of the map T .

Lemma 2.1.
(i) Let an denote the pre-image in T−n(1) which is closest to 0. Then an ∼

n− 1
α .

(ii) There exists D1, D2 > 0 such that the Radon-Nikodym derivative dµ/dx
satisfies

D1x
−α ≤ dµ

dx
≤ D2x

−α.
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Proof. Part (i) is proved in [7, Lemma 2.1 b)]. Part (ii) is proved in [7, Lemma
2.5] !

We shall restate the lower bound in part (a) of Theorem 1 as a proposition.

Proposition 2.1. If |f(0)| ≥ ε then there exists C > 0 such that

µ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

}
≥ C

n( 1
α−1) , for all n ≥ 1.

Proof. Assume without loss of generality that f(0) ≥ ε (the case f(0) ≤ −ε being
similar). By continuity of f(x) at 0 we can choose δ > 0 such that whenever
x ∈ [0, δ] we have that f(x) ≥ ε.

We consider intervals [0, an]. By Lemma 2.1 (i) we can choose N ≥ 1 sufficiently
large that aN ≤ δ. In particular, for any n ≥ 1 we have that T n[0, an+N ] = [0, aN ] ⊂
[0, δ] and thus for any x ∈ [0, an+N ] we have that 1

n

∑n−1
i=0 f(T ix) /∈ (−ε, ε).

Moreover, by Lemma 2.1 (ii) we can find C > 0 such that

µ([0, an+N ]) ≥ D1

∫ an+N

0
x−αdx ≥ C

n( 1
α−1) .

Combining these estimates we have that:

µ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ > ε

}
≥ µ([0, an+N ]) ≥ C1

n( 1
α−1) , for all n ≥ 1,

as required. !

Part (b). We need to consider the two ranges of values for α separately.

Case (i): 1
2 < α < 1. Recall the following result:

Lemma 2.2 [16], cf. [10]. Given a Hölder continuous function f : I → R with∫
fdµ = 0, there exists C(f) > 0 such that

∣∣∣∣
∫

f(T jx)f(x) dµ(x)
∣∣∣∣ ≤ C(f)j−( 1

α−1),

for j ≥ 1.

We shall show the following:

Proposition 2.2. Suppose that |f(0)| ≥ ε and that 1
2 < α < 1. Then

µ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

}
= O

(
n−( 1

α−1)
)

.
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Proof. Since α > 1
2 , we have 1

α − 1 < 1. Observe that

µ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

}
≤ 1

n2ε2

∫ ∣∣∣∣∣

n−1∑

i=0

f(T ix)

∣∣∣∣∣

2

dµ(x)

≤ 1
n2ε2



n

∫
|f(x)|2dµ(x) + 2

∑

0≤i<j≤n−1

∫
f(T |i−j|x)f(x) dµ(x)





≤ 1
n2ε2

(
n

∫
|f(x)|2dµ(x) + 2C(f)

n∑

r=1

n − r

r
1
α−1

)

=
1

nε2

∫
|f(x)|2dµ(x) +

C(f)
nε2

n∑

r=1

1
r

1
α−1

− C(f)
n2ε2

n∑

r=1

r2− 1
α

= O(n−1) + O(n−( 1
α−1)) + O(n−( 1

α−1))

= O(n−( 1
α−1))

(2.1)

(by bounding the finite summations using integrals). !

Case (ii): 0 < α ≤ 1
2 . In order to prove the result in this case, we will need to

consider the transfer operator L− log |T ′| : C0(I, R) → C0(I, R) defined by

L− log |T ′|h(x) =
∑

Ty=x

h(y)
|T ′(y)| .

We can replace L− log |T ′| by its normalized version using a result of Hu [5, §4].
More precisely, one can can choose a positive function u such that the operator
Lh = u−1L− log |T ′|(uh), for h ∈ C0(I, R), satisfies L1 = 1. Moreover, we have the
following result.

Lemma 2.3. We have the bound
∫

|Lnf |dµ = O(n1− 1
α ). (2.2)

Proof. This appears in [6], Proposition 5.2, (d) (iii) !

In particular, we can can write E(f |T−kB) = (Lkf) ◦ T k, where B denotes the
usual σ-algebra on [0, 1], cf. [8] and [15, §2]. More precisely, E(f |T−kB) is the
unique integrable function which is measurable with respect to the smaller sigma
algebra T−kB ⊂ B and satisfies

∫

A
fdµ(x) =

∫

A
E(f |T−kB)dµ(x)

for every B ∈ T−kB.
We shall show the following.
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Proposition 2.3. Suppose that |f(0)| ≥ ε and that 0 < α ≤ 1
2 . Then

µ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

}
= O

(
(log n)2(

1
α−1)n−( 1

α−1)
)

.

Proof. We begin with the standard estimate, for any ε > 0, that

µ

{
x ∈ I :

∣∣∣∣∣

n−1∑

i=0

f(T ix)

∣∣∣∣∣ > nε

}
≤ 1

(nε)2p

∫ ∣∣∣∣∣

n−1∑

i=0

f(T ix)

∣∣∣∣∣

2p

dµ(x) (2.3)

where p > 1, say. Since f is bounded, we can take p as large as we please. However,
we need to make sure that

∫ ∣∣∣∣∣

n−1∑

i=0

f(T ix)

∣∣∣∣∣

2p

dµ(x)

does not grow too fast.
We consider the natural extension of T (to obtain an invertible system) and

apply Corollary 1 from [11] to get:

∫ ∣∣∣∣∣

n−1∑

i=0

f(T ix)

∣∣∣∣∣

2p

dµ(x) ≤ Cnp(‖f‖2p + 240
n∑

k=1

k−1/2‖E(f |T−kB)‖2p)2p, (2.4)

for some C > 0, where ‖ · ‖2p denotes the L2p-norm. Moreover, by invariance of µ
we can write

‖E(f ◦ T−k|B)‖2p =
(∫

|E(f ◦ T−k|B)|2pdµ

) 1
2p

=
(∫

|E(f |T−kB)|2pdµ

) 1
2p

= ‖E(f |T−kB)‖2p.

Again using the T -invariance of µ we can write

‖E(f |T−kB)‖2p =
(∫

|E(f |T−kB)|2pdµ

) 1
2p

=
(∫

|Lkf |2pdµ

) 1
2p

= ‖Lkf‖2p.

Furthermore, using (2.2) we see that

‖Lnf‖2p ≤
(∫

|Lnf |2pdµ

) 1
2p

≤ ‖f‖(2p−1)/(2p)
∞

(∫
|Lnf |dµ

) 1
2p

= O
(
n(1− 1

α )/2p
)

.

(2.5)
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Moreover, if we let p = 1
α − 1 then we see from (2.5) that the series on the Right

Hand Side of (2.4) is O(log n). Thus the Right Hand Side of (2.4) is O(np(log n)2p)
and comparing (2.3) and (2.4) gives:

µ

{
x ∈ I :

∣∣∣∣∣

n−1∑

i=0

f(T ix)

∣∣∣∣∣ > nε

}
= O

(
n−p(log n)2p

)

= O
(
n−(1− 1

α )(log n)2(1−
1
α)
)

which gives the required bound. !
Remarks.

(1) If α = 1
2 then, in fact, the method used in Case (i) in gives the estimate

µ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

}
= O

(
(log n)n−1

)
.

(2) If we chose p < (1 − 1
α ) then the bound gives that (2.5) and the series in

(2.4) are uniformly bounded in n. Therefore, comparing (2.3) and (2.4)
gives that

µ

{
x ∈ I :

∣∣∣∣∣

n−1∑

i=0

f(T ix)

∣∣∣∣∣ > nε

}
= O(n−p)

for p < (1− 1
α ), which recovers the bound in [10]. This is not surprising since

both approaches use Burkholder-type inequalities. However, by avoiding an
explicit use of Martingale differences, and instead using the estimates in
[11], we have the upper bounds in Theorem 1.

(3) There are other examples of statistical properties of the Manneville-Pomeau
map where one observes a dichotomy in terms of the error terms which is
a consequence of the value of the function at the indifferent fixed point. In
particular, Gouëzel [4] has such results for the error term of the Central
Limit Theorem when 0 < α < 1

2 .

3. Proof of Theorem 3

We shall show the following restatement of Theorem 3:

Proposition 3.1. Assume that K is a compact subset of M such that µ /∈ K. Then

µ

{
x ∈ I :

1
n

n−1∑

i=0

δT ix ∈ K
}

= O(Eα(n)).

Proof. We shall derive this result from Propositions 2.1 and 2.2. Let Cθ(I, R)
denote the space of Hölder continuous functions f : I → R with Hölder exponent
θ > 0. Let ν ∈ K. Since µ /∈ K and, for any fixed θ > 0, Cθ(I, R) is uniformly dense
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in Cθ(I, R), we can find ε > 0 and f ∈ Cθ(I, R) such that
∣∣∫ fdν −

∫
fdµ

∣∣ > ε. We
can cover the arbitrary compact set of measures K by a union of open sets in M:

K ⊂
⋃

f∈Cθ(I,R))

⋃

ε>0

{
ν ∈ M :

∣∣∣∣
∫

fdµ −
∫

fdν

∣∣∣∣ > ε

}
.

By compactness, we can cover K by a finite union

K ⊂
N⋃

j=1

{
ν ∈ M :

∣∣∣∣
∫

fjdµ −
∫

fjdν

∣∣∣∣ > εj

}
,

where εj > 0 and fj ∈ Cθ(I, R), j = 1, . . . , N . In particular, we have that

µ

{
x ∈ I :

1
n

n−1∑

i=0

δT ix ∈ K
}

≤
N∑

j=1

µ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

fj(T ix) −
∫

fjdµ

∣∣∣∣∣ > εj

}
.

= O(Eα(n)).

by applying Propositions 2.1 and 2.2 to the functions fj −
∫

fjdµ. !

4. Proof of Theorems 2 and 4

We turn to the proof of the exponential estimate in Theorem 4. (Theorem 2 will
follow as a corollary.) Let P : C0(I, R) → R be the usual pressure function

P (g) = sup
µ∈MT

{
h(µ) +

∫
g dµ

}
.

We can then define an auxiliary function Q : C0(I, R) → R by Q(g) = P (− log |T ′|+
g) and, for each ν ∈ M, associate its Legendre transform

I(ν) = sup
g∈C0(I,R)

(∫
g dν − Q(g)

)
.

In particular, recall that P (·) is Lipschitz continuous and so Q(·) is Lipschitz con-
tinuous.

Lemma 4.1 [12, Lemma 8].
(i) If ν /∈ A then I(ν) > 0.
(ii) The map ν +→ I(ν) is lower semi-continuous on MT . Furthermore, on

M−MT , I(ν) is bounded below by the continuous function ν +→
∫

log |T ′|dν.
In particular, if K ∩A = ∅ then ρ = infν∈K I(ν) > 0.

For each g ∈ C0(I, R), we can generalize the definition of L− log |T ′| is section 2
and define the transfer operator Lg : C0(I, R) → C0(I, R) by

Lgh(x) =
∑

Ty=x

eg(y)h(y).
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Lemma 4.2 [12, Lemma 1]. For any g ∈ C0(I, R),

lim sup
n→∞

1
n

log
∫

Ln
g 1(x)dµ(x) ≤ P (g). (4.1)

Proof. The map T : I → I is topologically conjugate to the doubling map, which
is itself semi-conjugate to the full shift on two symbols σ : Σ2 → Σ2. Lifting g to
a continuous function ḡ : Σ2 → Σ2, given η > 0, we may find a locally constant
function k : Σ2 → R such that ‖ḡ − k‖∞ ≤ η/4. We shall continue to use Lḡ and
P (ḡ), respectively, to denote the transfer operator and pressure with respect to σ.
Then

1
n

logLn
ḡ 1 ≤ 1

n
logLn

k+η/41 ≤ P
(
k +

η

4

)
+
η

4
≤ P (ḡ) +

η

2
,

for sufficiently large n. Thus

lim
n→+∞

1
n

log
∫

Ln
ḡ 1(x) dµ(x) ≤ exp(n(P (ḡ) + η/2)).

Since P (ḡ) = P (g) and η > 0 is arbitrary, the result is proved. !
To complete the proof of Theorem 2, it suffices to show the following.

Proposition 4.1. Let K be a compact subset of M such that K ∩A = ∅. Then,
for any τ > 0, we can choose C > 0 such that

µ

{
x ∈ I :

1
n

n−1∑

i=0

δT ix ∈ K
}

≤ Ce−(ρ−τ)n.

Proof. By the definition of I(ν) and ρ in Lemma 4.1, for every ν ∈ K, there exists
g ∈ C0(I, R) such that ∫

g dν − Q(g) > ρ− τ.

Thus we have that

K ⊂
⋃

g∈C0(I,R)

{
ν ∈ M :

∫
g dν − Q(g) > ρ− τ

}

Since K is compact, we may choose a finite collection of functions g1, . . . , gk ∈
C0(I, R) such that

K ⊂
k⋃

j=1

{
ν ∈ M :

∫
gj dν − Q(gj) > ρ− τ

}
.

In particular, we can bound

µ

{
x ∈ I :

1
n

n−1∑

i=0

δT ix ∈ K
}

≤
k∑

j=1

µ

{
x ∈ I :

1
n

gn
j (x) − Q(gj) > ρ− τ

}

≤
k∑

j=1

e−n(Q(gj)+ρ−τ)

∫
Ln

log |T ′|+gj
1 dµ.

(4.2)
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Comparing (4.1) and (4.2) we have that

µ

{
x :

1
n

n−1∑

i=0

δT ix ∈ K
}

= O(e−(ρ−τ)n). !

Proof of Theorem 2. Theorem 2 follows from Theorem 4 by choosing

K =
{
ν ∈ M :

∣∣∣∣
∫

fdν

∣∣∣∣ ≥ ε

}
.

This is a compact set in M. Furthermore, if (for 0 ≤ λ ≤ 1) ν = λµ+(1−λ)δ0 ∈ A
then ∣∣∣∣

∫
fdν

∣∣∣∣ ≤ (1 − λ)|f(0)| < ε,

so K ∩A = ∅. Finally,
{

x ∈ I : | 1
n

n−1∑

i=0

f(T ix)| ≥ ε

}
⊂
{

x ∈ I :
1
n

n−1∑

i=0

δT ix ∈ K
}

.

Thus

µ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

}
= O(e−βn),

for β > 0.

5. Higher dimensional results

The results in [12] for higher dimensional maps have natural analogues in the
present context.

Let T : X → X be a continuous expanding map on a compact subset of Rk and
let X = ∪a∈IXa be a finite generating partition, where each Xa has a piecewise
smooth boundary and for each a the map T : Xa → X is a C1 diffeomorphism.
Suppose also that infx∈X | det(DT )(x)| > 0. Moreover, we require the following
technical hypothesis:

Finite Range Condition. There is a finite collection U of open subsets of X such
that, if int(Xa1) ∩ int(T−1Xa2) ∩ · · · ∩ int(T−(n−1)Xan) '= ∅ then T n(int(Xa1) ∩
int(T−1Xa2) ∩ · · · ∩ int(T−(n−1)Xan)) ∈ U .

We write Xa1···an for the cylinder set Xa1 ∩ T−1Xa2 ∩ · · · ∩ T−(n−1)Xan . Fix
C > 0. For each n ≥ 1, let Rn = Rn(C) denote the cylinders Xa1···an such that

sup
x,y∈Xa1···an

| det(DT nx)|
| det(DT ny)| < C

and we define Dn = Dn(C) ⊂ X to be the union of the cylinders Xa1···an for which,
for each 1 ≤ i ≤ n, we have that

sup
x,y∈Xa1···ai

| det(DT ix)|
| det(DT iy)| ≥ C.
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Lemma 5.1. There is an ergodic absolutely continuous T -invariant measure µ
provided

(i) there exists C > 0 such that Rn '= ∅ and whenever Xa1···an ∈ Rn then
Xb1···bma1···an ∈ Rn+m;

(ii) for each U ∈ U there exists Xa1···an ⊂ U such that Xan ∈ R1 and T n(Xa1···an) =
X; and

(iii)
∑∞

n=1 λ(Dn) < +∞, where λ is the usual k-dimensional Lebesgue measure

Proof. This appears as Proposition 3 in [12]. !
Let A denote the convex hull of µ and the set of measures supported on ∩∞

n=1Dn.
(For simplicity, we assume the latter is a single periodic orbit.)

In [12] we proved large deviation results for periodic orbits. However, a simple
modification of the arguments there leads to a statement analogous to that of
Theorem 4:

Proposition 5.1. Assume that T : X → X satisfies the Finite Range Condition
and satisfies (i)-(iii) above. Let K ⊂M be a compact set. If K is disjoint from A
then there exists β > 0 such that

µ

{
x ∈ I :

1
n

n−1∑

i=0

δT ix ∈ K
}

= O(e−βn).

Example (Brun’s map). Let X = {(x, y) : 0 ≤ y ≤ x ≤ 1} and consider the finite
partition

X0 =
{

(x, y) : 0 ≤ y ≤ x ≤ 1
2

}
,

X1 =
{

(x, y) : 0 ≤ y ≤ 1 − x,
1
2
≤ x ≤ 1

}
,

X2 =
{

(x, y) : 1 − x ≤ y ≤ x,
1
2
≤ x ≤ 1

}
.

Define a map T : X → X by

T (x, y) =






(
x

1−x , y
1−x

)
if (x, y) ∈ X0

(
1
x − 1, y

x

)
if (x, y) ∈ X1( y

x , 1
x − 1

)
if (x, y) ∈ X2

This map has a finite ergodic absolutely continuous probability measure by the
Lemma 5.1, and an exponential Level II large deviation results by Proposition 5.1.
(In this example, the indifferent periodic orbit is the fixed point (0, 0).)

We may also consider the case of polynomial large deviation results, where there
are analogues of Theorems 1 and 3. For example, if, for any Lipschitz function,
the transformation mixes at a polynomial rate O(n−γ), for some γ > 0, then, for a
compact set K ⊂M not containing µ, we have

µ

{
x ∈ X :

1
n

n−1∑

i=0

δT ix ∈ K
}

= O(n−min{1,γ}).
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Also, assuming that an indifferent fixed point x0 has neighbouring cylinders Xa1···an

whose measures have a polynomial lower bound µ(Xa1···an) ≥ C1n−γ , for some
C1 > 0, γ > 0, and given a Hölder continuous function f : X → R with

∫
fdµ = 0,

there exists C2 > 0 such that

µ

{
x ∈ X :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

}
≥ C2n

−γ .

Example (Inhomogeneous diophantine approximation map). Let X = {(x, y) : 0 ≤
y ≤ 1,−y ≤ x < y + 1} and define T : X → X by

T (x, y) =
(

1
x
−
[
1 − y

x

]
+
[
− y

x

]
,−

[
− y

x

]
− y

x

)
.

By Lemma 5.1 there is an ergodic absolutely continuous T -invariant measure µ.
Moreover, for any Lipschitz function it mixes at a rate O(n−(1−δ)), for any δ > 0
and thus the upper bound above applies.

Analogous results hold in the case of Almost Anosov diffeomorphisms, in the
sense of Huyi Hu. These are particular examples of surface diffeomorphisms which
are hyperbolic, except at a fixed point. Hu gives conditions on the derivative at
the fixed point for such maps to have a finite SRB measure and for this measure
to mix at a polynomial rate [5, Theorem 3.9 i) and Theorem 4.2]. However, since
they are continuous factors of finite type the preceding analysis applies.

6. Final Remarks

1. There are simple examples of interval maps which have more than one indifferent
fixed points, and where the polynomial decay of correlations is controlled by the
(finite) set of such points (cf. [1], for example). In this case Theorem 1 has a
natural generalization in which A is replaced by a finite dimensional simplex.

2. The results of [11], and the method of proof in section 2, give a slightly stronger
maximal result:

µ

{
x ∈ I : max

1≤m≤n

∣∣∣∣∣
1
m

m−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

}

=






O
(
(log n)2(

1
α−1)n−( 1

α−1)
)

if 0 < α ≤ 1
2

O
(
n−( 1

α−1)
)

if 1
2 < α < 1.

3. There is an interesting connection between error terms for large deviations and
the approximation of functions by coboundaries. We recall that the usual proof of
the L2 von Neumann ergodic theorem for an ergodic transformation T : (X, µ) →
X, µ) exploits the fact that for any f ∈ L2(X, µ) with

∫
fdµ = 0, and any δ > 0

we can choose u ∈ L2(X, µ) such that ‖f − (u ◦T − u)‖2 < δ. Volný and Weiss [14]
showed that whenever f ∈ L∞(X, µ) with

∫
fdµ = 0, satisfies that for any δ > 0

we can choose u ∈ Lp(X, µ) such that ‖f − (u ◦ T − u)‖∞ < δ, then

µ

{
x ∈ I :

∣∣∣∣∣
1
n

n−1∑

i=0

f(T ix)

∣∣∣∣∣ ≥ ε

}
= O

(
n−p

)
.
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In particular, we see from the lower bound in Theorem 1 (a) that if |f(0)| ≥ δ then

inf
{
‖f − (u ◦ T − u)‖∞ : u ∈ L( 1

α−1)(X, µ)
}

> 0.
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