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Abstract. We establish results on the distribution of pre-images with respect to the

absolutely continuous invariant measure for certain systems with indifferent periodic

points. This proves to be somewhat more delicate than in the uniformly hyperbolic
case. We apply these results to the one dimensional Manneville-Pomeau equation and

other one dimensional examples. We also consider higher dimensional analogues.

0. Introduction

The statistical properties of uniformly hyperbolic systems have been extensively
studied. In the case of endomorphisms there exist results on the distribution of
pre-images. By contrast, systems exhibiting intermittent behaviour are not as well
understood [1].

In this paper we shall consider the problem of the distribution of pre-images with
respect to the natural smooth measure for certain maps with indifferent fixed or
periodic points. In particular, we shall prove large deviation results for pre-images
weighted by the derivative. More precisely, these results are upper bounds in the
level 2 large deviation principle, in the sense of [4]. If we were to consider pre-
images without weightings then this would correspond to large deviations from the
measure of maximal entropy. Since results for the unweighted pre-images can easily
be deduced from the hyperbolic case by conjugacy we shall not consider these here.

In the interests of clarity we shall concentrate on the special case of the piecewise
C1 interval map T : [0, 1] → [0, 1] defined by x 7→ x+x1+s (mod 1), where 0 < s < 1.
This is the important Manneville-Pomeau map which exhibits the essential features
of the one dimensional maps that we shall study (cf. [10], [15], [12]). Observe that

(1) T (0) = 0 and |T ′(0)| = 1
(2) ∀ε > 0 ∃β > 1 ∀x ∈ (ε, 1] we have |T ′(x)| ≥ β
(3) T : [0, a0] → [0, 1] and T : (a0, 1] → (0, 1] are C1 diffeomorphisms, where a0

satisfies a0 + a1+s
0 = 1.

It is observed in [5] that if an is the smallest solution to Tn(an) = a0, then
an = O(n−1/s). In particular, we have that

∑∞
n=0 |an| < +∞.

For maps satisfying conditions (1)-(3) above and, in addition, properties (A1)
and (A2) in Section 1 there is a finite invariant measure µ which is absolutely
continuous with respect to Lebesgue measure λ, though the density is unbounded.
(This follows from Lemma 2-4 in Section 1 and Propostion 3 in section 5).
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Figure 1

Let M denote the set of all probability measures on [0, 1]; M is compact with
respect to the weak∗ topology. Let δ0 be the Dirac measure supported on the
indifferent fixed point 0 then we denote

A = {αµ+ (1− α)δ0 : 0 ≤ α ≤ 1}.
Given any point y ∈ [0, 1] and n ≥ 1 we denote δy,n = 1

n (δy + δTy + . . .+ δTn−1y) ∈
M. Our main result is the following upper bound for the level 2 large deviation
principle.

Theorem 1. Let x ∈ [0, 1] and let U ⊂ M be a weak∗ open neighbourhood of the
line segment A. Then

lim sup
n→+∞

1
n

log


∑

Tny=x
δy,n 6∈U

1
|(Tn)′(y)|∑

Tny=x
1

|(Tn)′(y)|

 < 0.

Remark. This result holds not only for the Manneville-Pomeau map, but also for
any Markov interval map which is expanding except, at a finite number of indifferent
fixed points, and satisfying the technical conditions which are generalizations of
(A1) and (A2).

Theorem 1 gives us a quantative estimate on the distribution of pre-images when
they are given the natural weighting. An immediate consequence of this result is
the corollary below.

Let us write ∆n for the weighted average of orbital measures

∆n :=

∑
Tny=x

1
|(Tn)′(y)|δy,n∑

Tny=x
1

|(Tn)′(y)|
.

Theorem 2. All the weak∗ limit points of {∆n}∞n=1 lie in A.

The result corresponding to Theorem 1 is well known for hyperbolic systems,
where, in fact, one has a stronger result giving large deviations from the smooth
measure alone (i.e. one may replace A by {µ}) [7].
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1. Measures and Transfer Operators

We need to introduce some results on thermodynamic formalism. In this section
we shall obtain the results we need on the pressure function and its relation to
the corresponding transfer operator. These results are true under quite general
hypotheses. We shall establish the validity of these hypotheses for the Maneville-
Pomeau equation in a series of lemmas (Lemmas 2-4).

We let I denote the disjoint union of the two intervals [0, a0] and [a0, 1]. Given
a continuous function f : I → R the pressure P (f) is defined by

P (f) = sup{hm(T ) +
∫
fdm : m is a T -invariant probability measure}

where hm(T ) denotes the entropy of T with respect to m [13], [17].

Definition. Given any g ∈ C0(I) we define a transfer operator Lg : C0(I,R) →
C0(I,R) by

Lgh(x) =
∑
Ty=x

eg(y)h(y).

In the special case g = − log |T ′| we shall write L = L− log |T ′|.
Using the notation gn(y) := g(y) + g(Ty) + . . .+ g(Tn−1y), we have that

Lngh(x) =
∑

Tny=x

eg
n(y)h(y).

In particular, Lnh(x) =
∑
Tny=x

h(y)
|(Tn)′(y)| .

The following lemma gives an upper bound for iterates of Lg in terms of pressure.

Lemma 1. For any fixed x ∈ [0, 1] and any g ∈ C0(I) we have that

lim sup
n→+∞

1
n

logLng 1(x) ≤ P (g).

Proof. This is a purely topological statement. It suffices to observe that T : I → I
is topologically conjugate to the (uniformly expanding) doubling map and that the
result is well known there [17].

Let ψ0 : [0, 1] → [0, a0] and ψ1 : [0, 1] → [a0, 1] denote the local inverses to T .
In particular, ψn0 : [0, 1] → [0, an] is the local inverse to Tn which maps onto the
interval furthest to the left (containing 0).

We shall show in the subsequent lemmas that the Manneville-Pomeau map sat-
isfies certain technical conditions which in turn lead to the proofs of Proposition 3
in section 5 and Theorem 1.

Lemma 2. For the Manneville-Pomeau map we have the following property: the
function ψ′′0/ψ

′
0 is monotone decreasing and

sup
x∈[0,1]

|ψ′′1 (x)/ψ′1(x)| ≤ ψ′′0 (1)/ψ′0(1). (A1)

Proof. This is simply a matter of explicit computation, using the formulae T ′(x) =
1 + (1 + s)xs, T ′′(x) = (1 + s)sxs−1.
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Lemma 3. For the Manneville-Pomeau map the following property holds: ∃C > 0
such that

|(ψn0 )′′(x)|
|(ψn0 )′(x)|

≤ C,∀x ∈ [1/2, 1],∀n ≥ 1. (A2)

Lemma 4. Let T be the Manneville-Pomeau map. Let φn−1 : [0, 1] → In−1 be a
local inverse to Tn−1 (onto an interval In−1). For x, y ∈ [0, 1] we have

| log |(φ(n−1) ◦ ψ1)′(x)| − log |(φ(n−1) ◦ ψ1)′(x)||

≤ |ψ′1(1)/ψ′0(1)|N | (ψ
n
0 )′′(ψ1η)

(ψn0 )′(ψ1η)
||x− y|

for all η ∈ (0, 1), where N satisfies that for all n ≥ N we have

|ψ′1|∞ < infx∈ψn
0 ψ1[0,1]|ψ

′
0(x)|

(cf. (WSN-2) in [21]).

Proof. This follows by a direct computation (cf. [21] for more details). Note that
in [21] the corresponding notation is Ia1 ∩ T−1Ia2 ∩ . . . ∩ T−(n−2)Ian−1 (instead of
In−1) and ψa1...an−1 (instead of φn−1).

2. The Rohlin Formula

The main result in this section is the following.

Proposition 1 (Rohlin’s formula). Assume that T is the Manneville-Pomeau
transformation (or more generally that (1)-(3) and (A1)-(A2) apply) then

(1) P (− log |T ′|) = 0
(2) If m ∈ A then hm(T ) =

∫
log |T ′|dm, in particular

hµ(T ) =
∫

log |T ′|dµ (A3)

(3) If m 6∈ A then hm(T ) <
∫

log |T ′|dm.

Proposition 1 is the crucial step in the proof of Theorem 1. Most of this section
is devoted to its proof. From the definition of pressure, it is clear that (2) and (3)
imply (1). We shall proceed to prove (2) and (3).

We associate to the transformation T : [0, 1] → [0, 1] and the subinterval [a0, 1]
the induced transformation T0 : [a0, 1] → [a0, 1]. For a point x ∈ [a0, 1] we shall
define the return time n(x) to be the unique positive integer n such that{

T i(x) 6∈ [0, a0] for i = 1, . . . , n− 1
Tn(x) ∈ [0, a0]

.

We shall then write T0(x) = Tn(x)(x).
The following results relate the invariant measures of T and T0.
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Lemma 5. Let E(T ) denote the set of ergodic T -invariant probability measures
on [0, 1] and let E(T0) denote the set of ergodic T0-invariant probability measures
on [a0, 1]. The map E(T ) − {δ0} → E(T0) : m 7→ m|[a0,1]/m([a0, 1]) is injective.
(Observe that if m ∈ E(T ) and m 6= δ0 then m ([a0, 1]) > 0.)

Proof. This follows from the Rohlin Tower argument. If m is in E(T )− {δ0} then
it is isomorphic to a measure m̂ on the Rohlin Tower over [a0, 1] the measure
m̄ = m|[a0,1]

m([a0,1])
is the base measure (i.e. m̂ = dm̄ × dN). The only additional

consideration is the fixed point 0 (which is the only point the Rohlin tower does
not project to). This is why the associated Dirac measure δ0 has to be added in.

Remark. Unfortunately, Lemma 5 does not give a bijection, because of the problem
of infinite (i.e. non-normalizable) invariant measures on [0, 1].

The key idea of the proof of Proposition 1 is to establish the corresponding result
for the induced transformation T0. In fact replacing T by T0 then merely scales
both sides in Proposition 2 by the constant

∫
n(x)dµ̄(x). Thus it suffices to show

the equality (A3) with T replaced by T0 and µ replaced by µ̂.
We need to consider the more general situation in which µ is replaced by more

general ergodic measures m. Our aim is to show that there is a strict inequality in
(A3) when m 6= µ, δ0.

We claim that it suffices to consider the corresponding inequality with T0 re-
placing T and m̄ replacing m. If m̄ is the ergodic T0-invariant probability mea-
sure on [a0, 1] corresponding to the ergodic T -invariant probability measure m
on [0, 1] (using Lemma 5) then by Abramov’s theorem[3] we see that h(m̄) =(∫
n(x)dm̄(x)

)
h(m), and by Kac’s theorem [3] we see that

∫
n(x)dm̄(x) = 1. More-

over, we see that

m[a0, 1]×
(∫

log |T̂ ′0(x)|dm̄(x)
)

=
∫

log |T ′(x)|dm(x)

since we can use the Birkhoff ergodic theorem and the observation that∫
log |T ′(x)|dm(x) = lim

N→∞

1
N

N−1∑
i=1

log |T ′| ◦ T i

= lim
M→∞

(∑M−1
i=1 log |T ′0| ◦ T i0∑M−1
i=1 n(T i0x)

)

=
∫

log |T ′0(x)|dm̄(x)∫
n(x)dm̄(x)

for m̄-a.e. x ∈ [a0, 1].
Thus, to show that h(m) <

∫
log |T ′(x)|dm is equivalent to showing that h(m̄) <∫

log |T ′0(x)|dm̄.

We shall also require the following result.

Lemma 6. The map T0 : [a0, 1] → [a0, 1] has an abolutely continuous invariant
measure ν̄ such that the Radon-Nikodym derivative is continuous and 0 < C1 ≤
ρ(x) = dν̄(x)

dx ≤ C2 .

Proof. The corresponding result for the so-called jump transformation appears in
[5], [15]. The proof for T0 is similar.
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All that remains is to show that the analogous statement to Proposition 1 holds
when we replace T by T0 (and m with m̄). We shall follow the approach described
in [17]. We can define a Perron-Frobenius operator M : C0([a0, 1]) → C0([a0, 1])
by Mh(x) =

∑
T0y=x

h(y)
|T ′0(y)|

. It is well known that ρ is an eigenvector for M,
corresponding to the eigenvalue 1. Define

log g(x) = − log |T ′0(x)| − log ρ(T0x) + log ρ(x)

and observe that by the change of variables formula we have that
∑
T0y=x

g(y) = 1.
We can write [a0, 1] = ∪∞n=1Cn as a union of intervals Cn = {x ∈ [a0, 1] : n(x) =

n}. These intervals have disjoint interiors and the transformation T0 : Cn → [a0, 1]
is a local homeomorphism.

If m̄ is any T0-invariant measure then by [11, Lemma 3.3] we have for a.e. x:

∞∑
n=0

m̄(Cn|T−1
0 B)(x) log m̄(Cn|T−1

0 B)(x)

≥
∞∑
n=0

m̄(Cn|T−1
0 B)(x) log g(yn),

(1)

where {yn} = Cn ∩ T−1
0 (x) and B denotes the Borel σ-algebra. Moreover, by

convexity we have equality if and only if log g(yn) = log m̄(Cn|T−1
0 B)(x), for n ≥ 0

[11, Lemma 3.3].
Since

hm̄(T0) =
∫ ( ∞∑

n=0

m̄(Cn|T−1
0 B)(x) log m̄(Cn|T−1

0 B)(x)

)
dm̄(x)

and ∫
log g(x)dm̄(x) =

∫ ( ∞∑
n=0

m̄(Cn|T−1
0 B)(x) log g(yn)

)
dm̄(x)

we see that hm̄(T0) =
∫

log gdm̄ implies an equality in (1) almost everywhere. In
particular, we conclude that m̄(Cn|T−1

0 B)(x) = log g(yn) a.e. However, since this
uniquely determines the measure m̄, we conclude that m̄ = µ̄ [16, p.133]. This
completes the proof of Proposition 1.

For the proof of Theorem 1, we need an estimate on iterates of the operator L.
This is given by the next result.

Proposition 2. If 0 ≤ x ≤ 1 then limn→+∞
1
n logLn1(x) = 0.

Proof. The upper bound lim supn→+∞
1
n logLn1(x) ≤ 0 follows from Lemma 1 and

part (1) of Proposition 1.
Consider first the case x = 0. Observing that Ln1(0) ≥ 1/|(Tn)′(0)| = 1, we also

have that lim infn→+∞
1
n logLn1(0) ≥ 0.

On the other hand if 0 < x ≤ 1 then Ln1(x) ≥ 1/|(Tn)′(ψn0 x)| and so by the
chain rule

1
n

logLn1(x) ≥ − 1
n

n−1∑
i=0

log |(T )′(ψi0x)| → 0,
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as n→ +∞ (since |T ′(ψn0 x)| → 1, as n→ +∞).

Remark. In fact, for Proposition 1 (3) it suffices to know that the only ergodic
measure m with hm(T ) > 0, satisfying hm(T ) =

∫
log |T ′(x)|dm(x) is the measure

µ. This was proved by Ledrappier [9]. His result is proved in far greater generality,
but does not easily lend itself to extension to higher dimensional systems.

A second example. Another map for which the hypotheses have been checked is
due to the third author [21] (cf. also [14])

Tβ(x) =


x

(1−xβ)1/β 0 ≤ x ≤ 2−1/β

x

( 1
2 )

1
β −1

− 1

1−( 1
2 )

1
β

2−1/β ≤ x ≤ 1.

3. Proof of Theorem 1

We can define a map Q : C0(I) → R by Q(g) = P (− log |T ′| + g). For ν ∈ M,
we then denote the Legendre transform of Q(g) by

I(ν) = sup
g∈C0(I)

(
∫
gdν −Q(g)).

Our proof will be based upon the following estimate.

Lemma 7. Let K ⊂M be a weak* closed (and hence compact) subset. Then

lim sup
n→+∞

1
n

log


∑

Tny=x
δy,n∈K

1
|Tn(y)|∑

Tny=x
1

|Tn(y)|

 ≤ − inf
ν∈K

I(ν).

Proof. Write ρ = infν∈K I(ν) and fix a choice of ε > 0. From the definition of ρ,
for every ν ∈ K, there exists g ∈ C0(I) such that∫

gdν −Q(g) > ρ− ε.

Thus we have that

K ⊂
⋃

g∈C0([0,1])

{
ν ∈M :

∫
gdν −Q(g) > ρ− ε

}

and by weak* compactness we can choose a finite subcover

K ⊂
k⋃
i=1

{
ν ∈M :

∫
gidν −Q(gi) > ρ− ε

}
.
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Therefore we have the inequality

∑
Tny=x
δy,n∈K

1
|(Tn)′(y)|

≤
k∑
i=1

 ∑
Tny=x

1
n g

n
i (y)−Q(gi)>ρ−ε

1
|(Tn)′(y)|


≤

k∑
i=1

e−n(Q(gi)+(ρ−ε))

 ∑
Tny=x

e−(log |T ′|)n(y)+gn
i (y)

 .

Taking limits we get that

lim sup
n→+∞

1
n

log


∑

Tny=x
δy,n∈K

1
|(Tn)′(y)|∑

Tny=x
1

|(Tn)′(y)|


≤ sup

1≤i≤k

−Q(gi)− ρ+ ε+ lim sup
n→+∞

1
n

log

 ∑
Tny=x

e−(log |T ′|)n(y)+gn
i (y)


− lim inf

n→+∞

1
n

log

 ∑
Tny=x

e−(log |T ′|)n(y)


≤ sup

1≤i≤k
{−Q(gi)− ρ+ ε+ P (− log |T ′|+ gi)}

= −ρ+ ε,

by Lemma 1 and Proposition 2. Since ε > 0 can be chosen arbitrarily small this
completes the proof of the lemma.

We next want to show that if K does not intersect A then infν∈K I(ν) > 0. This
will follow from the next lemma.

We shall write MT for the set of T -invariant probability measures in M.

Lemma 8.
(i) If ν 6∈ A then I(ν) > 0.
(ii) The map ν → I(ν) is lower semi-continuous on MT . Futhermore, on

M−MT , I(ν) is bounded below by the continuous function
∫

log |T ′|dν.

Proof. For part (i) we have that

I(ν) = sup
g∈C0(I)

(∫
gdν − P (− log |T ′|+ g)

)
= sup
g∈C0(I)

(∫
(g + log |T ′|)dν − P (g)

)
= sup
g∈C0(I)

(∫
gdν − P (g)

)
+
∫

log |T ′|dν

= − inf
g∈C0(I)

(
P (g)−

∫
gdν

)
+
∫

log |T ′|dν.
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If ν ∈MT then, by the variational principle, this is equal to −hν(T ) +
∫

log |T ′|dν
[14, pp.221-222]. If ν 6∈ A then, by Proposition 1 we see that−hν(T )+

∫
log |T ′|dν >

0. On the other hand, if ν ∈M−MT , then

inf
g∈C0(I)

(P (g)−
∫
gdν) < 0

[14, pp.221-222] therefore I(ν) ≥
∫

log |T ′|dν > 0.
For the proof of (ii) we first notice that, since entropy is upper semi-continuous,

I(ν) = −hν(T ) +
∫

log |T ′|dν for ν ∈ MT , which is lower semi-continuous. We
then complete the proof with the the lower bound in the proof of (i) above. This
completes the proof of the lemma.

Since K is compact, we can conclude that ifA∩K = ∅ then ρ = infν∈K{I(ν)} > 0.
Theorem 1 now follows by setting K = M−U .

4. Proof of Theorem 2

To prove Theorem 2 we shall use the following estimates.
Given m 6∈ A there exists an open neighbourhood U of A such that m 6∈ U ;

g ∈ C0(I) and ε > 0, such that

∫
gdν −

∫
gdm ≥ ε, ∀ν ∈ U .

There exists C > 0 and 0 < η < 1 such that

∑
Tny=x
δy,n 6∈U

1
|T ′(y)|∑

Tny=x
1

|T ′(y)|
≤ Cηn,

or equivalently, ∑
Tny=x
δy,n∈U

1
|T ′(y)|∑

Tny=x
1

|T ′(y)|
≥ 1− Cηn.

Assume for a contradiction there exists a subsequence ni such that ∆ni → m 6∈
A. This means that for every g ∈ C0(I)

∑
Tny=x

1
|T ′(y)|

gn(y)
n∑

Tny=x
1

|T ′(y)|
→
∫
gdm, as ni → +∞.
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However, we have the estimate

|
∑
Tny=x

1
|T ′(y)|

gn(y)
n∑

Tny=x
1

|T ′(y)|
−
∫
gdm|

= |

∑
Tny=x

1
|T ′(y)|

(
gn(y)
n −

∫
gdm

)
∑
Tny=x

1
|T ′(y)|

|

≥ |

∑
Tny=x
δy,n∈U

1
|T ′(y)|

(
gn(y)
n −

∫
gdm

)
∑
Tny=x

1
|T ′(y)|

| − |

∑
Tny=x
δy,n 6∈U

1
|T ′(y)|

(
gn(y)
n −

∫
gdm

)
∑
Tny=x

1
|T ′(y)|

|

≥


∑

Tny=x
δy,n∈U

1
|T ′(y)|∑

Tny=x
1

|T ′(y)|

 ε− 2C||g||∞ηn

≥ (1− Cηn)ε− 2C||g||∞ηn

≥ ε

2
for all sufficiently large n.

This is a contradiction.

5. Higher dimensional maps

In this final section we shall show that the analogue of Theorem 1 holds in
higher dimensional settings. Consider T : X → X where X is compact subset of
Rk. Assume that X can be written as a countable union of connected sets {Xa} in
Rk such that

(1) each Xa has a piecewise smooth boundary;
(2) for each Xa, T : Xa → X is a C1 diffeomorphism; and
(3) Tn

(
int(Xa1) ∩ int(T−1Xa2) ∩ . . . ∩ int(T−(n−1)Xan

)
)

is one of a finite num-
ber of given open sets in U = {U1, . . . , UN}. (This condition is called the
Finite Range Condition).

Definition. The open sets Xa1...an
= int(Xa1)∩int(T−1Xa2)∩. . .∩int(T−(n−1)Xan

)
are called cylinders of length n.

Given C > 1 we let Dn,C ⊂ X be the union of those cylinders Xa1...an
for which

the following condition fails for i = 1, . . . , n:

sup
x,y∈Xa1...ai

|detDT i(x)|
|detDT i(y)|

< C.

Dn,C contains cylinders of length n touching indifferent periodic points (see [19,
Proposition 3.1]).

Definition. For C ≥ 1 we let R(C, T ) denote the set of those cylinders Xa1...an for
which the following conditions is satisfied:

sup
x,y∈Xa1...an

|detDTn(x)|
|detDTn(y)|

< C.
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The following conditions are sufficient for the existence of an ergodic (in fact
exact) T -invariant probability measure µ equivalent to Lebesgue measure:

(i) Q = {Xa} is a generating partition (i.e., for almost all points x 6= y we can
find n ≥ 0 such that Tnx and Tny are in different elements of {Xa});

(ii) there exists C ≥ 1 such that R(C, T ) 6= ∅ and Xb1...bla1...an
∈ R(C, T )

whenever Xa1...an
∈ R(C, T ); and

(iii) for each Ui ∈ U there exists Xa1...as
⊂ Ui such that Xas

∈ R(C, T ) and
T sXa1...as

= X.
(iv)

∑∞
n=1 λ(Dn,C) < +∞ where λ is Lebesgue measure on Rk.

Proposition 3. Assume that (1)-(3) and (i)-(iv) all hold. There exists an ergodic
absolutely continuous T -invariant measure µ.

Example. We now consider a simple example for which conditions (1)-(3) and (i)-
(iv) are valid. Let X = {(x, y) ∈ R2 : 0 ≤ y ≤ 1,−y ≤ x < −y + 1} and define
T : X → X by

T (x, y) =
(

1
x
−
[
1− y

x

]
+
[
−y
x

]
,−
[
−y
x

]
− y

x

)
.

It was shown in [18] that there exists an ergodic absolutely continuous invariant
measure for this example. (cf. [8] for other examples.)

Proof of Proposition 3. The proofs are outlined in [19, p.1095]. (This follows the
same lines as the detailed proofs for specific examples in [6].) The key to the proof
of the existence of µ is to construct a jump transformation

TR : ∪Xb1...bj
∈R(C,T )Xb1...bj → X

defined by

TRx = T jx for x ∈ Bj = ∪{Xb1...bj
: Xb1...bj

⊂ Dj−1,C , Xb1...bj
∈ R(C, T )}

Under the conditions (i), (ii), (iii), and (iv) the transformations TR on XR =
X −

(
∪∞m=0T

−m
R ∩n≥0 Dn,C

)
admits an ergodic invariant measure ν ∼ λ for which

the density is bounded away from zero and infinity. We can define the T -invariant
measure µ by µ(E) =

∑∞
n=0 ν(Dn,C ∩ T−nE), where D0,C = X, for all measurable

sets E.

In order to obtain a higher dimensional version of Rohlin’s formula we need the
following additional condition:

(v) Q is finite and T is continuous.

To simplify our problem, we shall assume that ∩∞n=0Dn,C consists only of one
indifferent periodic orbit.

The following Rohlin type result was established in [19] (cf. [20]).
Let M(X,T ) denote the set of T -invariant probability measure on the σ-algebra

of the Borel subsets of X (and E(X,T ) denote the ergodic measures). Let A denote
the convex hull of µ and the set of measures supported on ∩∞n=0Dn,C .
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Proposition 4, [19, Theorem 5.1]. Assume that conditions (1)-(3) and (i)-(v)
hold. Assume further that infx∈X |detDT (x)| > 0. Then

(1) P (− log |detDT |) = 0,
(2) If m ∈ A then

hm(T ) =
∫

log |detDT (x)|dm(x),

(3) If m 6∈ A then

hm(T ) <
∫

log |detDT (x)|dm(x).

Proof. Part (1) follows from parts (2) and (3). Part (2) follows from Lemmas 5.1
and 5.2 in [19].

Finally, we prove part (3). From Theorem 8.1 in [20], we already know that

0 = µ

(
Iµ(B|T−1B) + log

(
h

h ◦ T

)
− log |detDT |

)
≥ m

(
Im(B|T−1B) + log

(
h

h ◦ T

)
− log |detDT |

)
.

Furthermore, for m ∈ E(X,T ) with m /∈ A we have, by the Rohlin tower
argument in the proof of Proposition 1,

m

(
Im(B|T−1B) + log

(
h

h ◦ T

)
− log |detDT |

)
= hm(T )−

∫
log |detDT (x)|dm(x) < 0.

Proposition 5. Assume that conditions (1)-(3) and (i)-(v) hold. For f ∈ C(X)
we have that

lim
n→+∞

1
n

logLn1(x) = 0

for all x ∈ X.

Proof. The upper bound lim supn→+∞
1
n logLn1(x) ≤ 0 follows from the higher

dimensional analogue of Lemma 1 and part (1) of Proposition 4.
We now turn to the lower bound. Consider first the case x is an indifferent

periodic point. Observing that Ln1(x) ≥ 1/|detD(Tn)(x)| = 1, we also have that
lim infn→+∞

1
n logLn1(x) ≥ 0.

More generally, for any x ∈ X we observe that there exist local inverses ψn to
Tn, n ≥ 1, such that all the accumulation points of ψn(x) lie in ∩∞n=1DC,n. Thus,
for any x ∈ X we see that Ln1(x) ≥ 1/|detD(Tn)(ψnx)| and so by the chain rule

1
n

logLn1(x) ≥ − 1
n

n−1∑
i=0

log |det(DT )(T iψnx)| → 0,

as n→ +∞ (since |det(DT )(ψnx)| → 1, as n→ +∞).

Thus we have the following result.
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Theorem 3. Assume that T : X → X satisfies (1)-(3), (i) - (v), and infx∈X |detDT (x)| >
0. Let x ∈ X and let U ⊂ M be a weak∗ open neighbourhood of the line segment
A. Then

lim sup
n→+∞

1
n

log


∑

Tny=x
δy,n 6∈U

1
| detDTn(y)|∑

Tny=x
1

| detDTn(y)|

 < 0.

Proof. The proof is completely analogous to that in section 3.

Example (Brun’s map, [19]). Let X = {(x1, x2) ∈ R2 : 0 ≤ x2 ≤ x1 ≤ 1} and for
i = 0, 1, 2, Xi = {(x1, x2) ∈ X : xi + x1 ≥ 1 ≥ xi+1 + x1}, where we put x0 = 1
and x3 = 0. T is defined by

T (x1, x2) =



(
x1

1−x1
, x2

1−x1

)
on X0(

1
x1
− 1, x2

x1

)
on X1(

x2
x1
, 1
x1
− 1
)

on X2.

Thus TXi = X and Q = {X0, X1, X2}. The point (0, 0) is an indifferent fixed point
and T is a piecewise C2 map. The invariant density for T takes the form

h(x1, x2) =
1

2x1(1 + x2)

[14]. The map T satisifies (1) - (3) and (i) - (v) (see [19]).
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