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Abstract. This paper concerns the statistical properties of hyperbolic diffeomor-

phisms. We obtain a large deviation result with respect to slowly shrinking intervals
for a large class of Hölder continuous functions. In case case of time reversal symme-

try, we obtain a corresponding version of the Fluctuation Theorem.

0. Introduction

In statistical mechanics, the second law of thermodynamics states that the en-
tropy of a system increases until it reaches an equilibrium. However, since this is a
statistical law, away from thermodynamic equilibrium the entropy may increase or
decrease over a given amount of time and the Cohen-Gallavotti fluctuation theorem
implies that the relative probability that entropy will flow in a direction opposite
to that given by the second law of thermodynamics decreases exponentially.

To formulate a mathematical model for these results, let T : Λ → Λ be a mixing
hyperbolic diffeomorphism, let µ be an equilibrium state for a Hölder continuous
function and let Ψ : Λ → R be a Hölder continuous function such that

∫
Ψdµ > 0.

Let MT denote the space of all T -invariant Borel probability measures on Λ and
write

IΨ =

{∫
Ψ dm : m ∈ MT

}
.

If we denote Ψn(x) = Ψ(x) + Ψ(Tx) + · · · + Ψ(T n−1x) then, by standard large
deviation estimates, we can deduce that if (−p, p) ⊂ IΨ then the limit

lim
n→+∞

1

n
log

(
µ
{
x : 1

nΨn(x) ∈ (p− δ, p+ δ)
}

µ
{
x : 1

n
Ψn(x) ∈ (−p− δ,−p+ δ)

}
)

(0.1)

exists. The limit takes a particularly simple form if we assume that T : Λ → Λ has
a time reversal symmetry (i.e., an involution i : Λ → Λ such that i ◦ T ◦ i = T−1)
and we consider functions of the special form Ψ = Φ−Φ◦ i◦T , for a given function
Φ : Λ → R. Let µΦ and µΨ be the equilibrium states of Φ and Ψ, respectively.
A version of the following theorem was formulated by Gallavotti in 1995 [4], [5]
and particularly nice treatments appear in the work of Ruelle [19] and Maes and
Verbitsky [11], and in the book [8]. For a more abstract formulation, see Wojtkowski
[20]. (See also Gentile [6] for the case of Anosov flows.)
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Fluctuation Theorem. Suppose that µΨ is not the measure of maximal entropy
for T . Then

(i) we have that
∫

Ψ dµΦ > 0;
(ii) there exists p∗ > 0 such that, if |p| < p∗, then

lim
δ→0

lim
n→+∞

1

n
log

µφ(
{
x : 1

n
Ψn(x) ∈ (p− δ, p+ δ)

}
)

µφ({x : 1
n
Ψn(x) ∈ (−p− δ,−p+ δ)}) = p.

The physical interpretation corresponds to the particular choice of functions
Φ(x) = − log ‖DT |Eu(x)‖, for which the corresponding equilibrium state µΦ is
the Sinai-Ruelle-Bowen measure, and Ψ(x) = − log | det(Dxf)|. The quantity∫

log | det(Dxf)|dµΦ(x) is then the entropy production originally introduced by
Ruelle [18].

The existence of the limit in (0.1) and part (ii) of the Fluctuation Theorem
follows from a basic large deviation result. Note that, under the assumption that the
equilibrium state for Ψ is not the measure of maximal entropy, we have int(IΨ) 6= ∅.

In the following, we adopt the convention that inf ∅ = −∞.

Large Deviation Theorem [9],[13]. Suppose that µΨ is not the measure of max-
imal entropy for T . There is a real analytic rate function I : int(IΨ) → R+, with
I(p) = 0 if and only in p =

∫
Ψ dµΦ, such that, for an interval J ⊂ R, we have

lim
n→+∞

1

n
logµΦ

({
x :

Ψn(x)

n
∈ J

})
= − inf{I(p) : p ∈ J ∩ int(IΨ)}.

In particular, we have that for p ∈ int(IΨ),

lim
δ→0

lim
n→+∞

1

n
logµΦ

({
x :

Ψn(x)

n
∈ (p− δ, p+ δ)

})
= −I(p).

These theorems lead to the following natural question.

Question. Can we obtain similar results where δ is allowed to shrink as a function
of n (and we only need to take a single limit as n → +∞)? More precisely, if δn
decreases to zero sufficiently slowly, do we have

lim
n→+∞

1

n
logµΦ

({
x :

Ψn(x)

n
∈ (p− δn, p+ δn)

})
= −I(p)?

We shall show that, subject to a modest condition on the function Ψ, the answer
to the question is always in the affirmative provided δ−1

n grows no faster than n1+κ,
for some κ = κ(Ψ) > 0. The condition on Ψ that we require is the following.

Diophantine Condition. We say that a function Ψ satisfies the Diophantine condi-
tion (with respect to a transformation T ) if there are periodic orbits T nixi = xi
(i = 1, 2, 3) such that

α =
Ψn3(x3) − Ψn1(x1)

Ψn2(x2) − Ψn1(x1)

is a diophantine number (i.e., there exists c > 0 and β > 1 such that |qα−p| ≥ cq−β ,
for all p ∈ Z and q ∈ N).

In section 1, we shall see that if Ψ satisfies the Diophantine condition then µΨ

is not the measure of maximal entropy for T .
An answer the above question is given by the following version of the large

deviation theorem with shrinking intervals.
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Theorem 1. Let T : Λ → Λ be a mixing hyperbolic diffeomorphism and let µΦ be
the equilibrium state of a Hölder continuous function Φ : Λ → R. Let Ψ : Λ → R

be a Hölder continuous function which satisfies the Diophantine condition. Then
there exists κ > 0 such that, if δn > 0 decreases to zero and δ−1

n = O(n1+κ), as
n→ +∞, we have, for p ∈ int(IΨ),

lim
n→+∞

1

n
logµΦ

({
x :

Ψn(x)

n
∈ (p− δn, p+ δn)

})
= −I(p).

In fact, it follows from the Large Deviation Theorem that an upper bound holds
for all Hölder continuous Ψ : Λ → R and sequences δn → 0 without assuming any
further condition.

Proposition 0.1. Suppose that Ψ : Λ → R is a Hölder continuous function such
that µΨ is not the measure of maximal entropy. Let δn > 0 be any sequence con-
verging to zero. Then

lim sup
n→+∞

1

n
logµΦ

({
x :

Ψn(x)

n
∈ (p− δn, p+ δn)

})
≤ −I(p).

Theorem 1 leads to a version of the fluctuation theorem for shrinking intervals.

Theorem 2. Let T : Λ → Λ be a mixing hyperbolic diffeomorphism with time
reversal symmetry i : Λ → Λ. Let Φ : Λ → R be Hölder continuous and let
Ψ = Φ − Φ ◦ i ◦ T . Suppose that Ψ satisfies the Diophantine condition then there
exists κ > 0 such that, if δn > 0 decreases to zero and δ−1

n = O(n1+κ), as n→ +∞,
we have, for |p| < p∗,

lim
n→+∞

1

n
log

µΦ({x : Ψn(x)/n ∈ (p− δn, p+ δn)})
µΦ({x : Ψn(x)/n ∈ (−p− δn,−p+ δn)}) = p. (0.2)

In section 1 we recall some basic results about hyperbolic diffeomorphisms and
the thermodynamic formalism associated to them. In section 2, we discuss the
corresponding properties of shifts of finite type. In section 3, we describe some
examples related to our results. In section 4, we prove a large deviations result with
shrinking intervals in the context of subshifts of finite type and deduce Theorem 1.
In section 5, we restrict to systems with time reversal symmetry and prove Theorem
2.

1. Hyperbolic Diffeomorphisms

In this section we recall some basic definitions and results. Let M be a compact
C∞ Riemannian manifold and let T : M → M be a C∞ diffeomorphism. We call
a compact T -invariant set Λ hyperbolic if:

(1) T : Λ → Λ is transitive;
(2) the periodic orbits for T : Λ → Λ are dense in Λ;
(3) there exists an open set U ⊃ Λ such that Λ = ∩∞

n=−∞T
−nU ;

(4) there exists C > 0, 0 < λ < 1 and a splitting TΛM = Eu ⊕ Es such that

‖DTnv‖ ≤ Cλn‖v‖ where v ∈ Es

‖DT−nv‖ ≤ Cλn‖v‖ where v ∈ Eu,

for n ≥ 0.
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We call the restriction T : Λ → Λ a hyperbolic diffeomorphism. In the case that
Λ = M we call T a transitive Anosov diffeomorphism.

We write MT for the space of T -invariant measures on Λ. For a continuous
function Ψ : Λ → R, we define its pressure by the variational principle:

P (Ψ) = sup

{
hm(T ) +

∫
Ψ dm : m ∈ MT

}
,

where hm(T ) denotes the measure theoretic entropy. A function of the form u◦T−u,
where u : X → R is continuous, is called a coboundary. We have P (Ψ+u ◦T −u+
c) = P (Ψ) + c, where c ∈ R is a constant. Assume from now on that Ψ is Hölder
continuous. We write µΨ for the equilibrium state of Ψ, i.e., the unique µΨ ∈ MT

such that P (Ψ) = hµΨ
(T ) +

∫
Ψ dµΨ. This measure is unchanged by adding a

coboundary and a constant to Ψ.
The pressure of Ψ may also be characterized in terms of periodic points, as in

the following proposition.

Proposition 1.1. Suppose that Ψ : Λ → R is Hölder continuous. Then

P (Ψ) = lim
n→+∞

1

n
log

∑

Tnx=x

eΨ
n(x).

Recall that we defined IΨ =
{∫

Ψ dm : m ∈ MT

}
. If Ψ is cohomologous to

a constant c then IΨ = {c}; otherwise, IΨ is a non-trivial closed interval. The
equilibrium state of the function which is identically zero is called the measure of
maximal entropy. In view of the above discussion, µΨ is the measure of maximal
entropy if and only if Ψ is cohomologous to a constant.

If Ψ satisfies the Diophantine condition then, in particular, there are two prob-
ability measures, ν1 and ν2, supported on periodic orbits, for which

∫
Ψ dν1 6=∫

Ψ dν2, so IΨ is not a single point. Hence, the Diophantine condition for Ψ
implies that µΨ is not the measure of maximal entropy for T .

We shall now concentrate on a fixed Hölder continuous function Ψ : Λ → R

and a measure µΦ, the equilibrium state of another Hölder continuous function
Φ : Λ → R. To avoid a degenerate situation, we suppose that Ψ is not cohomologous
to a constant (i.e., µΨ is not the measure of maximal entropy). Then the function
q 7→ P (Φ + qΨ) is strictly convex and real analytic. Furthermore,

dP (Φ + qΨ)

dq
=

∫
Ψ dµΦ+qΨ, int(IΨ) =

{∫
ΨµΦ+qΨ : q ∈ R

}

and the endpoints of IΨ are

lim
q→±∞

∫
Ψ dµΦ+qΨ.

Let I(p) : int(IΨ) → R denote the (real analytic) Legendre transform of P (Φ +
qΨ) − P (Φ), i.e.,

−I(p) = inf{P (Φ + qΨ) − P (Φ) − qp : q ∈ R}.
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(Since we can always add a constant to Φ without affecting I(p) or µΦ we can
assume without loss of generality that P (Φ) = 0.) We also have that −I(p) =
P (Φ + ξpΨ) − ξpp, where ξp is the unique real number with

dP (Φ + qΨ)

dq

∣∣∣∣
q=ξp

=

∫
Ψ dµΦ+ξpΨ = p.

Theorem 1 is relatively straightforward to prove in the case where δn decreases
more slowly than n−1. Indeed, in this case it holds assuming only that Ψ is non-
lattice, i.e., that if, for a, b ∈ R, {aΨn(x) + bn : Tnx = x, n ∈ N} ⊂ Z then a =
b = 0. A function which satisfies the Diophantine condition is automatically non-
lattice. To see this, recall that local limit theorems for hyperbolic diffeomorphisms
[7], [10] imply that if Ψ is non-lattice then

−I(p) = lim
n→+∞

1

n
logµΦ ({x : (Ψ − p)n(x) ∈ (−δ, δ)})

= lim
n→+∞

1

n
logµφ

({
x :

Ψn(x)

n
∈
(
p− δ

n
, p+

δ

n

)})
,

.

This shows that the required growth rate holds if δn = δ/n or decreases more slowly
than this. However, to prove the full version of the Theorem 1 we need to study a
symbolic model for T : Λ → Λ.

2. Subshifts of Finite Type

Let A be a k× k matrix with entries 0 or 1, which is aperiodic (i.e., there exists
n ≥ 1 such that An has all entries positive). We let

X =

{
x ∈

∞∏

n=−∞

{1, · · · , k} : A(xn, xn+1) = 1 for all n ∈ Z

}
,

the space of two-sided sequences with adjacent entries allowed by A. Let σ : X → X
be the two-sided subshift of finite type defined by (σx)n = xn+1. We make X into
a compact metric space by defining d(x, y) =

∑∞
n=−∞(1− δxnyn)2−|n|, where δij is

the Kronecker symbol. Aperiodicity of A is equivalent to topological mixing for σ.
Similarly, let

X+ =

{
x ∈

∞∏

n=0

{1, · · · , k} : A(xn, xn+1) = 1 for all n ∈ Z
+

}
,

the corresponding space of one-sided sequences. Let σ : X+ → X+ be the one-
sided subshift of finite type defined by (σx)n = xn+1. As above, we make X+

into a compact metric space by defining d(x, y) =
∑∞
n=0(1 − δxnyn)2−n. Again,

aperiodicity of A is equivalent to topological mixing for σ.
By analogy with the previous section we write Mσ for the space of σ-invariant

measures on X and for a continuous function ψ : Σ → R, we define its pressure to
be

P (ψ) = sup

{
hm(σ) +

∫
ψ dm : m ∈ Mσ

}
,
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where hm(σ) denotes the measure theoretic entropy. A function of the form u◦σ−u,
where u : X → R is continuous, is called a coboundary. We have P (ψ+u◦σ−u+c) =
P (ψ) + c, where c ∈ R is a constant. Assume from now on that ψ is Hölder
continuous. We write µψ for the equilibrium state of ψ, i.e., the unique µψ ∈ Mσ

such that P (ψ) = hµψ (T ) +
∫
ψ dµψ. This measure is unchanged by adding a

coboundary and a constant to ψ. Exactly the same results hold for σ : X+ → X+.
A particularly useful property of subshifts of finite type, which is relevant for

our analysis, is that they serve as models of hyperbolic diffeomorphisms, in the
following precise sense.

Proposition 2.1. Given a mixing hyperbolic diffeomorphism T : Λ → Λ. there ex-
ists a mixing (two-sided) subshift of finite type σ : X → X and a Hölder continuous
surjective map π : X → Λ such that

(1) T ◦ π = π ◦ σ;
(2) π one-to-one almost everywhere with respect to the equilibrium states of f ◦π

and f , for any Hölder continuous function f : Λ → R [1].

Given Hölder continuous functions Φ,Ψ : Λ → R, we can use Proposition 2.1 to
define φ = Φ ◦ π : X → R and ψ = Ψ ◦ π :→ R, which are also Hölder continuous,
and ψ satisfies the Diophantine condition if and only if Ψ does. Furthermore,
P (Φ + qΨ) = P (φ+ qψ), for q ∈ R.

To shorten our subsequent notation, we shall write ψp = ψ − p. Notice that ψp
satisfies the Diophantine condition if and only if ψ does. With this notation

−I(p) = inf
q∈R

P (φ+ qψp) = P (φ+ ξpψp)

and
dP (φ+ qψp)

dq

∣∣∣∣
q=ξp

=

∫
ψp dµφ+ξpψ = 0.

Our analysis makes use of transfer operators and thus it is necessary to work
initially with one-sided shifts of finite type.

Definition. For functions ψ, φ ∈ Cα(X+,R), define the family of transfer operators
Lφ+(ξ+iu)ψ : Cα(X+,C) → Cα(X+,C) by

Lφ+(ξ+iu)ψk(x) =
∑

σy=x

eφ(y)+(ξ+iu)ψ(y)k(y),

for ξ and u ∈ R.

By adding a coboundary and a constant to φ, we may assume that φ is nor-
malized, i.e., that Lφ1 = 1. In particular, if φ is normalized then P (φ) = 0.
Normalization leaves the equilibrium state µφ unchanged. From now on, we shall
write ξ = ξp.

Proposition 2.2.

(1) The operator Lφ+ξψp has a simple eigenvalue λξ = eP (φ+ξψp) and the rest
of the spectrum is contained in disk of smaller radius.

(2) For u ∈ R, the operator Lφ+(ξ+iu)ψp has spectral radius ≤ λξ.
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(3) There exists a > 0 such that, for |u| < a, Lφ+(ξ+iu)ψp has a simple eigen-

value eP (φ+(ξ+iu)ψp), depending analytically on u, with |eP (φ+(ξ+iu)ψp)| < λξ
for u 6= 0. Furthermore, the rest of the spectrum of Lφ+(ξ+iu)ψp is contained
in a disk of radius θλξ, for some θ < 1.

(4)
d2P (φ+ (ξ + iu)ψp)

du2

∣∣∣∣
u=0

= −σ2 < 0.

The following identity will be important in subsequent calculations.

Lemma 2.1. If φ is normalized then

∫
e(ξp+iu)ψnp (x)dµφ(x) =

∫
Lnφ+(ξp+iu)ψp

1(x)dµφ(x).

Later, we shall need to bound iterates of Lφ+(ξ+iu)ψp . Estimates of the kind we
require were developed in [15], following the ideas of Dolgopyat [3].

Lemma 2.2. Assume that ψ satisfies the Diophantine condition. Then there exists
γ > 0, D > 0 and C, c > 0 such that, for |u| ≥ a, we have that

‖L2Nm
φ+(ξ+iu)ψp

1‖∞ ≤ Cλnξ

(
1 − c

|u|γ
)m

, for m ≥ 1, (2.1)

where N = [D log |u|].
Proof. Since we are assuming the Diophantine condition, the hypotheses of Propo-
sition 2 in [15] hold. This gives the inequality (2.1). �

3. Examples

In this section, we discuss some examples related to our theorems. We begin by
considering two examples for subshifts of finite type. These can easily be adapted
to Axiom A diffeomorphisms [2]. In particular, the show that the Diophantine
condition is necessary for Theorem 1.

Example 1. Consider the case of a (two-sided) full shift on two symbols σ : X → X,
where X = {0, 1}Z, and a function ψ : X → R defined by

ψ(x) =

{
β if x0 = 0

−1 if x0 = 1.

By a judicious choice of β we can arrange for the Diophantine condition to hold.
An example of a hyperbolic diffeomorphism with the same behaviour is given by
suitable horseshoe.

However, as the next example shows, results such as Theorem 1 cannot hold
without some assumption on the Hölder continuous function. In particular, it is
necessary that a non-lattice condition is satisfied. It is not clear if shrinking interval
results hold for functions which are non-lattice but fail to satisfy the Diophantine
condition.
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Example 2. Consider again a (two-sided) full shift on two symbols σ : X → X.
Now define a function ψ : X → R by

ψ(x) =

{
β − 1 if x0 = 0

−1 if x0 = 1,

with β > 1. For any σnx = x, β−1ψn(x) − β−1n ∈ Z, so ψ is not a non-lattice
function (and hence, in particular, does not satisfy the Diophantine condition),
regardless of the value of β. It is easy to see that Iψ = [−1, β − 1] and that
p0 :=

∫
ψ dµ0 = −1 + β/2, where µ0 is the ( 1

2 ,
1
2)-Bernoulli measure. Of course,

p0 ∈ int(Iψ).
For any x ∈ X, we have that ψn(x)/n = −1+ (mβ/n), where 0 ≤ m ≤ n. Thus,

for a sequence δn > 0, ψn(x)/n ∈ (p0 − δn, p0 + δn) is equivalent to

−δn <
(
m

n
− 1

2

)
β < δn.

If we restrict to odd values of n, then this fails for large n as soon as we take
δn = O(n−(1+ε)), for ε > 0. Thus, for large odd values of n, we see that

{x : ψn(x) ∈ (p0 − δn, p0 + δn)} = ∅.

In particular, for any choice of measure µφ, the exponential growth rate is less than
the exponent −I(p0). As in Example 1, a suitable horseshoe gives a smooth version.

We next give two examples of Anosov diffeomorphisms for which there is a time-
reversing involution.

Example 3. Let T : M →M be an Anosov diffeomorphism and consider the product

diffeomorphism T̃ :=: M ×M →M ×M defined by T̃ (x, y) = (Tx, T−1y). This is

again Anosov and satisfies i ◦ T̃ ◦ i = T̃−1 where i(x, y) = (y, x).

Example 4. Consider the map T (x, y) = (y,−x+Cx+ f(x)) on the 2-torus, where
C is an integer and f is a small perturbation. If f(·) is C1 small then this is a

perturbation of the linear map associated to
(

0 1

−1 C

)
and if |C| > 2 then this is

Anosov. Let S(x, y) = (y, x) then S2 is the identity and STS = T−1.

4. Large Deviations and Shrinking Intervals

We will first consider large deviations results for a one-sided subshift of finite
type. The two-sided result can then be deduced from this and results for hyper-
bolic diffeomorphisms can be derived from this using symbolic dynamics (using
Proposition 1.1).

Let us consider a mixing one-sided subshift of finite type σ : X+ → X+ and
Hölder continuous functions ψ, φ : X+ → R.

In this context, our shrinking large deviations result takes the following form.

Proposition 4.1. Suppose that ψ : X+ → R satisfies the Diophantine condition
(with respect to σ). Then there exists κ > 0 such that, if δn > 0 decreases to zero
and δ−1

N = O(n1+κ), as n→ +∞, we have, for p ∈ int(Iψ),

lim
n→∞

1

n
logµφ

({
x :

ψn(x)

n
∈ (p− δn, p+ δn)

})
= −I(p).
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We shall prove the theorem under the additional assumption that δn goes to zero
faster than 1/n, so

εn := nδn → 0.

As we have seen, the result holds automatically if δ−1
n = O(n).

This assumption means that we can convert the problem to a local limit-type
problem. However, matters are simplified by our only wanting weaker information,
i.e., the exponential growth rate rather than an asymptotic. Recall that ψp := ψ−p.
Then {

x :
ψn(x)

n
∈ (p− δn, p+ δn)

}
= {x : ψnp (x) ∈ (−εn, εn)}.

We shall first prove a modified result, where the interval (−εn, εn) is replaced by
a sequence of smooth test functions. Let χ : R → R be a compactly supported Ck

function (where k will be chosen later). We shall write χn(y) = χ(ε−1
n y) and we

note that the Fourier transform satisfies χ̂n(u) = εnχ̂(εnu). Let us define

ρ(n) :=

∫
χn(ψnp (x))dµφ(x).

Proposition 4.2. There exists κ > 0 such that, provided ε−1
n = O(nκ), we have

lim
n→∞

1

n
log ρ(n) = P (φ+ ξpψp) = −I(p).

For technical reasons it is useful to modify χn to ωn(y) = e−ξyχn(y) (where
ξ = ξp). Then

ρ(n) =

∫
eξψ

n
p (x)ωn(ψ

n
p (x))dµφ(x).

To prove Proposition 4.1 we first use the inverse Fourier transform and Fubini’s
Theorem to write

ρ(n) =
1

2π

∫ ∞

−∞

(∫
eiuψ

n
p (x)dµφ(x)

)
χ̂n(u)du

=
1

2π

∫ ∞

−∞

(∫
e(ξ+iu)ψnp (x)dµφ(x)

)
ω̂n(u)du

=
1

2π

∫ ∞

−∞

(∫
Lnφ+(ξ+iu)ψp

1(x)dµφ(x)

)
ω̂n(u)du,

(4.1)

using Lemma 2.1 for the last equality. We shall estimate ρ(n) by splitting the outer
integral over R into two pieces.

4.1 u close to zero. If we choose a > 0 sufficiently small, we can change coor-
dinates on (−a, a) to v = v(u) and write eP (φ+(ξ+iu)ψp) = λξ(1 − v2 + iQ(v)), for
|v| < a, say. If Pψ+(ξ+iu)ψp is the associated one dimensional eigenprojection, then
by perturbation theory Pφ+(ξ+iu)ψp(1) = 1 + O(|v|).

Using the formula

Lnφ+(ξ+iu)ψp
1 = enP (φ+(ξ+iu)ψp)(1 + O(|v|)) + O(θn)
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(0 < θ < 1), we may write

∫ a

−a

(∫
Lnφ+(ξ+iu)ψp

1(x)dµg(x)

)
ω̂n(u)du

= λnξ

∫ a

−a

(1 − v2 + iQ(v))n (1 + O(|v|)) ω̂n(u(v))
du

dv
dv + O(λnξ θ

n)

=
εnχ̂(0)

√
2λnξ

σ

∫ a

−a

(1 − v2 + iQ(v))n (1 + O(|v|))dv + O

(
εnλ

n
ξ

n

)
+ O(λnξ θ

n),

(4.2)
where the O(εnn

−1) estimate follows from a simple calculation in [14, p.409]. Using
another calculation in [14, pp.408-409], we see that the principle term in the last
line of (2) is asymptotic to

λnξ

∫ a

−a

(1 − v2)ndv;

by making the substitution w = v2, we may estimate this as λnξ multiplied by the
factor

εnχ̂(0)
√

2

σ

∫ a

−a

(1 − v2)ndv = 2
εnχ̂(0)

√
2

σ

∫ a

0

(1 − v2)ndv

=
εnχ̂(0)

√
2

σ

∫ a2

0

(1 − w)n

w1/2
dw

=
εnχ̂(0)

√
2

σ

∫ 1

0

(1 − w)n

w1/2
dw + O((1 − a2)n)

∼
√

2π
χ̂(0)

σ

εn√
n
,

(4.3)

as n→ +∞. Moreover, the term rising from the O(|v|) term in the integrand is of
order

λnξ

∫ a

−a

(1 − v2)n|v|dv = λnξ

∫ a2

0

(1 − w)ndw = O

(
λnξ
n

)
.

So, in particular, we have shown that

∫ a

−a

(∫
Lnφ+(ξ+iu)ψp

1(x)dµφ(x)

)
ω̂n(u)du =

√
2π
χ̂(0)

σ

εn√
n

+O

(
εnλ

n
ξ

n

)
. (4.4)

4.2 Away from zero. It remains to estimate the integral in (4.1) over |u| ≥ a
and, in particular, to show that its contribution is smaller than the above. To do
this we shall use a bound on the transfer operators Lφ+(ξ+iu)ψp . We shall also use
the following simple lemma.

Lemma 4.2. If χ : R → R is Ck and compactly supported then the Fourier trans-
form χ̂(u) satisfies χ̂(u) = O(|u|−k), as |u| → ∞.

Using Lemma 2.2, we have the bound
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∫

|u|≥a

(∫
Lnφ+(ξ+iu)ψp

1(x)dµφ(x)

)
ω̂n(u)

= εn

∫

|u|≥a

eizu
(∫

Lnφ+(ξ+iu)ψp
1(x)dµφ(x)

)
χ̂(εnu)du

= O

(
1

εk−1
n

∫ ∞

a

(
1 − c

uγ

)n/2[D log |u|]

u−kdu

)
.

(4.5)

We need to show that this quantity tends to zero more quickly than εnn
−1/2. To

see this we shall split the integral in (4.5) into two parts:

∫ ∞

a

(
1 − c

uγ

)n/2[D log |u|]

u−kdu

=

∫ nδ
′

a

(
1 − c

uγ

)n/2[D log |u|]

u−kdu+

∫ ∞

nδ′

(
1 − c

uγ

)n/2[D log |u|]

u−kdu,

where we choose δ < δ′ < 1/γ. The first integral may be bounded by

∫ nδ
′

a

(
1 − c

uγ

)n/2[D log |u|]

u−kdu = O

(
nδ

′

(
1 − c

nδ′γ

)n/2Dδ′ logn
)

and, since δ′γ < 1, this tends to zero faster than the reciprocal of any polynomial.
The second integral may be bounded by

∫ ∞

nδ
′

(
1 − c

uγ

)n
u−kdu = O(n(1−k)δ′).

Combining these estimates we see that

∫

|u|≥a

(∫
Lnφ+(ξ+iu)ψp

1(x)dµφ(x)

)
χ̂n(u)du = O(ε−(k−1)

n n(1−k)δ′)

= O(n(k−1)(δ−δ′)).

We obtain the required bound by choosing k sufficiently large that (k − 1)(δ −
δ′), (k− 1)δ′ > 1. Together with (4.4), this completes the proof of Proposition 4.2.

Proposition 4.1 follows by an approximation argument. Choose smooth functions
χ+, χ− : R → [0, 1] such that χ− ≤ χ(−1,1) ≤ χ+. Then

∫
χ−
n (ψnp (x))dµφ ≤ µφ

({
x :

ψn(x)

n
∈ (p− δn, p+ δn)

})
≤
∫
χ+
n (ψnp (x))dµφ,

which gives the required estimate.
Now let σ : X → X be the corresponding two-sided subshift of finite type. In

[16, §3], it was shown how the analogue of Proposition 4.2 (and hence Proposition
4.1) maybe deduced for σ : X → X, given the result for σ : X+ → X+. Thus the
analogue of Proposition 4.1 holds in the two-sided case.
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As a consequence of the two-sided version of Proposition 4.1,

µΦ

({
x ∈ Λ :

Ψn(x)

n
∈ (p− δn, p+ δn)

})

= µφ

({
x ∈ X :

ψn(x)

n
∈ (p− δn, p+ δn)

})
.

This shows that the limit in Theorem 1 exists and is equal to

P (φ+ ξpψp) = inf{P (φ+ qψ) − P (φ) − qp : q ∈ R}
= inf{P (Φ + qΨ) − P (Φ) − qp : q ∈ R} = −I(p).

This completes the proof of Theorem 1.

5. Fluctuation Theorems

In this final section, we derive our generalization of the Fluctuation Theorem for
slowly shrinking intervals. In fact, Theorem 2 will follow directly from Theorem 1
once we show the limit has the desired form. This follows from standard arguments
and is included for completeness.

Let T : Λ → Λ be a mixing hyperbolic diffeomorphism with a time-reversing
involution i : Λ → Λ, i ◦ T ◦ i = T−1. For a Hölder continuous function Φ : Λ → R,
let Ψ = Φ−Φ ◦ i ◦T . Observe that P (Φ) = P (Φ ◦ i ◦T ) and thus by the variational
principle, P (Φ) = h(µΦ) +

∫
Φ dµΦ ≥ h(µΦ) +

∫
Φ ◦ i ◦ T dµΦ, i.e.,

∫
Ψ dµΦ =∫

(Φ−Φ◦i◦T ) dµΦ ≥ 0. Moreover, equality occurs only when µΦ is the equilibrium
state Φ ◦ i ◦ T (which is equivalent to µΨ being the measure of maximal entropy).
This explains part (i) of the Fluctuation Theorem.

Suppose that Ψ satisfies the Diophantine condition and that δn > 0 decreases to
zero such that δ−1

n = O(n1+κ), where κ > 0 is chosen so that Theorem 1 holds. By
applying Theorem 1 to the numerator and denominator in (0.2), we obtain

lim
n→+∞

1

n
log

µΦ({x : Ψn(x)/n ∈ (p− δn, p+ δn)})
µΦ({x : Ψn(x)/n ∈ (−p− δn,−p+ δn)}) = I(−p) − I(p)

(provided −p, p ∈ int(IΨ)).
We need to exploit some special symmetries of the pressure function P (Φ+qΨ)−

P (Φ). More precisely, we have the following.

Lemma 5.1. P (Φ + qΨ) = P (Φ − (1 + q)Ψ).

Proof. Let Tnx = x be a periodic point. Then since (Φ ◦ T−1)n(x) = Φn(x) we
have that

(Φ ◦ i)n(x) + q(Ψ ◦ i)n(x) = (Φ ◦ i)n(x) + q((Φ ◦ i)n(x) − (Φ ◦ i ◦ T ◦ i)n(x))
= (Φ ◦ i)n(x) + q((Φ ◦ i)n(x) − (Φ ◦ T−1)n(x))

= (Φ ◦ i)n(x) + q((Φ ◦ i)n(x) − Φn(x))

= Φn(x) − (1 + q)(Φn(x) − (Φ ◦ i)n(x))
= Φn(x) − (1 + q)Ψn(x).

Since i acts as a bijection on the set of periodic orbits of period n, we obtain
∑

Tnx=x

eΦ
n(x)+qΨn(x) =

∑

Tnx=x

eΦ
n(x)−(1+q)Ψn(x).

In particular, the two sums have the same exponential growth rate and hence the
result follows from Proposition 1.1. �



LARGE DEVIATIONS, FLUCTUATIONS AND SHRINKING INTERVALS 13

Lemma 5.2. There exists p∗ > 0 such that IΨ = [−p∗, p∗].
Proof. Since Ψ is not cohomologous to a constant, IΨ is a non-trivial interval. By
Lemma 5.1,

∫
Ψ dµΦ+qΨ =

dP (Φ + qΨ)

dq
=
dP (Φ − (1 + q)Ψ)

dq
= −

∫
Ψ dµΨ−(1+q)Ψ.

Thus

lim
t→+∞

∫
Ψ dµΦ+tΨ = − lim

t→−∞

∫
Ψ dµΦ+tΨ,

which shows that IΨ has the required form. �

Lemma 5.3. For |p| < p∗, I(−p) − I(p) = p.

Proof. We have

I(−p) − I(p) = inf
q∈R

(P (Φ + qΨ) + qp) − inf
q∈R

(P (Φ + qΨ) − qp)

= inf
q∈R

(P (Φ − (1 + q)Ψ) + qp) − inf
q∈R

(P (Φ + qΨ) − qp)

= inf
r∈R

(P (Φ + rΨ) − rp+ p) − inf
q∈R

(P (Φ + qΨ) − qp)

= p,

as required.

Combining equation (5.1) and Lemmas 5.2 and 5.3 completes the proof of The-
orem 2.

Remark. Some fluctuation theorems and large deviation results for Young towers
(and thus for Billiards and Hénon attractors) have already been proved by Young
and Rey-Bellet [17]. For shrinking intervals, the analogue of the upper bound pre-
sumably follows easily. The proof of the lower bound should follow from suitable
properties of the corresponding transfer operator. In particular, [12] extended Dol-
gopyat’s results on transfer operators to Hölder functions satisfying a Diophantine
condition in terms of four periodic points.
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