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Abstract. We discuss natural classes of length functions and quasi-morphisms
on free groups and obtain Gaussian limit laws.

0. Introduction

There is considerable interest in spaces of length functions defined on a free
group F on k ≥ 2 generators (or on its set of conjugacy classes). For example, the
Culler-Vogtmann Outer space [13] has such a interpretation. The first aim of this
note is to suggest a general notion of length function, which includes those which
arise from isometric actions on negatively curved spaces and which are sufficiently
regular to lead to nice asymptotic properties.

The second aim of the paper is to discuss the statistics of images group ele-
ments (or conjugacy classes) in R under natural mappings. A number of papers
have studied this issue (and the related case of compact surface groups) for homo-
morphisms from F to R (or, more generally, Rd, where 1 ≤ d ≤ k.) A purely group
theoretic point of view was taken in [33] and [37], while the papers [26],[27],[32]
consider homomorphisms defined by periods of cusp forms on associated hyperbolic
surfaces. In addition, many papers in ergodic theory contain related results, though
the connection is not made explicit, notably [3],[11],[23]. In all these papers, suit-
ably normalized images are shown to converge to a Gaussian distribution, as the
number of elements considered increases according to some length function.

In this note we shall address the analogous question when the homomorphism
is replaced by a more general function ψ : F → R. To obtain non-trivial results,
it is necessary to impose some conditions on ψ. A natural class to consider is the
set of quasi-morphisms ψ : F → R. These functions are of independent importance
in many areas [20]. A function ψ : F → R is called a quasi-morphism if ψ(xy) −
ψ(x) − ψ(y) is bounded for (x, y) ∈ F × F . It is clear from the definition that if
ψ is either a homomorphism or a bounded function then it is a quasi-morphism.

1991 Mathematics Subject Classification. Primary 20E05 20F67 20F69 37C30 37D35.
The first author was supported by the UK Engineering and Physical Sciences Research

Council.

c©XXXX American Mathematical Society

1



2 MATTHEW HORSHAM AND RICHARD SHARP

We shall be interested in quasi-morphisms which satisfy an additional regularity
property explained in section 1; we shall call these Hölder quasi-morphisms.

Below is an example of the type of statistical limit law that holds for Hölder
quasi-morphisms. We use |g| to denote the word length of g with respect to some
fixed set of free generators for F .

Theorem [17]. Suppose that ψ is a Hölder quasi-morphism. Provided ψ is not

bounded, the distribution of the normalized images {ψ(x)/
√
|x| : x ∈ F, |x| = n}

converges to a non-degenerate normal distribution with mean zero, as n→ +∞.

In this note, we have concentrated on free groups. However, using similar ideas,
analogous results may be obtained for the fundamental groups of compact surfaces
of genus at least 2 [17]. In recent work, Calegari and Fujiwara have obtained
central limit theorems for quasi-morphisms of general Gromov hyperbolic groups
(ordered by word length with respect to a finite set of generators) provided the
quasi-morphisms satisfy a condition called bicombability [9]. (Bicombability is more
restrictive than our Hölder condition but it includes, for example, the generalization
of the Brooks quasi-morphisms introduced by Epstein and Fujiwara [15].)

We now give a brief outline of the contents of the paper. In section 1, we
introduce a set of axioms for a useful class of length functions on a free group and,
in section 2, discuss examples. In section 3, we discuss quasi-morphisms and state
our main result on limit laws. In sections 4 and 5, we consider subshifts of finite
type associated to free groups and the associated thermodynamic formalism. In
section 6, we show how to prove a central limit theorem for conjugacy classes in a
particular case and, in section 7, discuss how this may be extended to deal with
group elements.

Some of this material was contained in the University of Manchester PhD thesis
of Matthew Horsham.

1. Length Functions on Free Groups

Let F be a free group on k ≥ 2 generators and let 1 denote the identity
element in F . Let A = {a1, . . . , ak} be a free generating set for F and write
A−1 = {a−1

1 , . . . , a−1
k }. Each x ∈ F , x 6= 1 has a unique representation as a

reduced word in A∪ A−1, i.e.,

x = x0x1 · · ·xn−1,

where xi ∈ A∪A−1, i = 0, 1 . . . , n− 1, and xi+1 6= x−1
i , i = 0, 1, . . . , n− 2. This is

also the unique shortest representation of x as a word in the generators. We define
the associated word length | · | on F by |x| = n (and |1| = 0). Note that |x−1| = |x|.
We also define the Lyndon-Gromov product (·, ·) : F × F → R

+ by

(x, y) = (|x| + |y| − |x−1y|)/2.
Definition. We say that a function L : F → R

+ is a length function if
(L1) L(1) = 0;
(L2) there exists A > 0 such that, for all x, y ∈ F ,

L(xy) ≤ L(x) + L(y) +A;

(L3) there exists C1 > 0 such that, for all x ∈ F ,

L(x) ≥ C1|x|.



LENGTHS, QUASI-MORPHISMS AND STATISTICS FOR FREE GROUPS 3

(It is easy to check that this definition is independent of the choice of generating
set A.) Also note that (L2) gives the bound

L(x) ≤ C2|x|,
where C2 = (supa∈A∪A−1 L(a) +A) > 0.

In order to prove results, we need an additional regularity condition on our
length functions and we hope that the following one is natural. For any a ∈ F ,
write ∆aL(x) = L(x) − L(ax).

Definition. We say that a length function L : F → R+ is a Hölder length
function if

(L4) for any a ∈ F , there exist C3, C4 > 0 such that, for all x, y ∈ F ,

|∆aL(x) − ∆aL(y)| ≤ C3e
−C4(x,y).

(This definition is also independent of the choice of A.)

It is easy to see that the word length | · | is itself a Hölder length function.

The condition (L2) allows us to define an associated homogeneous length func-
tion l : F → R+ by

l(x) = lim
n→+∞

1

n
L(xn) = inf

n≥1

1

n
L(xn).

Where it is necessary to make the dependence on L clear, we shall write l = H(L).
Note that l(xn) = nl(x), for all n ≥ 0. The condition (L2) ensures that l(x) > 0,
for all x ∈ F\{1}. (However, l itself fails to satisfy (L2).)

Let C(F ) denote the set of non-trivial conjugacy classes in F . Each w ∈ C(F )
contains a family of cyclically reduced words in A ∪ A−1, i.e., a reduced word
x0x1 · · ·xn−1, such that xn−1 6= x−1

1 , and its cyclic permutations. Then w contains
no shorter words and we define |w| = n = min{|x| : x ∈ w}.

It is easy to check that l = H(L) is constant on conjugacy classes and so gives
a well-defined function l : C(F ) → R+. (In fact, for w ∈ C(F ), |w| = H(| · |)(x), for
any x ∈ w.)

Definition. We say that L or l = H(L) is non-discrete if {l(w) : w ∈ C(F )}
is not contained in a discrete subgroup of R.

2. Examples of Hölder Length Functions

We shall now discuss some examples of Hölder length functions. Classically,
in combinatorial group theory, one is interested in so-called based length functions
which arise from isometric actions on simplicial R-trees. Such functions were orig-
inally defined axiomatically by Lyndon [24], where they were Z-valued, while the
R-valued case was considered by Chiswell [10]. Chiswell (see also [18]) discovered
the connection with actions on trees. We now give the definition. Let Γ be a finite
metric graph (i.e. a finite graph with positive lengths assigned to all the edges,
making it into a metric space in the obvious way) such that π1(Γ) ∼= F . The uni-
versal cover of Γ, with the lifted metric, is a simplicial R-tree T . Choose a base
point p in Γ and let o ∈ T be a choice of lift of p. Define L : F → R+ by

L(x) = dT (o, ox),
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then this is a based length function. Different choices of Γ and p may give rise to
the same length function: we shall return to this issue later, when we discuss the
Outer space associated to F .

A simplicial R-trees are examples of a CAT(−1) spaces. Other examples are
given by simply connected Riemannian manifolds with sectional curvatures ≤ −1.
A rather more general way of obtaining length functions is the following. Let X be
a CAT(−1) space and realize F as a convex co-compact group of isometries of X .
Choose o ∈ X and define L : F → R by

L(x) = dX(o, ox). (2.1)

Theorem 1 [30], [31]. The function L defined by (2.1) is a Hölder length
function.

In some senses, homogeneous length functions are even more natural. Let us
return to the metric graphs considered above and be a little more precise. Let G be
a fixed graph with one vertex ∗ and k edges and identify F with π1(G) so that each
ai, i = 1, . . . , k, corresponds to an (oriented) edge. Let Γ be a metric graph with
fundamental group F such that each vertex has valency at least three together with
a homotopy equivalence g : G → Γ; we call (Γ, g) a marked metric graph. Consider
the set of all marked metric graphs whose edge lengths sum to one. We say that
(Γ, g) and (Γ′, g′) are equivalent if there is an isometry h : Γ → Γ′ such that g ◦ h
is homotopic to g′. The Culler-Vogtmann Outer space O is defined to be the set
of equivalence classes [13]. Its importance is that it is a space on which the outer
automorphisms of F act in a natural way. (An alternative definition is the set of
equivalence classes of marked metric graphs under the relation (Γ, g) ∼ (Γ′, g′) if
there is a homothety h : Γ → Γ′ such that g ◦ h is homotopic to g′.)

A point in O may be identified with a homogeneous length function l : F → R
+

in the following way. Identifying x ∈ F with a homotopy class in π1(G), l(x) may
be defined to be the length of the shortest loop in Γ freely homotopic to g(x).
Equivalently, considering the universal cover T , define l : F → R by

l(x) = inf
o∈T

dT (o, ox).

We have dT (o, o(yxy−1)) = dT (oy, (oy)x), so it is easy to see that l(x) depends
only on the conjugacy class of x. Furthermore, l only depends on the point in O

represented by (Γ, g). For each x ∈ F , there is a unique subset A(x) ⊂ T , isometric
to R, called the axis of x, on which x acts by translation by l(x). These functions
l : F → R are called hyperbolic length functions [2] or translation length functions
[12]. Of course, we may obtain more examples, parametrized by O × {λ : λ > 0},
by dropping the requirement that the edge lengths sum to one.

Generalizing again to a CAT(−1) space X and a convex co-compact action
X × F → X , if L(x) = dX (o, ox) then l = H(L) satisfies

l(x) = inf
o∈X

dX (o, ox) (2.2)

and defines a function l : C(F ) → R
+. If X is a Riemannian manifold then, for

w ∈ C(F ), l(w) is the length of the unique closed geodesic on X/F in the free
homotopy class determined by w.

We shall define three sets of length functions l : C(F ) → R
+. Let L0(F ) denote

the set of hyperbolic length functions defined above with out the restriction on the
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edge lengths sum. (Then O = PL0(F ) = L0(F )/ ∼, where l1 ∼ l2 if there exists
λ > 0 such that l2 = λl1.) Let L1(F ) denote the set of length functions obtained
from convex co-compact actions on CAT(−1) spaces, as in (2.2). Finally, let

L2(F ) = {H(L) : L is a Hölder length function on F}.
Of course, these also have projectivized versions, PL1(F ) and PL2(F ). Clearly,

L0(F ) ⊂ L1(F ) ⊂ L2(F ).

Furthermore, L0(F ) is a proper subset of L1(F ).

Question. Do we have L1(F ) = L2(F )?

3. Quasi-Morphisms

In this section we shall discuss a class of real-valued functions on a group which
provide a reasonable generalization of homomorphisms.

A map ψ : F → R is called a quasi-morphism if there exists D ≥ 0 such that,
for all x, y ∈ F ,

|ψ(xy) − ψ(x) − ψ(y)| ≤ D.

The most obvious examples of quasi-morphisms are homomorphisms and bounded
maps. We shall say that a quasi-morphism ψ is a Hölder quasi-morphism if for any
a ∈ F , there exist C, c > such that, for all x, y ∈ F ,

|∆aψ(x) − ∆aψ(y)| ≤ Ce−c(x,y).

(This definition is also independent of the choice of A.) We say that ψ is homoge-
neous if ψ(xn) = nψ(x), for all x ∈ F and all n ∈ Z.

Lemma 3.1. A homogeneous quasi-morphism is constant on conjugacy classes.

Proof. If ψ is a homogeneous quasi-morphism then

ψ(y−1xny) = ψ((y−1xy)n) = nψ(y−1xy).

On the other hand, ψ(y−1xny) − ψ(xn) = ψ(y−1xny) − nψ(x) is bounded as n
increases. Dividing by n and letting n→ +∞ gives ψ(y−1xy) = ψ(x), as required.

If ψ is a quasi-morphism then one may obtain a homogeneous quasi-morphism
ϕ = H(ψ) by the procedure of section 1, i.e.,

ϕ(x) = lim
n→+∞

1

n
ψ(xn).

With this definition, we also have

ϕ(x−1) = −ϕ(x).

Lemma 3.2. There exists C(ψ) ≥ 0 such that, for all x ∈ F , |ψ(x)−H(ψ)(x)| ≤
C(ψ). (In other words, ψ = H(ψ) + b, where b : F → R is bounded.) As a
consequence H(ψ) = 0 if and only if ψ is bounded.

Proof. See page 129 of [16].

Note that if ψ is a Hölder quasi-morphism, the associated homogeneous quasi-
morphism ϕ = H(ψ) is not necessarily Hölder.
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Remark. Grigorchuk [16] uses the terminology quasicharacter and pseudochar-
acter for what we call quasi-morphism and homogeneous quasi-morphism, respec-
tively.

Examples.
(i) As mentioned above if ψ : F → R is either a homomorphism or a bounded
map then ψ is a quasi-morphism. If ψ is a homomorphism the H(ψ) = ψ. If ψ
is bounded then H(ψ) = 0. It is clear that a homomorphism is a Hölder quasi-
morphism, however, a bounded map is in general not Hölder.
(ii) Brooks examples. Brooks showed that there were very many quasi-morphisms
on F which were not homomorphisms. Let ξ be a reduced word in A∪A−1. Define
ψξ : F → Z by setting ψξ(x) to be the difference between the number of times ξ
and ξ−1 occur as subwords of x when x is written as a reduced word in A ∪ A−1.
Then ψξ is a quasi-morphism [6]. A similar construction for surface groups is given
in [7].
(iii) Barge-Ghys examples. Realize F as a co-compact group of isometries of a
simply connected Riemannian manifold X with sectional curvatures ≤ −1 and
choose o ∈ X . Let ω be a (not necessarily closed) smooth 1-form on X/F . Define
ψω : F → R by ψω(x) =

∫ ox
o ω̃, where ω̃ is the lift of ω to X and where the integral

is taken over the geodesic joining o to ox. Then

ψω(xy) − ψω(x) − ψω(y) =

∫ oxy

o

ω̃ −
∫ ox

o

ω̃ −
∫ oy

o

ω̃ =

∫

4

dω̃,

where 4 is the geodesic triangle joining o, oxy and oy. Since the area of geodesic
triangles in X is uniformly bounded, we have that ψω is a quasi-morphism [4].

Theorem 2. The Brooks quasi-morphisms and the Barge-Ghys quasi-morphisms
are examples of Hölder quasi-morphisms.

Proof. For the Brooks quasi-morphisms this is immediate. For the Barge-
Ghys quasi-morphisms it follows from the analysis in [28], where a closely related
result is proved.

As for lengths, quasi-morphisms fall into two classes.

Definition. We say that ψ or ϕ = H(ψ) is non-discrete if {ϕ(w) : w ∈ C(F )}
is not contained in a discrete subgroup of R.

Remark. The set of quasi-morphisms on a group Γ is closely related to its
bounded cohomology [5],[16],[28]. Let H2

b (Γ,R) denote the second bounded coho-
mology group on Γ and let ρΓ

2 : H2
b (Γ,R) → H2(Γ,R) denote the natural map. Then

ker ρΓ
2 is isomorphic to the set of quasi-morphisms on Γ modulo homomorphisms

and bounded maps [16].
Free groups and, more generally, groups which are hyperbolic in the sense of

Gromov admit many quasi-morphisms; this corresponds to the fact that kerρΓ
2 is

infinite dimensional [6],[7],[15]. In contrast, higher rank groups often do not admit
quasi-morphisms. For example, if Γ is an irreducible co-compact lattice in a Lie
group of rank ≥ 2 then ρΓ

2 is injective [8], so the only quasi-morphisms of Γ are
sums of v + b, where v : Γ → R is a homomorphism and b : Γ → R is bounded.

Our main result is the following pair of central limit theorems. For convenience,
we shall restrict to the case where L (or, equivalently, l) and ψ (or, equivalently, ϕ)
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are non-discrete. The proof for conjugacy classes will be sketched in section 6 and,
in section 7, we briefly indicate the modifications required to study elements of F .
(For the proof of the theorem stated in the introduction, which is more elementary,
see [17].)

Theorem 3. Let L : F → R+ be a non-discrete Hölder length and let ψ : F →
R be a non-discrete Hölder quasi-morphism. Provided ψ is not bounded, there exists
σ = σ(L,ψ) > 0 such that, for ε > 0,

lim
T→+∞

#{x ∈ F : T − ε < L(x) ≤ T, ψ(x)/
√
L(x) ≤ y}

#{x ∈ F : T − ε < L(x) ≤ T} =
1√
2πσ

∫ y

−∞

e−t
2/2σ2

dt

and, writing l = H(L) and ϕ = H(ψ),

lim
T→+∞

#{w ∈ C(F ) : T − ε < l(w) ≤ T, ϕ(w)/
√
l(w) ≤ y}

#{w ∈ C(F ) : T − ε < l(w) ≤ T} =
1√
2πσ

∫ y

−∞

e−t
2/2σ2

dt.

Remark. In fact, σ only depends on l and ϕ.

4. Subshifts of finite type

Naturally associated to F and the generators A is the shift space Σ+ consisting
of all infinite reduced words in A∪ A−1. More precisely,

Σ+ = {x = (xn)∞n=0 ∈ (A ∪ A−1)Z
+

: xn+1 6= x−1
n ∀n ∈ Z

+}.

We define the (one-sided) subshift of finite type σ : Σ+ → Σ+ by (σx)n = xn+1. If
we define a metric d on Σ+ by

d(x, y) =
∞∑

n=0

(1 − δxn,yn
)2−n (4.1)

then Σ+ is compact and σ is continuous. The topological entropy of σ : Σ+ → Σ+

is given by h(σ) = log(2k − 1).
A point x ∈ Σ+ is a periodic point if σnx = x, for some n ≥ 1 and, for each

n ≥ 1, we shall write

Fixn = {x ∈ Σ+ : σnx = x}.
If x ∈ Fixn then the set {x, σx, . . . , σn−1x} is a periodic orbit; it is a prime periodic
orbit if there is nom < n such that σmx = x. Recall from section 1 that a conjugacy
class w ∈ C(F ) contains a cyclically reduced word x0x1 · · ·xn−1 in A ∪ A−1. By
concatenating this word we obtain a periodic point x ∈ Fixn and the other points
in the periodic orbit correspond exactly to the cyclic permutations of the word.
It is clear that this gives a natural bijection between C(F ) and the set of periodic
points of σ : Σ+ → Σ+, such that, if x, σx, . . . , σn−1x (σnx = x) corresponds to
w ∈ C(F ) then |w| = n. We say that a conjugacy class is primitive if none of its
elements are non-trivial powers of elements of F . A conjugacy class is primitive if
and only if the corresponding periodic orbit is prime. We write P(F ) for the set of
primitive conjugacy classes in F .

In order to represent elements of F as elements of a shift space, it is convenient
to augment Σ+ by adding an extra “dummy” symbol 0. Introduce a square matrix
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A, with rows indexed by A ∪ A−1 ∪ {0}, such that

A(i, j) =





1 if i, j ∈ A ∪ A−1 and j 6= i−1

0 if i, j ∈ A ∪ A−1 and j = i−1

1 if i ∈ A ∪A−1 ∪ {0} and j = 0

0 if i = 0 and j ∈ A ∪ A−1.

We may then define the shift space

ΣA = {x = (xn)∞n=0 ∈ (A ∪A−1 ∪ {0})Z
+

: A(xn, xn+1) = 1 ∀n ∈ Z
+},

with the shift map σ : ΣA → ΣA defined as before. The formula (4.1) defines
a metric on ΣA, making it compact and σ continuous. If we define B to be the
submatrix of A obtained by deleting the row and column indexed by 0 then we
may write Σ+ = ΣB ⊂ ΣA. Furthermore, if we write Σ0

A for the set of sequences
in ΣA ending in an infinite string of 0s then Σ0

A = ΣA\ΣB and Σ0
A is dense in ΣA.

There is a natural identification between non-trivial elements in F and Σ0
A given

by ι : F\{1} → Σ0
A : x0x1 · · ·xn−1 7→ (x0, x1, . . . , xn−1, 0, 0, . . . ).

It is easy to see that enlarging Σ+ to ΣA only introduces one extra periodic
point, an infinite string of 0s, which we denote 0̇. When we write Fixn we shall
continue to mean the periodic points in Σ+.

We say that a non-negative matrixM is aperiodic if there existsN > 0 such that
all the entries of MN are positive. The matrix A is not aperiodic but the matrix B
is aperiodic (this corresponds to σ : Σ+ → Σ+ being topologically mixing). Since B
is aperiodic, the Perron-Frobenius Theorem ensures that it has a simple eigenvalue
λ > 1 such that |µ| < λ for all other eigenvalues µ and the topological entropy of
the shift σ : ΣA → ΣA is given by h(σ) = logλ [25]. In fact, λ = 2k − 1. It is easy
to see that A has the same spectrum as B except for an extra 1.

There is an extensive theory related to Hölder continuous functions on subshifts
of finite type and we shall show that we may associate such a function to any Hölder
length function L : F → R

+. First define r : Σ0
A → R by r(0̇) = 0 and

r(x0, x1, . . . , xn−1, 0̇) = L(x0x1 · · ·xn−1) − L(x1 · · ·xn−1). (4.2)

Lemma 4.1 [22],[30],[31]. If L : F → R
+ is a Hölder length function then

r : Σ0
A → R is Hölder continuous and has a Hölder continuous extension to a

function r : ΣA → R.

The final statement is standard given that Σ0
A is dense in ΣA.

The importance of the function r is given by the following lemma, where we
use the notation

rn(x) = r(x) + r(σx) + · · · + r(σn−1x).

Lemma 4.2. Let r : ΣA → R be the extension of the function defined by equa-
tion (4.2).

(i) For any reduced word x0x1 · · ·xn−1,

rn(x0, x1, . . . , xn−1, 0̇) = L(x0x1 · · ·xn−1).

(ii) If x0x1 · · ·xn−1 is a cyclically reduced word in a conjugacy class w ∈ C(F )
then rn(x) = l(w), where l = H(L) and x ∈ Fixn is the associated periodic
point.
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(iii) There exists N > 0 such that rN : ΣA → R is strictly positive. (In partic-
ular, if ν is a σ-invariant probability measure on ΣA then

∫
rdν > 0.

Proof. Part (i) follow directly from the definition. To prove (ii), for m ≥ 1,
let x(m) denote the m-fold concatenation of the string (x0, x1, . . . , xn−1). Then,
since r is Hölder continuous,

|rmn(x) − rmn(x(m)0̇)| ≤ |r|α
mn∑

j=1

2−jα = |r|α
1 − 2−(mn+1)α

1 − 2−α
≤ |r|α

1− 2−α
.

Here α > 0 denotes the Hölder exponent for r and |r|α the best choice of Hölder
constant. Noting that rmn(x) = mrn(x), this gives us

rn(x) = lim
m→+∞

1

m
rmn(x(m)0̇)

= lim
m→+∞

1

m
L((x0x1 · · ·xn−1)

m) = l(w).

By part (ii), we have that rn(x) > 0 whenever x ∈ Fixn and it follows that r is
cohomologous to a strictly positive function, i.e., there exists a strictly positive
Hölder continuous function r+ : ΣA → R and a continuous function u : ΣA → R
such that r = r+ +u◦σ−u [35]. Thus, rN = rN+ +u◦σN−u ≥ (inf r+)N−2||u||∞,
which is positive provided N is sufficiently large. This proves (iii).

Given a Hölder quasi-morphism ψ : F → R, we may also associate a Hölder
continuous function f : ΣA → R. As in (4.2), we define f : Σ0

A → R by

f(x0, x1, . . . , xn−1, 0̇) = ψ(x0x1 · · ·xn−1) − ψ(x1 · · ·xn−1). (4.3)

The following is the analogue of Lemmas 4.1 and 4.2.

Lemma 4.3. If ψ : F → R
+ is a Hölder quasi-morphism then ψ : Σ0

A → R is
Hölder continuous and has a Hölder continuous extension to a function r : ΣA → R.
Furthermore,

(i) for any reduced word x0x1 · · ·xn−1,

fn(x0, x1, . . . , xn−1, 0̇) = ψ(x0x1 · · ·xn−1).

(ii) If x0x1 · · ·xn−1 is a cyclically reduced word in a conjugacy class w ∈ C(F )
then fn(x) = ϕ(w), where ϕ = H(ψ) and x ∈ Fixn is the associated periodic
point.

5. Thermodynamic Formalism

We shall now review some of the thermodynamic formalism associated to our
shift maps. It will be sufficient to do this for σ : Σ+ → Σ+.

Let M(Σ+) denote the set of σ-invariant probability measure on Σ+. For
f ∈ C(Σ+,R) we define the pressure P (f) by

P (f) = sup
ν∈M(Σ+)

h(ν) +

∫
fdν,

where h(ν) denotes the measure theoretic entropy of σ with respect to ν. If f
is Hölder continuous then the above supremum is attained by a unique measure
µf ∈ M(ΣA), called the equilibrium state for f .
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Define δ > 0 by P (−δr) = 0. Given the correspondence between conjugacy
classes in C(F ) and periodic orbits for σ : Σ+ → Σ+ and part (ii) of Lemma 4.2,
the first part of the following lemma follows from standard results for suspended
flows (or semi-flows) over subshifts of finite type [25]. (Alternatively, it may be
proved directly along the lines of section 6.) The second part may be proved as in
[29].

Proposition 5.1. Suppose that L : F → R+ is a non-discrete Hölder length
function and that l = H(L). Then, for ε > 0,

#{w ∈ C(F ) : T − ε < l(w) ≤ T} ∼ (1 − e−δε)
eδT

δT
, as T → +∞

and
#{x ∈ F : T − ε < L(x) ≤ T} ∼ (1 − e−δε)eδT , as T → +∞.

Remark. More precisely, quoting results on periodic orbits gives

#{w ∈ P(F ) : l(w) ≤ T} ∼ eδT

δT
, as T → +∞

but replacing P(F ) by C(F ) introduces a discrepancy which is at worst O(TeδT/2)
and it is then easy to deduce the asymptotic in the range T − ε < l(w) ≤ T .

Lemma 5.1. Let ψ : F → R be a Hölder quasi-morphism and let f : Σ+ → R

be the associated Hölder continuous function (restricted to Σ+). Then
∫
f dµ−δr = 0.

Proof. For w ∈ C(F ), write w−1 = {x−1 : x ∈ w}. This is a fixed point
free involution of the set {w ∈ C(F ) : |w| = n} and we have l(w−1) = l(w) and
ϕ(w−1) = −ϕ(w).

The equilibrium state µ−δr is the weak∗ limit of weighted averages over periodic
points in the following way: for g ∈ C(Σ+),

∫
g dµ−δr = lim

n→+∞

1

n

∑
x∈Fixn

gn(x)e−δr
n(x)

∑
x∈Fixn

e−δrn(x)
.

If we put g = f then the Right Hand Side above (without the limit) becomes

1

n

∑
|w|=n ϕ(w)e−δl(w)

∑
|w|=n e

−δl(w)
,

which, in view of the above involution, is equal to zero.

6. L-functions and Limit Theorems for Conjugacy Classes

In this section, we shall prove Theorem 3 for conjugacy classes in the case
where both l and ϕ are non-discrete. (At the end of the section, we shall briefly
describe how to handle the simpler case of discrete ϕ.) We shall do this via a
local limit theorem which describes the distribution of ϕ(w) − ρl(w), where ρ is
a real parameter. The results will be uniform as ρ varies in a small compact
neighbourhood of zero; ultimately, this will allow us to have ρ depend on T .
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We need an appropriate set for ρ to lie in. We shall write

Iϕ =

{
ϕ(w)

l(w)
: w ∈ C(F )

}
=

{∫
fdν∫
rdν

: ν ∈ M(Σ+)

}
;

Iϕ is a closed interval containing zero in its interior. (Note that, by Lemma 4.2(iii),∫
rdν > 0, for ν ∈ M(Σ+). See [25], for example, for the relationship between Iϕ

and the suspended semi-flow over Σ+ defined by rN > 0.)
We will need to use a pair of thermodynamic functions. We define a function

p : R → R implicitly by the equation P (−p(t)r + tf) = 0. Since

d

dτ
P (−cr + τf)

∣∣∣∣
τ=t

=

∫
r dµ−cr+tf > 0,

we deduce from the Implicit Function Theorem that p is real analytic. We also
have that int(Iϕ) = {p′(t) : t ∈ R}.

We introduce another function h : Iϕ → R by

h(ρ) = sup

{
h(ν)∫
rdν

: ν ∈ M(Σ+) and

∫
fdν∫
rdν

= ρ

}
.

The functions h and p are related by the identities −h′(p′(t)) = t and

h(ρ) = p((p′)−1(ρ)) − (p′)−1(ρ)ρ

(i.e., −h is the Legendre transform of p [34]). We write ρ(ξ) = (h′)−1(ξ). Then
ρ(ξ) depends analytically on ξ,

h(ρ(ξ)) = p(ξ) − ξρ(ξ) (6.1)

and h′′(ρ(ξ)) = −p′′(ξ)−1. From now on, to simplify notation, we shall write
ρ = ρ(ξ).

Lemma 6.1. h(ρ) has a maximum at ρ = 0 and h(0) = δ. In particular,
h′(0) = 0 and ρ(0) = 0.

Proof. Recall from Lemma 5.1 that
∫
f dµ−δr = 0.

Both statements in the lemma then follow from

h(µ−δr)∫
r dµ−δr

= δ and
h(ν)∫
r dν

< δ (ν 6= µ−δr)

which is equivalent to

h(µ−δr) − δ

∫
rdµ−δr = 0 and h(ν) − δ

∫
rdν < 0 (ν 6= µ−δr).

The latter follows from P (−δr) = 0.

The conjugacy class case of Theorem 3 may be derived from the following local
limit theorem.
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Proposition 6.1. For ρ ∈ int(Iϕ) and κ > 0, we have

#{w ∈ C(F ) : T − ε < l(w) ≤ T, ϕ(w) − ρl(w) ∈ (−κ, κ)}

∼ (1 − e−h(ρ)ε)C(ρ)

(∫ κ

−κ

e−ξtdt

)
eh(ρ)T

T 3/2
,

as T → +∞, where

C(ρ) =

√
−h′′(ρ)

2π

1

h(ρ)
.

Furthermore, the convergence is uniform for ρ in any small compact neighbourhood
of 0 ∈ int(Iψ).

Remark. In fact, uniform convergence holds for ρ in any compact subset of
int(Iψ). The interval (−κ, κ) may be replaced by an arbitrary interval (a, b).

By recasting this result in terms of a suspended semi-flow over Σ+ (with the
slight additional complication that the roof function is rN > 0, rather than r), this
follows from results of Lalley [21] and Babillot and Ledrappier [3]. However, we
shall employ an L-function approach as in, for example, [19]. In particular, we shall
use the version of the Agmon-Delange Tauberian theorem proved in [19] and show
that a slightly more careful analysis allows this method to give the same uniform
results obtained in [3], [21].

Proposition 6.1 may be proved by studying an appropriate family of generating
functions, which, in turn, may be studied via a family of L-functions. For an
integrable function v : R → R+, write

η̃ξ(s) = −
∑

w∈P(F )

v(ϕ(w) − ρl(w))l(w)e−sl(w)+ξ(ϕ(w)−ρl(w)).

Of course, we would like v to be some approximation to the indicator function of the
interval (−κ, κ) but, as we shall be taking Fourier transforms, we need to proceed
more carefully. In fact, we shall take v to be real analytic, so that its Fourier
transform is compactly supported. Later on, a standard unsmoothing argument
will be used to recover the desired result for an indicator function. A key part of
our analysis will be to show that η̃ξ(s) has a square root singularity at s = h(ρ).

We define an L-function associated to our data by

Lξ(s, t) =
∏

w∈P(F )

(
1− e−sl(w)+(ξ+it)(ϕ(w)−ρl(w))

)−1

.

This has the representation in terms of periodic points for σ : Σ+ → Σ+:

Lξ(s, t) = exp
∞∑

n=1

1

n

∑

x∈Fixn

e−sr
n(x)+(ξ+it)(fn(x)−ρrn(x)).

It is then standard to study this function via the following family of operators.
We shall write Cα(Σ+) for the space of (complex-valued) α-Hölder continuous func-
tions on Σ+, equipped with the norm

‖f‖α = ‖f‖∞ + sup
x6=y

|f(x) − f(y)|
d(x, y)α

.
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Given a function f ∈ Cα(Σ+) we shall define the associated transfer operator
Lf : Cα(Σ+) → Cα(Σ+) by

Lfg(x) =
∑

σy=x

g(y)ef(y).

The following result is well-known.

Lemma 6.2 [25].
(i) If f ∈ Cα(Σ+) is real-valued then Lf : Cα(Σ+) → Cα(Σ+) has a sim-

ple isolated maximal eigenvalue eP (f) with a strictly positive associated
eigenfunction hf and a unique probability measure mf on Σ+ such that

L∗
fm = eP (f)m. Furthermore, the rest of the spectrum is contained in

a disk of radius strictly smaller than eP (f). If h is normalized so that∫
hdmf = 1 then µf = hfmf .

(ii) If f ∈ Cα(Σ+) is complex-valued then the spectral radius of Lf : Cα(Σ+) →
Cα(Σ+) is less than or equal to eP (<f).

(iii) The spectral radius of Lf : Cα(Σ+) → Cα(Σ+) is strictly less than eP (<f)

unless =f = v ◦σ− v+M +a, where v ∈ C(Σ+,R), M ∈ C(Σ+, 2πZ) and
a ∈ R is a constant. If such an identity holds then Lf has a simple isolated

maximal eigenvalue eP (<f)+ia and the rest of the spectrum is contained in
a disk of radius strictly smaller than eP (<f).

If Lf has an eigenvalue λ of modulus eP (<f) (in particular if f ∈ Cα(Σ+) is
real-valued) then it has a neighbourhood N (f) ⊂ Cα(Σ+) such that, for g ∈ N (f),
Lg has a simple isolated eigenvalue λ(g), depending analytically on g and such

that λ(f) = λ. For g ∈ N (f), we define its pressure by eP (g) = λ(g). There
are corresponding eigenfunctions hg and eigenfunctionals νg, which also depend
analytically on g.

If z, w ∈ C, with |=z| and |=w| sufficiently small, then P (−wr+ zf) is defined.
The function p(z) is then defined implicitly by P (−p(z)r+ zf) = 0 and is analytic.

Lemma 6.2 enables one to study a generalized zeta function ζ : Cα(Σ+) → C

given by

ζ(g) = exp

∞∑

n=1

1

n

∑

x∈Fixn

eg
n(x),

which converges for P (<g) < 0 to a non-zero analytic function. The essential
point is that this has an analytic and non-zero extension to a neighbourhood of
{g : P (<g) ≤ 0} except where P (g) = 0 [25]. With this definition,

Lξ(s, t) = ζ(−sr + (ξ + it)(f − ρr)) = ζ(−(s+ ξρ+ itρ)r + (ξ + it)f).

This is non-zero and analytic for

P (−(<s+ ξρ)r + ξf) < 0,

i.e., for <s + ξρ > p(ξ). By equation (6.1), this becomes <s > h(ρ). We have the
following result.

Proposition 6.2 (cf. [36]). The function Lξ(s, t) is analytic and non-zero
in the set

{(s, t) ∈ C × R : <s > h(ρ)}
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and has an analytic and non-zero extension to a neighbourhood of

{(s, t) ∈ C × R : <s = h(ρ), t 6= 0} ∪ {(s, t) ∈ C × R : <s = h(ρ),=s 6= 0}.

Furthermore, for ξ ∈ R, s close to h(ρ) and |t| small, Lξ(s, t) takes the form
a(s, ξ + it)/(s − sξ(t)), where sξ(t) = p(ξ + it) − (ξ + it)ρ, for some non-zero
analytic function a(s, ξ + it).

Proof. The only thing we have to check is that if ar + bf is of the form
v ◦ σ − v + M , where v ∈ C(Σ+,R) and M ∈ C(Σ+, 2πZ), there a = b = 0.
Considering sums around periodic orbits, this is equivalent to

exp i(al(w) + bϕ(w)) = 1 ∀w ∈ C(F ).

Comparing with w−1, we obtain exp ibϕ(w) = exp−ibϕ(w), so either b = 0 or
bϕ(w) ∈ 2πZ, for all w ∈ C(F ). However, the latter cannot occur since ϕ is non-
discrete. Hence, we have exp ial(w) = 1, for all w ∈ C(F ). Since l is non-discrete,
this forces a = 0, as well.

Lemma 6.3. s′ξ(0) = 0, <s′′ξ (0) < 0 and =s′′ξ (0) = 0. (In particular, |=sξ(t)| =

O(|t|3), as t→ 0.)

Proof. From the definition of sξ(t), we have

s′ξ(0) = ip′(ξ) − iρ = 0

and

s′′ξ (0) = −p′′(ξ) < 0,

the latter being real and negative.

The proof of the theorem now follows [36] very closely, specifically employing
the analysis and Tauberian theorem from Katsuda & Sunada [19].

Denote the logarithmic derivative of Lξ(s, t) by

ηξ(s, t) =
∂

∂s
logLξ(s, t) = −

∑

w∈P(F )

∞∑

n=1

l(w)en(−sl(w)+(ξ+it)(ϕ(w)−ρl(w))).

This function is non-zero and analytic in the set {s : <s ≥ h(ρ)} × R − {(h(ρ), 0)}
and in a neighbourhood around the pole can be written −1/(s− sξ(t)) + a1(s, ξ, t)
for analytic function a1. In fact, one may ignore the terms with n ≥ 2 in the above
summation without affecting these properties, so we shall abuse notation and write

ηξ(s, t) = −
∑

w∈P(F )

l(w)e−sl(w)+(ξ+it)(ϕ(w)−ρl(w)).

Using the Fourier Inversion Formula, we have

η̃ξ(s) = − 1

2π

∫ +∞

−∞

v̂(−t)


 ∑

w∈P(F )

l(w)e−sl(w)+ξ(ϕ(w)−ρl(w))eit(ϕ(w)−ρl(w))


 dt

=
1

2π

∫ +∞

−∞

v̂(−t)ηξ(s, t) dt.
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In view of the above analysis, the principal part of η̃ξ(s) comes from integrating
over a neighbourhood of 0. More precisely, for any ε > 0,

η̃ξ(s) =
1

2π

∫ ε

−ε

v̂(−t)
s− sξ(t)

dt+ a2(s, ξ),

where a2(s, ξ) is analytic for {s : <s ≥ h(ρ)}.
In view of Lemma 6.3, <s′ξ(0) = 0 and <s′′ξ (0) < 0, so we may use the Morse

Lemma to make a suitable smooth change of co-ordinates and write

η̃ξ(s) =
1

π
√

2p′′(ξ)

∫ ε

−ε

1 + b(θ)

s− h(ρ) + θ2 + iQ(θ)
dθ + a3(s, ξ), (6.1)

where b(θ) is a smooth function with f(0) = 0, Q(θ) = =sξ(t(θ)) = O(|θ|3) and

a3(s, ξ) is analytic for {s : <s ≥ h(ρ)}. The extra factor (2/p′′(ξ))1/2 appears as
the Jacobian of the change of variables at the origin.

It will turn out that η̃ξ(s) has a square root singularity at s = h(ρ) and, in
order to make further progress, we shall need to apply a Tauberian theorem that
is valid for this type of singularity. Specifically, we shall use the version of the
Agmon-Delange Tauberian theorem ([1],[14]) proved in [19]. To state this, we
need to consider a family of complex functions Fξ(s) which satisfy the following
conditions.

(T1) Fξ(s) is analytic for <s > 1.
(T2) The limit

lim
ε→0+

(
Fξ(1 + ε+ it) − A√

ε+ it

)

exists for almost every point t ∈ R and is in W 1,1
loc (R).

(T3) There exists a locally integrable function h(t) such that

sup
ξ

sup
ε>0

∣∣∣∣Fξ(1 + ε+ it) − A√
ε+ it

∣∣∣∣ ≤ h(t).

Lemma 6.4 [19]. Let φξ(T ) be a family of increasing functions with φξ(T ) = 0
for 0 ≤ T ≤ T0, for some T0 > 0 (independent of ξ) and let

Fξ(s) =

∫ ∞

0

T− 1
2 e−sT dφξ(T ).

Suppose that Fξ(s) satisfies (T1), (T2) and (T3). Then, uniformly for ξ in any

compact interval, φξ(T ) ∼ Aπ− 1
2 eT .

The uniformity follows from a careful examination of the proof in [19].
The integral in (6.1) is in exactly the form analysed by Katsuda and Sunada

[19]. They prove the following proposition which states that the function has the
properties necessary to allow the Tauberian theorem to be applied. Again, the
uniformity follows from a careful examination of the proof in [19].

Lemma 6.5 [19]. The functions
√

p′′(ξ)h(ρ)η̃ξ(h(ρ)s) satisfy (T1), (T2) and
(T3) with

A =
v̂(0)

√
π√

2π
.
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We may write

η̃ξ(s) = −
∫ ∞

0

T− 1
2 e−sT dSv(T ),

where

Sξ(T ) =
∑

l(w)≤T

l(w)3/2eξ(ϕ(w)−ρl(w))v(ϕ(w) − ρl(w)).

Applying Lemmas 6.4 and 6.5 (with a suitable renormalization), we have

Sξ(T ) ∼ C(ρ)v̂(0)ep(ξ)T ,

where

C(ρ) =
1√

2πp′′(ξ))h(ρ)
=

√
−h′′(ρ)

2π

1

h(ρ)
,

uniformly for ξ (or, equivalently, ρ) in a compact interval. (The condition φξ(x) = 0
for 0 ≤ x ≤ T0, for some T0 > 0, will hold for ξ in a compact interval.)

We are now ready to complete the proof of Proposition 6.1.

Proof of Proposition 6.1. Suppose that ρ lies in a sufficiently small neigh-
bourhood of zero that h(ρ) > δ/2. (This is not strictly necessary but it makes the
discussion easier.) The asymptotic

#{w ∈ P(F ) : l(w) ≤ T, ϕ(w) − ρl(w) ∈ (−κ, κ)} ∼ C(ρ)

(∫ κ

−κ

e−ξtdt

)
eh(ρ)T

T 3/2
,

as T → +∞ now follows from fairly standard unsmoothing and partial summa-
tion arguments and this may be done to preserve the uniformity (cf. [21],[38]).
Furthermore, replacing P(F ) by C(F ) introduces a discrepancy which is no worse
than O(TeδT/2), with the implied constant independent of ρ. Finally, it is easy to
deduce the asymptotic for T − ε < l(w) ≤ T .

The Central Limit Theorem for conjugacy classes will now follow from the next
result.

Proposition 6.3. For c ∈ R, ε > 0 and κ > 0, we have

#{w ∈ C(F ) : T − ε < l(w) ≤ T, ϕ(w) − c
√
l(w) ∈ (−κ, κ)}

#{w ∈ C(F ) : T − ε < l(w) ≤ T} ∼ 1√
2πσ

2κ√
T
e−c

2/2σ2

,

as T → +∞, where σ2 = p′′(0) = −1/h′′(0).

Proof. We shall apply Proposition 6.1 with ρ = c/
√
T , so that

ϕ(w) − ρl(w) = ϕ(w) − cl(w)√
T

= ϕ(w) − c
√
l(w) +O

(
1√
T

)
.

(This is why we need uniformity in ρ.) As T → +∞, h(ρ) → δ and (since ξ → 0)
∫ κ

−κ

e−ξtdt→ 2κ

and we have

h(ρ)T = h

(
c√
T

)
T = δT − 2

σ2
+O

(
1√
T

)
.
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Comparing Proposition 6.1 with the asymptotic

#{w ∈ C(F ) : T − ε < l(w) ≤ T} ∼ (1 − e−δε)
eδT

δT

from Proposition 5.1 gives the result.

7. Limit Theorems for Group Elements

In this section we shall briefly sketch how the method of the previous section
may be adapted to prove a central limit for elements of F and thus complete the
proof of Theorem 3.

The key result is the following.

Proposition 7.1. For ρ ∈ int(Iϕ) and κ > 0, we have

#{x ∈ F : T − ε < L(x) ≤ T, ψ(x) − ρL(x) ∈ (−κ, κ)}

∼ (1 − e−h(ρ)ε)

√
h′′(ρ)

2π

(∫ κ

−κ

e−ξtdt

)
eh(ρ)T

T 1/2
,

as T → +∞. Furthermore, the convergence is uniform for ρ in a small compact
neighbourhood of 0 ∈ int(Iϕ).

Remark. As in Proposition 6.1, uniform convergence holds for ρ in any com-
pact subset of int(Iψ) and the interval (−κ, κ) may be replaced by an arbitrary
interval (a, b).

This may be proved in a similar manner to Proposition 6.1. We shall consider
a generating function

ω̃ξ(s) =
∑

x∈F

v(ψ(x) − ρL(x))e−sL(x)+ξ(ψ(x)−ρL(x)),

where vhas a compactly supported Fourier transform. This may be studied via the
functions

ωξ(s, t) =
∑

x∈F

e−sL(x)+(ξ+it)(ψ(x)−ρL(x)).

In turn, to study these we use a family of extended transfer operators associated to
the larger shift space ΣA. More precisely, for f ∈ Cα(ΣA), we define the transfer
operator Lf : Cα(ΣA) → Cα(ΣA) by

Lfg(x) =
∑

σy=x
y 6=0̇

g(y)ef(y).

This has the same spectral properties as Lf |Σ+ and, furthermore, by Lemmas 4.2
and 4.3, we may write

ωξ(s, t) =

∞∑

n=0

(Ln−sr+(ξ+it)(f−ρr)1)(0̇).

One may then proceed in a similar manner to section 6 with, in particular, ω̃ξ(s)
having a square root singularity at s = h(ρ).
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