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Abstract. In this paper we obtain a local limit theorem for elements of a free group G under

the abelianization map [·] : G → G/[G, G]. This is obtained via an analysis involving subshifts
of finite type, where we obtain a result of independent interest. The case of fundamental

groups of compact surfaces of genus ≥ 2 is also discussed.

0. Introduction

Let G denote the free group on k ≥ 2 generators {a1, . . . , ak}. For g ∈ G, let |g|
denote its word length, i.e., |g| = inf{n ≥ 0 : g = g1 · · · gn, gi ∈ {a±1

1 , . . . , a±1
k }}, and

let [g] denote the image of g under the abelianization map [·] : G → G/[G, G] ∼= Zk. Let
W(n) = {g ∈ G : |g| = n} and observe that #W(n) = 2k(2k − 1)n−1. In this paper, we
shall be interested in the distribution of the elements of W(n) in Zk via the mapping [·],
as n → ∞. In particular, defining W(n, α) = {g ∈ W(n) : [g] = α}, we wish to examine
the dependence of #W(n, α) on α as well as on n.

Our approach is to regard #W(n, α)/#W(n) as a probability distribution on Zk and to
ask about its limiting behaviour as n →∞. Rivin has shown that a central limit theorem
is satisfied, i.e., for A ⊂ Rk,

lim
n→∞

1
#W(n)

#{g ∈ W(n) : [g]/
√

n ∈ A} =
1

(2π)k/2σk

∫
A

e−||x||
2/2σ2

dx,

where || · || denotes the Euclidean norm and where

σ2 =
1√

2k − 1

[
1 +

(
k +

√
2k − 1

k −
√

2k − 1

)1/2
]

(0.1)

[18]. (In fact, this result is similar in spirit to earlier results for subshifts of finite type,
hyperbolic diffeomorphisms, and interval maps [1], [4], [5], [10], [12], [17], [19], [20], [23].)

Here, we shall establish a more precise local limit theorem. First we note a combinatorial
restriction. We shall say that α = (α1, . . . , αk) is even if α1 + · · · + αk is even, and odd
otherwise. It is clear that if [g] = α then α has the same parity as |g|. Thus, in particular,
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either #W(n, α) or #W(n+1, α) is equal to zero and we are led to consider the behaviour
of the sum

#W(n, α)
#W(n)

+
#W(n + 1, α)
#W(n + 1)

.

Theorem 1. Let G be the free group on k ≥ 2 generators. Then we have that

lim
n→∞

∣∣∣∣σknk/2

(
#W(n, α)
#W(n)

+
#W(n + 1, α)
#W(n + 1)

)
− 2

(2π)k/2
e−||α||

2/2σ2n

∣∣∣∣ = 0,

uniformly in α ∈ Zk.

In the case where α = 0, the asymptotic behaviour of #W(n, α), as n → ∞, has been
studied as a means of analysing the relative growth series ξ(z) defined by

ξ(z) =
∞∑

n=0

#W(n, 0)zn.

Estimates on the growth of #W(n, 0) allow one to deduce that ξ(z) cannot be the series
of a rational function [8], [16], [22]. More generally, Theorem 1 implies the following result
for fixed values of α.

Corollary 1.1.
For fixed α ∈ Zk,

#W(2n + δα, α) ∼ 2
(2π)k/2σk

#W(2n + δα)
nk/2

, as n →∞,

where δα = 0 if α is even and δα = 1 if α is odd.

Remark. For given functions A and B, we shall write A(n) ∼ B(n), as n → ∞, if
limn→∞A(n)/B(n) = 1, and A(n) = O(B(n)) if |A(n)| ≤ CB(n), for some constant
C > 0.

We see from Corollary 1.1 that the asymptotic behaviour of #W(n, α) is independent
of α. However, Theorem 1 enables us to make comparisons as α varies.

Corollary 1.2. Suppose that α, β ∈ Zk have the same parity. If ||α|| < ||β|| then we have
that #W(n, α) > #W(n, β) for all sufficiently large n with the same parity as α and β.

We say that a word g1 · · · gn in the generators {a1, . . . , ak} is reduced if gi+1 6= g−1
i ,

i = 1, . . . , n − 1. It is clear that there is a one-to-one correspondence between reduced
words of length n and elements of W(n) (and we abuse notation by letting g denote both
a word and the corresponding group element). We say that a reduced word g1 · · · gn is
cyclically reduced if we also have that gn 6= g−1

1 . Let C(n) denote the set of cyclically
reduced words of length n and let C(n, α) = {g ∈ C(n) : [g] = α}. The above theorem still
holds if we replace #W(n) and #W(n, α) by #C(n) and #C(n, α), respectively. (Notice
that the map [·] : C(n) → Zk is well-defined.)
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The paper is organized as follows. Section 1 consists of some preliminary material con-
cerning subshifts of finite type and thermodynamic formalism. In section 2, we introduce
a family of twisted matrices used in subsequent calculations and analyse their spectra. In
section 3, we prove a local limit theorem associated to periodic points in a subshift of finite
type using arguments adapted from [19] (see also [1]). In section 4 we see that this corre-
sponds directly to the local limit theorem for C(n) and we give the amendments necessary
to obtain Theorem 1. In the final section we sketch how our results may be extended to
the fundamental groups of compact oriented surfaces of genus ≥ 2.

1. Preliminaries

Let A be a l × l matrix with entries zero and one and define the associated shift space
XA by

XA = {x ∈ {0, 1, . . . , l − 1}Z+
: A(xn, xn+1) = 1∀n ∈ Z+}.

The subshift of finite type σ : XA → XA is defined by (σx)n = xn+1.
We shall always assume that A is aperiodic, i.e., that there exists N > 0 such that AN

has all its entries positive. This is equivalent to the map σ : XA → XA being topologically
mixing. Then, by the Perron-Frobenius Theorem, A will have a simple positive eigenvalue
λ > 1 which is strictly maximal in modulus and the topological entropy h of σ is equal to
log λ.

Let M denote the set of σ-invariant probability measures on XA. For m ∈ M, we
will write h(m) for its measure theoretic entropy and we have that h(m) ≤ h. There
is a unique measure µ ∈ M, called the measure of maximal entropy, for which h(µ) =
h. Given a continuous function ϕ : XA → R, we define the pressure P (ϕ) by P (ϕ) =
supm∈M

{
h(m) +

∫
ϕdm

}
. If ϕ is Hölder continuous then there is a unique measure µϕ ∈

M for which the supremum is attained and we call µϕ the equilibrium state of ϕ. Clearly,
µ0 = µ.

Set Fixn = {x ∈ XA : σnx = x}. It is well-known and easy to prove that #Fixn =
traceAn ∼ λn, as n → ∞. We shall be interested in the asymptotics of certain subsets of
Fixn.

Fix a function f : XA → Zk, such that f(x) depends on only finitely many co-ordinates
of x. Without loss of generality, we may suppose that f(x) depends on only the first two
co-ordinates, i.e., that f(x) = f(x0, x1). Write fn(x) = f(x) + f(σx) + · · · + f(σn−1x).
For α ∈ Zk, consider the subset {x ∈ Fixn : fn(x) = α} of Fixn; we shall be interested in
the asymptotics of the cardinality of this set as n and α vary.

In order to make progress, we need to assume that f satisfies the following two natural
conditions.

(A1) The set
⋃∞

n=1{fn(x) : x ∈ Fixn} generates Zk (i.e. it is not contained in a proper
subgroup of Zk).

(A2)
∫

fdm = 0, where m is some fully supported σ-invariant measure.
If condition (A2) holds then it was shown in [15] that we may choose m to be equal to

µ〈ξ,f〉, for some (unique) ξ ∈ Rk. Furthermore, in this case we have

0 < h∗ := h(µ〈ξ,f〉) = P (〈ξ, f〉) = sup
{

h(m) :
∫

fdm = 0, m ∈M
}

.
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A subgroup of Zk, familiar from the coding theory of subshifts of finite type, will play
an important rôle in our subsequent analysis. We define

∆f =
∞⋃

n=1

{fn(x)− fn(y) : z, y ∈ Fixn}.

Choose x ∈ Fixn and y ∈ Fixn+1 (for some fixed n) and set cf = fn+1(x) − fn(y). Then
the coset ∆f + cf is well-defined and Zk/∆f is the cyclic group generated by ∆f + cf [14].
Conditions (A1) and (A2) ensure that Zk/∆f is finite and we write d = |Zk/∆f | [13].

Remark. At first sight, it is not clear that ∆f is a group or, more precisely, that it is closed
under addition: we shall give a proof of this fact. It is convenient to consider the directed
graph with vertices {0, 1, . . . , l − 1} and an edge joining i to j if and only if A(i, j) = 1.
Then elements of Fixn correspond to cycles in the graph and fn(x) to the sum of f around
the edges. For a cycle γ, we shall denote this sum by f(γ) and the length of γ by l(γ).
Since A is aperiodic there exists N ≥ 1 such that, for each pair of vertices (i, j), we can
choose a path δ(i, j) of length N joining i to j. Now choose a vertex i0 and, for every
cycle γ, a vertex iγ ∈ γ. For each cycle γ form a new cycle γ passing through i0 by
γ = δ(i0, iγ)γδ(iγ , i0). Let f(γ)− f(γ′) and f(η)− f(η′) be two arbitrary elements of ∆f ,
where γ, γ′, η, η′ are cycles with l(γ) = l(γ′) and l(η) = l(η′). Then γη and γ′η′ are cycles,
l(γη) = l(γ′η′) and

(f(γ)− f(γ′)) + (f(η)− f(η′)) = f(γη)− f(γ′η′).

This shows that ∆f is closed under addition.

In this context (and in closely related situations) a variety of central limit theorems
have been established (see the references cited in the introduction). In particular, in [4],
a central limit theorem over periodic points is obtained and the rate of convergence is
estimated. In this paper, however, we concentrate on local limit theorems; more precisely
we seek to obtain estimates on

d∑
j=0

e(h−h∗)nnk/2

#Fixn+j
#{x ∈ Fixn+j : fn+j(x) = α},

as n → ∞, which are uniform in α ∈ Zk. (The summation is required since {x ∈
Fixn+j : fn+j(x) = α} 6= ∅ for a unique j ∈ {0, 1, . . . , d − 1}, depending on the coset of
α in Zk/∆f .) This kind of problem has been addressed in [11] (following an idea of Sinai)
and [19] (see also [1]) but the conditions imposed there are too stringent for our purposes.

2. Twisted Matrices

In order to analyse the behaviour of #{x ∈ Fixn : fn(x) = α}, we shall introduce a
family of twisted l × l matrices At, indexed by t ∈ Rk/2πZk. Define At by

At(i, j) = A(i, j)ei〈t,f(i,j)〉+〈ξ,f〉,
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where the Right Hand Side is understood to be zero when A(i, j) = 0. In particular, A0 is
an aperiodic positive matrix. An easy calculation shows that

traceAn
t =

∑
x∈Fixn

ei〈t,fn(x)〉+〈ξ,fn(x)〉.

In order to estimate this quantity, we need to analyse the eigenvalues of At.
The matrix At will have l eigenvalues which we denote by λ̃1(t), . . . , λ̃l(t) with |λ̃1(t)| ≥

|λ̃2(t)| ≥ · · · ≥ |λ̃l(t)|. The classical Perron-Frobenius Theorem ensures that λξ = λ̃1(0)
is simple and positive and that the remaining eigenvalues of A0 are strictly smaller in
modulus than λξ. Furthermore, P (〈ξ, f〉) = log λξ and λξ < λ unless ξ = 0. In subsequent
calculations it will prove more convenient to work with the quantities λj(t) = λ̃j(t)/λξ,
j = 1, . . . , l. We will need to understand when |λ1(t)| is maximised.

Proposition 1.
(i) We have that |λ1(t)| ≤ 1 for all t ∈ Rk/2πZk. Furthermore, if |λ1(t)| = 1 then

λ̃1(t) is simple and |λj(t)| < 1, j = 2, . . . , l.
(ii) We have the two identities

{e2πi〈t,·〉 : |λ1(t)| = 1} = ∆⊥
f ,

{λ1(t) : e2πi〈t,·〉 ∈ ∆⊥
f } = {e2πir/d : r = 0, 1, . . . , d− 1}.

Proof. Part (i) is part of Wielandt’s Theorem [6, p. 57]. Part (ii) is proved in [15].

We shall write t(r) for the unique value of t satisfying λ1(t(r)) = e2πir/d. For (small)
δ > 0, we define a neighbourhood of t(0) = 0 ∈ Rk/2πZk by U0(δ) = {t : ||t|| ≤ δ} and let
Ur(δ) = U0(δ) + t(r) for r = 1, 2, . . . , d− 1. A simple calculation shows that, for t ∈ Ur(δ),

λ1(t) = e2πir/dλ1(t− t(r)) (2.1)

([15]). In particular, for r = 1, 2, . . . , d− 1 and n ≥ 1,

d−1∑
j=0

λ1(t(r))n+j = 0. (2.2)

If wt is the right eigenvector for At corresponding to the eigenvalue λ̃1(t) then, for t ∈ Ur(δ),
we also have wt = wt−t(r) . Since λ̃1(t(r)) is an isolated simple eigenvalue of At(r) , eigenvalue
perturbation theory ensures that λ1(t) and wt depend analytically on t in Ur(δ) [9].

In view of the above discussion, we have the following estimates on λj(t). For all
sufficiently small δ > 0 there exists 0 < θ < 1 such that

(i) |λj(t)| ≤ θ for all t ∈
⋃d−1

r=0 Ur(δ), j = 2, . . . , l;
(ii) |λj(t)| ≤ θ for all t /∈

⋃d−1
r=0 Ur(δ), j = 2, . . . , l.

The following result is standard (cf. [15] for example).
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Lemma 1. Assume that f satisfies (A1) and (A2). Then the gradient ∇λ1(0) = 0 and
the Hessian matrix ∇2λ1(0) is real and strictly negative definite.

From now on, we shall write Dξ = −∇2λ1(0), so that Dξ is strictly positive definite. In
particular, detDξ > 0 and we define σξ > 0 by σ2k

ξ = detDξ. The following result on the
limiting behaviour of λ1(t) appears in several places, e.g. [4], [19].

Proposition 2. There exists δ > 0 such that, for t ∈ U0(δσξ
√

n),

lim
n→∞

λ1

(
t

σξ
√

n

)n

= e−〈t,Dξt〉/2σ2
ξ .

Furthermore, ∣∣∣∣λ1

(
t

σξ
√

n

)n

− e−〈t,Dξt〉/2σ2
ξ

∣∣∣∣ ≤ 2e−〈t,Dξt〉/4σ2
ξ .

Proof. Recall that ∇λ1(0) = 0. Since, in a neighbourhood of 0, λ1(t) depends analytically
on t, we may apply Taylor’s Theorem to write

λ1

(
t

σξ
√

n

)
= 1− 〈t,Dξt〉

2σ2
ξn

+ O(||t||3/n3/2).

The first part of the result now follows from the standard formula limn→∞(1−x/n)n = e−x.
For the second part, notice that, provided δ is sufficiently small, for ||u|| ≤ δ we have

〈u,Dξu〉
2

+ O(||u||3) ≥ 〈u,Dξu〉
4

.

Applying the triangle inequality and the inequality (1− x/n)n < e−x, we have∣∣∣∣λ1

(
t

σξ
√

n

)n

− e−〈t,Dξt〉/2σ2
ξ

∣∣∣∣ ≤ e−〈t,Dξt〉/4σξ2
+ e−〈t,Dξt〉/2σ2

ξ

≤ 2e−〈t,Dξt〉/4σ2
ξ .

3. A Local Limit Theorem for Subshifts

In this section we shall obtain a local limit theorem for the function f : XA → Zk with
respect to the periodic points of σ : XA → XA. We shall examine the quantity

S(n, α) =
d−1∑
j=0

e−〈ξ,α〉σk
ξ nk/2(λ/λξ)n+j

#Fixn+j
#{x ∈ Fixn+j : fn+j(x) = α}.

For a > 0, write I(a) = [−a, a]k. Using the orthogonality relationship

1
(2π)k

∫
I(π)

e−i〈t,α〉ei〈t,y〉dt =
{

1 if y = α

0 otherwise
,
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we have that

S(n, α) =
1

(2π)k

d−1∑
j=0

σk
ξ nk/2(λ/λξ)n+j

#Fixn+j

∫
I(π)

e−i〈t,α〉
∑

x∈Fixn+j

ei〈t,fn+j(x)〉dt.

Making the substitution t 7→ t/σξ
√

n, we obtain

S(n, α) =
1

(2π)k

d−1∑
j=0

∫
I(πσξ

√
n)

e−i〈t,α〉/σξ
√

n (λ/λξ)n+j

#Fixn+j

∑
x∈Fixn+j

ei〈t,fn+j(x)〉/σξ
√

ndt.

We are now in a position to prove the following theorem.

Theorem 2. Suppose that f : XA → Zk satisfies conditions (A1) and (A2). Then

lim
n→∞

∣∣∣∣∣∣
d−1∑
j=0

σk
ξ nk/2(λ/λξ)n+j

#Fixn+j
#{x ∈ Fixn+j : fn+j(x) = α} − de〈ξ,α〉

(2π)k/2
e−〈α,D−1

ξ α〉/2n

∣∣∣∣∣∣ = 0,

uniformly in α ∈ Zk.

Proof. Using the identity (valid for any positive definite Hermitian matrix Dξ),

e−〈α,D−1
ξ α〉/2n =

1
(2π)k/2

∫
Rk

e−i〈t,α〉/σξ
√

ne−〈t,Dξt〉/2σ2
ξ dt,

we have established the bound

(2π)k

∣∣∣∣∣∣
d−1∑
j=0

e−〈ξ,α〉σk
ξ nk/2γn+j

#Fixn+j
#{x ∈ Fixn+j : fn+j(x) = α} − de−〈α,D−1

ξ α〉/2n

(2π)k/2

∣∣∣∣∣∣ ≤∣∣∣∣∣∣
∫

U0(δσξ
√

n)

e−i〈t,α〉/σξ
√

n


d−1∑
j=0

γn+j

#Fixn+j

∑
x∈Fixn+j

ei〈t,fn+j(x)〉/σξ
√

n − de−〈t,Dξt〉/2σ2
ξ

 dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫

I(πσξ
√

n)\U0(δσξ
√

n)

e−i〈t,α〉/σξ
√

n
d−1∑
j=0

γn+j

#Fixn+j

∑
x∈Fixn+j

ei〈t,fn+j(x)〉/σξ
√

n

∣∣∣∣∣∣
+

∣∣∣∣∣
∫

Rk\U0(δσξ
√

n)

de−i〈t,α〉/σξ
√

ne−〈t,Dξt〉/2σ2
ξ dt

∣∣∣∣∣
= A1(n, α) + A2(n, α) + A3(n, α),

where γ = λ/λξ. An easy calculation shows that limn→∞ supα∈Zk A3(n, α) = 0, so it
remains to consider A1 and A2.

For t ∈ U0(δσξ
√

n), we have that

d−1∑
j=0

γn+j

#Fixn+j

∑
x∈Fixn+j

ei〈t,fn+j(x)〉/σξ
√

n = λ1

(
t

σξ
√

n

)n d−1∑
j=0

λ1

(
t

σξ
√

n

)j

+ O(θn).
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and that ∣∣∣∣∣∣
d−1∑
j=0

λ1

(
t

σξ
√

n

)j

− d

∣∣∣∣∣∣ ≤ Cδ2,

for some constant C > 0. By Proposition 2, we know that λ1(t/σξ
√

n)n converges uni-
formly to e−〈t,Dξt〉/2σ2

ξ , as n →∞. Furthermore, we have the estimates∣∣∣∣dλ1

(
t

σξ
√

n

)n

− de−〈t,Dξt〉/2σ2
ξ

∣∣∣∣ ≤ 2de−〈t,Dξt〉/4σ2
ξ

and ∣∣∣∣∣∣λ1

(
t

σξ
√

n

)n


d−1∑
j=0

λ1

(
t

σξ
√

n

)j

− d


∣∣∣∣∣∣ ≤ Ce−〈t,Dξt〉/4σ2

ξ δ2.

Thus, by the Dominated Convergence Theorem, we obtain

lim sup
n→∞

sup
α∈Zk

A1(n, α) ≤ C

{∫
Rk

e−〈t,Dξt〉/4σ2
ξ dt

}
δ2.

Finally, we consider A2. If t /∈
⋃d−1

r=1 Ur(δσξ
√

n), then
d−1∑
j=0

γn+j

#Fixn+j

∑
x∈Fixn+j

ei〈t,fn+j(x)〉/σξ
√

n = O(θn).

On the other hand, if t ∈
⋃d−1

r=1 Ur(δσξ
√

n), then∣∣∣∣∣∣
d−1∑
j=0

γn+j

#Fixn+j

∑
x∈Fixn+j

ei〈t,fn+j(x)〉/σξ
√

n

∣∣∣∣∣∣
=

∣∣∣∣∣∣
d−1∑
j=0

e2πir(n+j)/dλ1

(
t

σξ
√

n
− t(r)

)n+j
∣∣∣∣∣∣ + O(θn)

≤C ′e−〈t
′,Dξt′〉/4σ2

δ2 + O(θn),

for some constant C ′ > 0 and where t′ = t − σξ
√

nt(r), the last estimate following from
(2.2), the analyticity of λ1 and the vanishing of its first derivatives. This gives us

lim sup
n→∞

sup
α∈Zk

A2(n, α) ≤ C ′
{∫

Rk

e−〈t,Dξt〉/4σ2
ξ dt

}
δ2.

Combining the above estimates we have

lim sup
n→∞

sup
α∈Zk

∣∣∣∣∣∣
d−1∑
j=0

e−〈ξ,α〉σk
ξ nk/2γn+j

#Fixn+j
#{x ∈ Fixn+j : fn+j(x) = α} − de−〈α,D−1

ξ α〉/2n

(2π)k/2

∣∣∣∣∣∣
≤ (C + C ′)

(2π)k

{∫
Rk

e−〈t,Dξt〉/4σ2
ξ dt

}
δ2.

Since this holds for all sufficiently small δ > 0, the proof of the theorem is complete.

We state the special case where ξ = 0 as a corollary. Here we write D0 = D and σ0 = σ.
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Corollary 2.1. Suppose that f : XA → Zk satisfies condition (A1) and
∫

fdµ = 0, where
µ is the measure of maximal entropy. Then

lim
n→∞

∣∣∣∣∣∣
d−1∑
j=0

σknk/2

#Fixn+j
#{x ∈ Fixn+j : fn+j(x) = α} − d

(2π)k/2
e−〈α,D−1α〉/2n

∣∣∣∣∣∣ = 0,

uniformly in α ∈ Zk

Remark. In particular, we have recovered the main result of [15], namely that #{x ∈
Fixdn : fdn(x) = 0} ∼ Cλdn

ξ /nk/2, as n → ∞, for some constant C > 0. However,
the above method does not allow us to estimate the error term in this approximation.
(The O(n−1/2) error estimate claimed there is erroneous and needs to be corrected to
O(n−1/2+ε). Conjecturally, the optimal error estimate is O(n−1).)

4. Free Groups

In this section we shall deduce Theorem 1 from Theorem 2 and give an explicit expression
for the matrix D. Let G be the free group on k ≥ 2 generators. Define a (2k+1)× (2k+1)
matrix A, indexed by {∗, 1, 2, . . . , 2k}, by A(∗, ∗) = 0, A(∗, j) = 1 for all j = 1, 2, . . . , 2k,
A(i, ∗) = 0 for all i = 1, 2, . . . , 2k, and, for i, j = 1, 2, . . . , 2k,

A(i, j) =
{

1 if j 6= i + k (mod 2k)
0 if j = i + k (mod 2k)

.

Then the maximal eigenvalue λ of A is equal to 2k−1. Let B denote the 2k×2k submatrix
of A indexed by {1, 2, . . . , 2k}; it is easy to check that B is aperiodic and that

⋃
n≥1 Fixn ⊂

XB . If we index the generators of G by {a1, . . . , ak, ak+1 = a−1
1 , . . . , a2k = a−1

k }, then it
is clear that there is a natural bijection between cyclically reduced words of length n in
G and elements of Fixn, and between reduced words of length n and all sequences of the
form (x0, x1, . . . , xn) with x0 = ∗ and A(xm, xm+1) = 1, m = 1, . . . , n− 1. In particular,
#W(n) = 〈u, Anv〉, where u = (1, 0, . . . , 0) (with the 0 occurring in the ∗ position) and
v = (1, 1, . . . , 1), and that #C(n) = traceAn.

If we define a function f : XA → Zk by f(i, j) = [aj ] then it is easy to see that the
element of Zk corresponding to the cyclically reduced word associated to x ∈ Fixn is fn(x).
In particular, #C(n, α) = #{x ∈ Fixn : fn(x) = α} and⋃

n≥1

{fn(x) : x ∈ Fixn} =
⋃
n≥1

{[g] : g ∈ C(n)} = Zk.

This last identity implies that the restriction f : XB → Zk satisfies condition (A1).
If µ denotes the measure of maximal entropy on XB then it is well-known that the

periodic points of σ : XB → XB are equidistributed with respect to µ. More precisely, we
have the identity ∫

fdµ = lim
n→∞

1
#Fixn

∑
x∈Fixn

fn(x)
n

.
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The symmetry [g−1] = −[g] then shows that we have
∫

fdµ = 0. A simple calculation shows
that ∆f is the subgroup of Zk consisting of all even elements, so that d = |Zk/∆f | = 2.

The following result now follows immediately from Corollary 2.1. A simple symmetry
argument shows that the covariance matrix D is diagonal, D = diag(σ2, . . . , σ2), say, and
the explicit formula for σ2 given by (0.1) is due to Rivin [18].

Proposition 3.

lim
n→∞

sup
α∈Zk

∣∣∣∣σknk/2

(
#C(n, α)
#C(n)

+
#C(n + 1, α)
#C(n + 1)

)
− 2

(2π)k/2
e−||α||

2/2σ2n

∣∣∣∣ = 0.

Proof of Theorem 1. We shall now discuss the modifications necessary to prove the re-
sult for W(n). For t ∈ Rk/2πZk, we introduce matrices At, Bt defined by At(i, j) =
A(i, j)ei〈t,f(i,j)〉 and Bt(i, j) = B(i, j)ei〈t,f(i,j)〉. A simple calculation shows that At has
the same non-zero spectrum as Bt. Since B is aperiodic and f : XB → Zk satisfies (A1)
and (A2), the maximal eigenvalue λ̃1(t) continues to enjoy the properties described in
Section 2.

We note that #W(n) = 2kλn−1 and that

#W(n, α) =
∑

g∈W(n)

1
(2π)k

∫
I(π)

e−i〈t,α〉ei〈t,[g]〉dt =
2k∑

j=1

1
(2π)k

∫
I(π)

e−i〈t,α〉An
t (∗, j)dt

=
1

(2π)k

∫
I(π)

e−i〈t,α〉〈u, An
t v〉dt.

For t ∈ Ur(δ), we have

〈u, An
t v〉 = (−1)rλ̃1(t− t(r))n〈u, wt−t(r)〉+ O((θλ)n),

where wt is the eigenprojection of v for At associated to the eigenvalue λ̃1(t). It is easy to
see that w0 = (2k/(2k − 1), 1, . . . , 1).

Applying the analysis of the preceding section to

σknk/2

(
#W(n, α)
#W(n)

+
#W(n + 1, α)
#W(n + 1)

)
,

we obtain

(2π)k

∣∣∣∣∣σknk/2

(
#W(n, α)
#W(n)

+
#W(n + 1, α)
#W(n + 1)

)
− 2e−||α||

2/2σ2n

(2π)k/2

∣∣∣∣∣
≤

∣∣∣∣∣
∫

U0(δσ
√

n)

e−i〈t,α〉/σ
√

n

{
〈u, An

t/σ
√

n
v〉

#W(n)
+
〈u, An+1

t/σ
√

n
v〉

#W(n + 1)
− 2e−||t||

2/2

}
dt

∣∣∣∣∣
+

∣∣∣∣∣
∫

I(πσ
√

n)\U0(δσ
√

n)

e−i〈t,α〉/σ
√

n

{
〈u, An

t/σ
√

n
v〉

#W(n)
+
〈u, An+1

t/σ
√

n
v〉

#W(n + 1)

}
dt

∣∣∣∣∣
+

∣∣∣∣∣
∫

Rk\U0(δσ
√

n)

2e−i〈t,α〉/σ
√

ne−||t||
2/2dt

∣∣∣∣∣ .
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Now, for t ∈ U0(δσ
√

n),

1
#W(n)

∑
g∈W(n)

ei〈t,[g]〉/σ
√

n +
1

#W(n + 1)

∑
g∈W(n+1)

ei〈t,[g]〉/σ
√

n

= λ1

(
t

σ
√

n

)n (
1 + λ1

(
t

σ
√

n

))
〈u, wt/σ

√
n〉+ O(θn)

and for t ∈ U1(δσ
√

n),

1
#W(n)

∑
g∈W(n)

ei〈t,[g]〉/σ
√

n +
1

#W(n + 1)

∑
g∈W(n+1)

ei〈t,[g]〉/σ
√

n

= (−1)nλ1

(
t

σ
√

n
− t(1)

)n (
1 + λ1

(
t

σ
√

n
− t(1)

))
〈u, wt/σ

√
n〉+ O(θn)

Thus we may repeat the arguments in the proof of Theorem 2 to obtain the estimate

lim sup
n→∞

sup
α∈Zk

∣∣∣∣∣σknk/2

(
#W(n, α)
#W(n)

+
#W(n + 1, α)
#W(n + 1)

)
− 2e−||α||

2/2σ2n

(2π)k/2

∣∣∣∣∣
≤ C

{∫
Rk

e−〈t,Dt〉/4σ2
dt

}
δ,

for some constant C > 0. (The only additional feature being that 〈u, wt〉 = 〈u, w0〉 +
O(||t||).) Since this holds for all sufficiently small δ > 0, Theorem 1 is proved.

5. Strongly Markov Groups

In this final section we shall sketch the generalizations necessary to extend our results to
certain groups G satisfying the following strong Markov property: for any finite symmetric
generating set S, there exists

(i) a finite directed graph consisting of vertices V and edges E ⊂ V × V ;
(ii) a distinguished vertex ∗ ∈ V , with no edges terminating at ∗;
(iii) a labeling map ρ : E → S;

such that
(a) there is a bijection between finite paths in the graph starting at ∗ and passing

through the consecutive edges e1, . . . , en, say and elements g ∈ G given by the cor-
respondence g = ρ(e1) · · · ρ(en) (where the empty path corresponds to the identity
element);

(b) the word length |g| is equal to the path length n.
In particular, this condition is satisfied by all (Gromov) hyperbolic groups [3],[7].
Write |V | = l + 1. Let A denote the incidence matrix of the graph (V,E), i.e., A is

a (l + 1) × (l + 1) matrix, indexed by V , with entries A(i, j) = 1 if (i, j) ∈ E and 0
otherwise. Let B denote the l× l submatrix of A obtained by deleting the row and column
corresponding to ∗. We shall assume that B is aperiodic with maximal eigenvalue λ > 1..

11



The abelianization of G takes the form G/[G, G] ∼= Zk⊕torsion. We suppose that k > 0
and write [·] : G → Zk for the natural homomorphism. As in the case of free groups, we
define a function f : XA → Zk by f(x) = [ρ(x0, x1)]. A new feature here is that it is not
clear that the group Γf generated by {fn(x) : x ∈ Fixn} is not necessarily equal to Zk.
However, we still have that Γf/∆f is a finite cyclic group and it was shown in [22] that
Zk/Γf is finite; we set d0 = |Γf/∆f | and d1 = |Zk/Γf |.

As before, for t ∈ R2g/2πZ2g, define matrices At,Bt by At(i, j) = A(i, j)ei〈t,f(i,j)〉 and
Bt(i, j) = B(i, j)ei〈t,f(i,j)〉, and note that again At has the same non-zero spectrum as
Bt. There are d = d0d1 values, t(0) = 0, . . . , t(d−1), of t for which At has an eigenvalue of
maximum modulus λ̃1(t(r)) with |λ̃1(t(r))| = λ. Furthermore, λ̃1(t(r)) = e2πir/d0λ. (Note
that each e2πir/d0λ occurs for d1 values of t.)

One can show that f : XB → Zk satisfies that
∫

fdµ = 0, where µ is the measure of
maximal entropy on XB or, equivalently, that At and Bt have spectral radius λ [22].

From the definition it is easy to see that we have the identities

#W(n) =
∑
j∈V

An(∗, j) = 〈u, Anv〉

and
#W(n, α) =

1
(2π)k

∫
I(π)

e−i〈t,α〉〈u, An
t v〉dt,

where u = (1, 0, . . . , 0) (with the 1 occurring in the ∗ position) and v = (1, 1, . . . , 1).
Furthermore, for t ∈ Ur(δ), r = 0, 1, . . . , d− 1, we still have

〈u, An
t v〉 = e2πinr/d0 λ̃1(t− t(r))n〈u, wt〉+ O((θλ)n),

where wt is the eigenprojection of v for At associated to the eigenvalue λ̃1(t) and 0 < θ < 1.
Mimicing the proof of Theorem 1, we obtain the following result, where, as in Corollary
2.1, D = −∇2λ1(0). (It is worthwhile noting that it is possible to have W(n + j, α) 6= ∅
for several values of j ∈ {0, 1, . . . , d0 − 1}.)

Theorem 3. Let G be a strongly Markov group such that G/[G, G] ∼= Zk ⊕ torsion with
k ≥ 1. Let S be finite symmetric generating set and suppose that the associated matrix B
defined above is aperiodic. Then there exists a symmetric positive definite real matrix D
such that

lim
n→∞

∣∣∣∣∣∣σknk/2
d0∑

j=0

#W(n + j, α)
#W(n + j)

− d0

(2π)k/2〈u, w0〉

d1−1∑
r=0

〈u, wt(d0r)〉 e−〈α,D−1α〉/2n

∣∣∣∣∣∣ = 0,

uniformly in α ∈ Zk.

Remark. A similar analysis can be made in the case where B is irreducible, i.e., when,
for each pair (i, j), there exists n(i, j) > 0 such that Bn(i,j)(i, j) > 0. In this case, the
maximum modulus eigenvalues of B are the q-th roots of the maximum modulus eigenvalues
of a certain aperiodic matrix, where q = hcf{n(i, i) : i ∈ V \{∗}} is called the period of B.
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One can then obtain the following more complicated formulae along the subsequence nq,
n ≥ 1.
If d0 does not divide q then

lim
n→∞

∣∣∣∣∣∣σk(nq)k/2
d0∑

j=0

#W(nq + jq, α)
#W(nq + jq)

−
d0

∑q−1
m=0

∑d1−1
r=0 〈u, w

(m)

t(d0r)〉

(2π)k/2
∑q−1

m=0〈u, w
(m)
0 〉

e−〈α,D−1α〉/2nq

∣∣∣∣∣∣ = 0,

uniformly in α ∈ Zk.
If d0 divides q then

lim
n→∞

∣∣∣∣∣∣σk(nq)k/2
d0∑

j=0

#W(nq + jq, α)
#W(nq + jq)

−
d0

∑q−1
m=0

∑d−1
r=0〈u, w

(m)

t(r) 〉

(2π)k/2
∑q−1

m=0〈u, w
(m)
0 〉

e−〈α,D−1α〉/2nq

∣∣∣∣∣∣ = 0,

uniformly in α ∈ Zk.
(Here, the terms w

(m)

t(r) are certain eigenvectors, associated to eigenvalues e2πim/qλ̃1(t(r)),
m = 0, . . . , q − 1, of B.)

A particular group presentation satisfying our hypotheses is the fundamental group G
of a compact orientable surface of genus g ≥ 2 given the standard one-relator presentation

G =

〈
a1, . . . , ag, b1, . . . , bg :

g∏
i=1

aibia
−1
i b−1

i = 1

〉
. (5.1)

(Note that G/[G, G] ∼= Z2g.) This is an example of a hyperbolic group and thus is strongly
Markov; however, in this case the result follows from earlier explicit constructions due to
Cannon [2] and Series [21]. In particular, B is aperiodic. A nice feature of this construction
is that closed loops in the directed graph (V,E) correspond precisely to conjugacy classes
in G, from which one can deduce that Γf = Z2g. One can also see that ∆f is the set of
even elements of Z2g, so that d = 2. The following result now follows immediately from
Theorem 3.

Theorem 4. Let G be the fundamental group of a compact surface of genus g ≥ 2 equipped
with the presentation (5.1). Then there exists a symmetric positive definite real matrix D
such that

lim
n→∞

∣∣∣∣σkng

(
#W(n, α)
#W(n)

+
#W(n + 1, α)
#W(n + 1)

)
− 2

(2π)g
e−〈α,D−1α〉/2n

∣∣∣∣ = 0,

uniformly in α ∈ Z2g.
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