
Statistics of matrix products in hyperbolic geometry

Mark Pollicott and Richard Sharp

Abstract. We consider central limit theorems and their generalizations for
matrix groups acting co-compactly or convex co-compactly on the hyperbolic
plane. We consider statistical results for the displacement in the hyperbolic
metric, the action on the boundary and the relationship with classical matrix
groups.

1. Introduction

In this note, we want to consider the statistical properties of the action of
discrete groups on negatively curved spaces. Consider, the upper half plane H2

with the Poincaré metric and let � ⇢ PSL(2, R) be either a co-compact or a convex
co-compact subgroup. In the first case, � may be given by the standard one-relator
presentation

� =

*
a1, . . . , a2g :

gY

i=1

[a2i�1, a2i

] = e

+
,

where g � 2 is the genus of H2/�. In the second case, � is a free group, which we
assume to be given by � = ha1, . . . , ak

i. In either case, we can associate a finite
directed graph G whose edges are labelled by the generators and their inverses such
that mapping a finite path to the product of its labels gives a natural bijection
between paths of length n and elements of � with word length n. (In the co-
compact case, our results also hold when H2 is replaced by the universal cover of a
compact surface with variable negative curvature.)

There is a well known isometric action PSL(2, R)⇥H2
! H2 by linear fractional

transformations. Fix x 2 H2. The space ⌃ of infinite paths i = (i
n

)1
n=0 in the

directed graph G gives rise to a sequence of images

g
i0x, g

i0gi1x, g
i0gi1gi2x, . . . , g

i0gi1 · · · gin�1x, . . . 2 H2, n � 1,

where g
i0gi1 · · · gin�1 2 � has word length n. We shall consider properties of the

sequence (g
i0 · · · gin�1x)1

n=1 for µ-a.e. i 2 ⌃, where µ is the Gibbs measure µ
associated to some Hölder continuous function on ⌃. (Natural choices for µ are
the measure of maximal entropy, corresponding naturally to the weak star limit of
evenly distributed measure on words of the same length, for the shift map � : ⌃ ! ⌃
and the Gibbs state for which ⇡⇤(µ) is in the Patterson-Sullivan measure class on
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@H2.) Given g 2 �, we let d(x, gx) denote the displacement of x in H2. There
exists �

µ

> 0 such that, for µ-a.e. i = (i
n

)1
n=0 2 ⌃,

�
µ

= lim
n!+1

1
n

d(x, g
i0gi1 · · · gin�1x). (1.1)

The following results are examples of the type of natural statistical results that
we can obtain. They can be viewed as analogues of the more familiar results for
independent identically distributed random variables. We begin with the Central
Limit Theorem.

Theorem 1.1 (Central Limit Theorem). There exists � > 0 such that for any
x 2 X sequences and y 2 R we have that

lim
n!+1

µ

⇢
i 2 ⌃ :

d(x, g
i0gi1 · · · gin�1x)� n�

µ

p

n
 y

�
=

1
p

2⇡�

Z
y

�1
e�t

2
/2�

2
dt.

A closely related viewpoint is that of the boundary action of � on @H. The
sequence g

i0gi1 · · · gin�1x naturally converges to a limit point ⇣ = ⇣
i

2 @H2, say,
and we denote the resulting map, which is one-to-one µ-a.e., by ⇡ : ⌃ ! @H. The
following is an easy consequence of the above theorem.

Corollary 1.2 (Central Limit Theorem on the Boundary). There exists � > 0
such that

lim
n!+1

µ

⇢
i 2 ⌃ :

1
p

n

�
log |(g

in�1gin�2 · · · gi0)
0(⇣

i

)|� n�
µ

�
 y

�

=
1

p

2⇡�

Z
y

�1
e�t

2
/2�

2
dt.

In this context we will also prove a (stronger) Local Central Limit Theorem.
More precisely, we show the following.

Theorem 1.3 (Local Central Limit Theorem). There exists � > 0 such that
for any sequence ✏

n

> 0, such that ✏�1
n

grows subexponentially then
�����

p

n

2✏
n

µ
�
i 2 ⌃ : log |(g

in�1gin�2 · · · gi0)
0(⇣

i

)|� n�
µ

2 (⇠ � ✏, ⇠ + ✏
n

)
 
�

e�⇠

2
/2�

2
n

p

2⇡�

�����

converges to zero, as n ! +1, uniformly for ⇠ 2 R.

In another direction, we can consider a di↵erent type of distribution theorem.
In a natural sense, the complement to Central Limit Theorems are Large Deviation
results.

Theorem 1.4 (Large Deviations). Let ✏ > 0. We have that

lim sup
n!+1

1
n

log µ

⇢
i 2 ⌃ :

����
1
n

d(x, g
i0gi1 · · · gin�1x)� �

µ

���� > ✏

�
< 0.

Let us consider some simple examples which illustrate groups to which these
results apply.

Example 1.5 (Graph G for a free group). As a simple example, we could
consider a free group � = ha, bi acting discretely and convex co-compactly by
isometries on H2. In this case, G is a graph with 4 vertices whose edges are labelled
by 4 generators and the space ⌃ codes the limit set in the boundary of H2.
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In this case, the measure of maximal entropy for ⌃ is the Markov measure

associated to the matrix P =

0

BB@

1/3 1/3 0 1/3
1/3 1/3 1/3 0
0 1/3 1/3 1/3

1/3 0 1/3 1/3

1

CCA.

Example 1.6 (Graph G for genus 2 surface). We next consider a genus 2 co-
compact surface group � acting discretely by isometries on H2. We can consider a
graph with 16 vertices and 8 di↵erent edge weightings corresponding to the sym-
metric generators g±1

1 , g±1
2 , g±1

3 , g±1
4 .

!

"

#

$

g

g
g

g

1

2
3

4

g
1

(  )$
=

g
1
(  )#

g (  )
1

g (  )
1

"

!

=

The figure on the left shows a boundary partition for the Poincaré disk and
the action by the generators. The figure on the right shows part of the associated
graph (the rest being clear by symmetry).

A natural Gibbs measure on µ is that which for which ⇡⇤(µ) is absolutely
continuous (i.e., the same measure class as the Patterson-Sullivan measure).
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These results complement the more classical approach to statistical properties
of lattices acting on hyperbolic space through the use of convolutions of, for ex-
ample, finitely supported measures cf. [?], [?], [?]. (These papers also consider
measures with countably infinite support which satisfy exponential moment con-
ditions.) One advantage of our viewpoint is that it allows us to consider broader
classes of measures and prove relatively deep statistical properties.

In section 2, we recall basic material about invariance principles and their conse-
quences, including the statement of the Almost Sure Invariance Principle (Theorem
??). In section 3, we explain a connection with random matrix products. In section
4 we formulate the basic symbolic framework and present the proof of Theorem ??.
In section 5, we prove the Local Central Limit Theorem for the boundary action
(Theorem ??). Finally, in section 6 we present a proof of Theorem ??.

2. Invariance Principles

The Central Limit Theorem, and some related results, follow naturally from
a more general invariance principle. Standard references for background material
include [?] and [?].

We shall establish the following general result, which essentially says that, for
appropriate �

µ

> 0, sequences d(g
i0gi1 · · · gin�1x, x) � n�

µ

are well approximated
by a Brownian motion.

Theorem 2.1 (Almost Sure Invariance Principle). Let µ be the Gibbs measure
for a Hölder continuous function on ⌃. Then there exists �

µ

> 0 such that, for any
x 2 H2, sequences �

d(x, g
i0gi1 · · · gin�1x)� n�

µ

�1
n=1

. (2.1)

associated to i 2 ⌃ satisfy an Almost Sure Invariance Principle with respect to
µ. More precisely, there exists a probability space (⌦,F , P) and a one-dimensional
Brownian motion W : ⌦ ! C(R+, R), such that the random variable ! 7! W (!)(t)
has mean zero and variance �2t > 0, and sequences of random variables �

n

: ⌃ ! R
and  

n

: ⌦ ! R with the following properties:
(1) for some ✏ > 0 we have d(x, g

i0gi1 · · · gin�1x) � n�
µ

= �
n

(i) + O(n 1
2�✏)

µ-a.e.;
(2) the sequences (�

n

)1
n=1 and ( 

n

)1
n=1 are equal in distribution;

(3) for some ✏ > 0, we have  
n

(·) = W (·)(n) + O(n 1
2�✏) P-a.e..

We now describe some consequences of the Almost Sure Invariance Principle
(ASIP). Let C([0, 1], R) be the space of continuous functions on the interval [0, 1].
Recall that the Brownian motion W induces the standard Wiener measure W on
C([0, 1], R), defined by

W ({f(t) : f(t
i

)� f(t
i�1)  ↵

i

, i = 1, · · · , k})

=
kY

i=1

1p
2⇡(t

i

� t
i�1)

Z
↵i

�1
e�u

2(ti�ti�1)/2du,

where 0 = t0 < t1 < · · · < t
k

= 1 and ↵1, . . . ,↵k

2 R (cf. [?], p.68).
A particularly useful consequence of the ASIP is the Functional Central Limit

Theorem (FCLT). This is also often called the Weak Invariance Principle, since it
deals with continuous functions and weak star convergence.
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Proposition 2.2 (Functional Central Limit Theorem). Define a map ⇣
n

: ⌃ !

C([0, 1], R) by associating to i 2 ⌃ the piecewise linear function ⇣
n

(i)(·), n � 1, on
[0, 1] which interpolates the values

✓
k

n
,

1
�
p

n

�
d(x, g

i0gi1 · · · gik�1x)� k�
µ

�◆
, for k = 1, · · · , n.

Then ⇣
n

converges in distibution to W , as n ! +1.

Proof. The derivation of the FCLT from the ASIP is routine. We know from
Theorem ?? that, for 0  t  1,

1
p

n

�
(d(x, g

i0gi1 · · · gi[nt]�1x)� [nt]�
µ

)� �[nt](i)
�

= O
⇣
n�

1
2+✏

⌘
,

for µ-a.e. i 2 ⌃, and
1
p

n

�
 [nt](!)�W (!)(nt)

�
= O

⇣
n�

1
2+✏

⌘
,

for P-a.e. ! 2 ⌦. Since �
n

and  
n

have the same distribution and the rescaling
1p
n

W (!)(nt) is a Brownian motion with the same distribution as W , the result
follows. ⇤

A number of standard, and perhaps more familiar, results all follow from the
FCLT. These include the Central Limit Theorem stated in the introduction (Theo-
rem 1.1) and a number of other results recalled below as corollaries. A key ingredient
in deriving these is the following classical result (cf. [?]).

Lemma 2.3 (Continuous Mapping Principle). If ⇠
n

is a sequence of random
variables, taking values in [0, 1], which converges to ⇠ in distribution and h :
C([0, 1], R) ! R is measurable and continuous (except possibly on a set of Wiener
measure zero) then the sequence h(⇠

n

) converges to h(⇠) in distribution.

We begin with the proof of the Central Limit Theorem (Theorem ??).

Proof of Theorem ??. This follows from the choice of h : C([0, 1], R) ! R
defined by h(f) = f(1), for f 2 C([0, 1], R). We can then write

lim
n!+1

µ

⇢
i 2 ⌃ :

1
�
p

n

�
d(x, g

i0gi1 · · · gin�1x)� n�
µ

�
 y

�

= W({f 2 C([0, 1], R) : f(1)  y})

=
1

p

2⇡�

Z
y

�1
e�t

2
/2�

2
dt,

as required. ⇤
The following two corollaries are also direct consequences of the FCLT and the

Lemma ?? (with suitable choices of functions). The first is the analogue of the
classical Arcsine Law for independent identically distributed random variables and
describes the proportion of time that the displacements are above the average �

µ

.

Corollary 2.4 (Arcsine Law). For 0  y  1, we have that

lim
n!+1

µ

⇢
i 2 ⌃ :

N
n

(i)
n

 y

�
=

2
p

⇡
sin�1py,

where N
n

(i) = Card
�
1  k  n : d(x, g

i0gi1 · · · gik�1x)� k�
µ

> 0
 
.
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Proof. Consider the map h : C([0, 1], R) ! R defined by

h(f) = Leb{0  t  1 : f(t) � 0},

i.e., the proportion of the interval for which the function is positive. Then h is
measurable and continuous except on a set of zero Wiener measure ([?], Appendix
I). For any 0  ↵ < 1 we can apply the Continuous Mapping Principle to deduce
that

lim
n!+1

µ({i 2 ⌃ : h(d(x, g
i0gi1 · · · gik�1x)� k�

µ

) � ↵})

= W ({f 2 C([0, 1], R) : h(f) � ↵}) .

Moreover, the expression on the Right Hand Side of this identity is easily explicitly
computed and is equal to the expression in the statement. ⇤

The following corollary also follows by a standard derivation.

Corollary 2.5. For y � 0 we have that

lim
n!+1

µ

⇢
i 2 ⌃ :

1
p

n
max

1kn

d(x, g
i0gi1 · · · gik�1x)� n�

µ

 y

�

=
p

2
p

⇡�

Z
y

�1
e�t

2
/2�

2
dt� 1.

Proof. This follows from the choice h : C([0, 1], R) ! R defined by h(f) =
sup0t1 f(t). We can then write

lim
n!+1

µ({i 2 ⌃ : n�1/2 max
1kn

d(x, g
i0gi1 · · · gik�1x)� n�

µ

 y})

= P({! 2 ⌦ : sup
0t1

W (!)(t)  y})

= 2P({! 2 ⌦ : W (!)(1)  y})� 1,

using a standard property of Brownian motion, which gives the required formula.
⇤

Remark 2.6. By standard methods one can also prove the analogues of the
Law of the Iterated Logarithm and its functional version [?], [?].

Remark 2.7. Similar invariance principles hold for periods of harmonic 1-
forms. More precisely, suppose that � is co-compact and let ⌘ be a harmonic 1-
form on H2/� with lift e⌘ to H2. Let �

n

(i) denote the geodesic arc joining x to
g

i0gi1 · · · gin�1x. For each Gibbs measure µ on ⌃, there exists 
µ

2 R such that the
sequence Z

�n(i)
e⌘ � n

µ

satisfies an ASIP. More precisely, there exists � > 0 and a probability space (⌦,F , P)
and a one-dimensional Brownian motion W : ⌦ ! C(R+, R), such that the ran-
dom variable ! 7! W (!)(t) has mean zero and variance �2t > 0, and sequences of
random variables �

n

: ⌃ ! R and  
n

: ⌦ ! R with the following properties:
(1) for some ✏ > 0 we have

R
�n(i) e⌘ � n

µ

= �
n

(i) + O(n 1
2�✏) µ-a.e.;

(2) the sequences (�
n

)1
n=1 and ( 

n

)1
n=1 are equal in distribution;

(3) for some ✏ > 0, we have  
n

(·) = W (·)(n) + O(n 1
2�✏) P-a.e..
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3. Random Matrix Products

The results described in the preceding sections are clearly reminiscent of clas-
sical results on random products of matrices. Let A1, · · · , A

k

2 SL(2, R) be a
finite set of matrices. Classically, these would be chosen randomly with respect
to a Bernoulli probability p = (p1, · · · , p

k

). In 1960, Furstenberg and Kesten
[?] showed that there exists a Lyapunov exponent � such that for almost all
i = (i

n

)1
n=0 2 {1, · · · , k}Z+

we have that

� = lim
n!+1

1
n

log kA
i0Ai1 · · ·Ain�1k, (3.1)

where kAk =
p

tr(A⇤A). (A more modern approach would be to use the Kingman
subadditive ergodic theorem.) The importance of having Bernoulli measures lies in
the use of convolutions of measures [?].

The limit in (3.1) can be viewed as a non-commutative version of the Birkho↵
ergodic theorem. As in the case of Birkho↵ averages, for hyperbolic systems, say,
one can ask for stronger results such as the Central Limit Theorem and more gen-
eral Invariance Principles. Provided the matrices satisfy appropriate independence
conditions, Le Page showed that for almost all i the sequences

�
log kA

i0Ai1 · · ·Ain�1k � n�
�1
n=1

satisfy a Central Limit Theorem (and other statistical results) [?].
In light of the above results for Bernoulli measures, it is interesting to consider

a simple interpretation of our results in terms of matrix products. In our setting, we
have more flexibility in the choice of measures. Let � be the subgroup of SL(2, R)
generated by A1, . . . , Ak

. We impose the following two assumptions.

Assumption I. �I /2 � (so that � ⇠= � = �/{±I}).

Assumption II. � acts convex co-compactly on H2.

We recall the following simple result (cf. [?]).

Lemma 3.1. Given A 2 SL(2, R) we have 2 cosh d(0, A0) = kAk2.

In particular, writing d = d(0, A0), we have e2d

� ed

kAk2 + 1 = 0 and so

ed =
1
2

⇣
kAk2 +

p
kAk4 � 4

⌘
=

1
2
kAk2

⇣
1 +

p
1� 4kAk�4

⌘

= kAk2
�
1 + O(kAk�2)

�

and thus

d(0, A0) = 2 log kAk+ O(kAk�2) = 2 log kAk+ O(e�d).

Since � is convex co-compact, d(0, A0) is comparable to the word length of A (with
respect to A1, . . . , Ak

), so, for any i 2 ⌃, one has

log kA
i0Ai1 · · ·Aink =

1
2
d(0, A

i0Ai1 · · ·Ain0) + O(e�n✏).

for some ✏ > 0. Using this, we can recast Theorem ?? as:
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Theorem 3.2 (Almost Sure Invariance Principle version 2). Assume that the
matrices A1, . . . , Ak

satisfy Assumptions I and II. Let µ be the Gibbs measure as-
sociated to a Hölder continuous function on ⌃. Then there exists �

µ

> 0 such that
sequences �

log kA
i0Ai1 · · ·Ain�1k � n�

µ

�1
n=1

. (3.2)
associated to i 2 ⌃ satisfy an ASIP. More precisely, there exists a probability space
(⌦,F , P) and a one-dimensional Brownian motion W : ⌦ ! C(R+, R), such that
the random variable ! 7! W (!)(t) has mean zero and variance �2t > 0, and se-
quences of random variables �

n

: ⌃ ! R and  
n

: ⌦ ! R with the following
properties:

(1) for some ✏ > 0 we have log kA
i0Ai1 · · ·Ain�1k � n�

µ

= �
n

(i) + O(n 1
2�✏)

µ-a.e.;
(2) the sequences (�

n

)1
n=1 and ( 

n

)1
n=1 are equal in distribution;

(3) for some ✏ > 0, we have  
n

(·) = W (·)(n) + O(n 1
2�✏) P-a.e..

Remark 3.3. One can actually recover many of the classical results for random
matrix products by considering free semi-groups, rather than groups.

4. Shifts, groups and geometry

In this section, we shall make a more precise connection between the groups �,
their actions on H2, and the shift spaces ⌃. This will provided a foundation for the
proofs of the theorems announced in the preceding sections.

4.1. The shift maps. Let � be a discrete group of isometries of H2 and let
�0 = {a±1

1 , · · · , a±1
k

} be a (symmetric) set of generators. Denote the word length
of g 2 � by

|g| = min{n : g = g
i1 · · · gin where g

i1 , · · · , g
in 2 �0}.

Assume that either:
(1) � = ha1, . . . , ak

i is a free group acting convex co-compactly on H2 and
�0 = {a±1

1 , . . . , a±1
k

} [?].
(2) � = ha1, b1, · · · , ag, bg :

Qg
i=1[ai

, b
i

] = ei is a surface group acting co-
compactly on H2 and �0 = {a±1

1 , b±1
1 , · · · , a±1

g , b±1
g }.

Associated to � is its limit set L� ⇢ @H2, defined as the set of accumlation
points of �x, for any x 2 H2. In case 1, L� is a Cantor set, while in case 2,
L� = @H2. Under either of the above assumptions, L� is homeomorphic to the
Gromov boundary @� of � (viewed as an abstract group).

The main connection with symbolic dynamics comes from the following.

Lemma 4.1 (Cannon [?], Series [?], Adler-Flatto [?]). Assume that we have a
group � as above. There exists a directed graph G with edges labelled by �0 such
that elements g of � are in bijection with finite paths in G and the length of the path
coincides with the word length |g|.

We form a subshift of finite type by letting ⌃ denote the space of infinite paths
i = (i

k

)1
k=0 in G and let � : ⌃ ! ⌃ denote the shift map. We can associate to the

graph G an incidence matrix A, where the entry A(i, j) = 1 if the ith edge leads to
the jth edge (and 0 otherwise). In particular, we have the alternate formulation

⌃ = {i = (i
k

)1
k=0 : A(i

k

, i
k+1) = 1,8k � 0}.
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We give ⌃ the metric d⌃(i, j) = 2�n(i,j), where i and j first di↵er in the n(i, j)-
th place and we use the convention n(i, i) = �1. Here, we can see by inspection
that G is irreducible and aperiodic (i.e. there exists N � 1 such that each pair of
vertices in G is joined by a path of length N), so that � is topologically mixing.

Fix x 2 H2. The formula

⇡(i) = lim
n!+1

g
i0gi1 · · · gin�1x

gives a well defined map ⇡ : ⌃ ! L� (which is independent of the choice of x).

4.2. Gibbs measures. For Hölder continuous functions g : ⌃ ! R we can
associate a (�-invariant) Gibbs measure µ = µ

g

. This is the unique �-invariant
probability measure µ

g

for which

h(µ
g

) +
Z

gdµ
g

� h(⌫) +
Z

gd⌫

for all �-invariant probability measures ⌫. In particular, ⇡ is one-to-one µ-a.e.. (In
fact, when L� is a Cantor set then ⇡ is a homeomorphism.)

The next two examples provide particularly natural choices of Gibbs state on
⌃.

Example 4.2. The measure of maximal entropy µ0 on ⌃ is an equilibrium
measure for the function  = 0. If A denotes the incidence matrix of G then µ0 is
the Markov measure associated to the matrix P given by P (i, j) = A(i, j)v

j

/⇢v
i

,
where ⇢ and v are the maximal eigenvalue and associated eigenvector guaranteed
by the Perron-Frobenius Theorem. Clearly, µ0 only depends on � as an abstract
group.

Let m
n

be the probability measure on H given by equidistributing mass on the
finite set of points gx 2 H2 where |g| = n, i.e.,

m
n

=
1

#{g 2 � : |g| = n}

X

|g|=n

�
gx

.

As n ! +1, we have that m
n

converges in the weak star topology on the com-
pactification H2

[ @H2 to ⇡⇤(µ0) supported on @H2.

Example 4.3. There is a unique Gibbs state µ on ⌃ for which ⇡⇤(µ) is in
the Patterson-Sullivan measure class on L�. This class is defined in terms of its
transformation properties under the action of � but in this setting is conveniently
characterized as the �-dimensional Hausdor↵ measure class, where � > 0 is the
Hausdor↵ dimension of L�. (In the co-compact case, this is just the Lebesgue
measure class.).

For t > �, let ⌫
t

be the probability measure on H2 supported on the orbit
{gx 2 H2 : g 2 �} and defined by

⌫
t

=
X

g2�

e�td(x,gx)�
gx

/
X

g2�

e�td(x,gx).

As t & � we have that ⌫
t

converges in the weak star topology on the compactifica-
tion H2

[ @H2 to ⇡⇤(µ) supported on @H2.

In order to describe the displacements d(x, gx), g 2 �, we need to augment
the directed graph G by adding an extra vertex “0” and a directed edge from each
vertex to 0 (including a loop from 0 to itself 0). We call the resulting directed graph
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G

⇤ and the associated subshift of finite type � : ⌃⇤ ! ⌃⇤. We also let ⌃0 ⇢ ⌃⇤
denote those paths which end by visiting 0 infinitely often. In this way, we associate
an infinite path (in ⌃0) to each finite path in G. Our new shift � : ⌃⇤ ! ⌃⇤ is not
mixing or even transitive but this does not cause substantial problems [?], [?].

Lemma 4.4. [?], [?] There exists a Hölder continuous function r : ⌃0 ! R such
that

d(x, g
i0 · · · gin�1x) =

n�1X

k=0

r(�ki(n))

where i(n) = (i0, · · · , i
n�1, 0, 0, . . .) is the associated infinite path. Furthermore, r

extends to a Hölder continuous function r : ⌃⇤ ! R.

In particular, we may now characterize µ in Example 4.3 as the Gibbs state
associated to ��r [?].

Corollary 4.5. Let µ be a Gibbs measure on ⌃. Then there exists �
µ

> 0
such that

�
µ

= lim
n!+1

1
n

d(x, g
i0 · · · gin�1x),

for µ-a.e. i 2 ⌃.

Proof. Let �
µ

=
R

rdµ. By the Birkho↵ Ergodic Theorem,

lim
n!+1

1
n

n�1X

k=0

r(�ki) =
Z

rdµ,

for µ-a.e. i 2 ⌃. Since r is Hölder on ⌃⇤ (with exponent ↵ > 0, say), we have
�����

n�1X

k=0

r(�ki)�
n�1X

k=0

r(�ki(n))

�����  C

n�1X

k=0

1
2k↵

= O(1).

Combining these two observations with Lemma ?? gives the required convergence.
To see that �

µ

> 0, recall that there exists c > 0 such that d(x, gx) � c|g|, for
all g 2 �. Thus, again using Lemma ??,

d(x, g
i0 · · · gin�1x)

n
�

c|g
i0 · · · gin�1 |

n
= c > 0,

for all n � 1 and i 2 ⌃. The result follows by letting n ! +1. ⇤
Remark 4.6. For µ = µ0, the drift �

µ0 can be viewed as a constant which
quantifies the average “geometric length to word length” ratio [?].

The following observation is useful.

Lemma 4.7. For any choice of � 2 R, the function r � � : ⌃ ! R is not
a coboundary, i.e., we cannot find a continuous function u : ⌃ ! R such that
r = u� � u + �. In particular, �2 > 0.

Proof. By Livsic’s Theorem, the statement that r � � is a coboundary is
equivalent to the identities

n�1X

k=0

r(�ki) = n�, whenever �ni = i.
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However, these sums are exactly the lengths of closed geodesics on H2/� (see [?]
for the convex co-compact case, [?] for the co-compact case). In the co-compact
case, the fact that these lengths cannot lie in a discrete subgroup of R is equivalent
to the well-known mixing of the geodesic flow [?]. In the convex co-compact case,
the corresponding result was obtained by Dal’bo [?]. ⇤

4.3. Transfer Operators and Pressure. In the proofs which follow, we
shall need to use properties of a class of operators called transfer operators and
a convex functional called topological pressure. We outline below the material we
need; more details may be found in [?]. Let g : ⌃ ! C be a Hölder continuous
function with Hölder exponent ↵ > 0. We define an associated transfer operator
L

g

: C↵(⌃) ! C↵(⌃) by

L
g

h(i) =
X

�(j)=i

eg(j)h(j).

Now suppose that g is real-valued. For a (not necessarily Hölder) continuous
function g : ⌃ ! R, we define the topological pressure P (g) by

P (g) = sup
⇢

h(⌫) +
Z

g d⌫ : ⌫ is a �-invariant probability measure
�

.

If g is Hölder continuous then the associated Gibbs measure µ
g

is uniquely defined
by

P (g) = h(µ
g

) +
Z

g dµ
g

.

(This is consistent with the characterization of µ = µ
g

in section 4.2.)
There is a close relationship between the objects defined above. Suppose again

that g 2 C↵(⌃) is real-valued. Then L
g

: C↵(⌃) ! C↵(⌃) has eP (g) as a simple
eigenvalue and the rest of the spectrum is contained in a disc of strictly smaller
radius. We say that g is normalized if L

g

1 = 1, in which case 1 is the maximal
eigenvalue, P (g) = 0, and L⇤

g

µ
g

= µ
g

.

Lemma 4.8. For a normalized Hölder continuous function g : ⌃ ! R, the
eigenprojection associated to the eigenvalue 1 is h 7!

R
hdµ

g

, so if
R

hdµ
g

= 0 then

kLn

g

hk1  C✓n,

for some C � 0 and 0 < ✓ < 1.

Finally, we discuss the pressure function t 7! P (g+th), where h is a real-valued
Hölder function and t 2 R.

Lemma 4.9. The function t 7! P (g + th) is real analytic and is strictly convex
unless h� c is a coboundary for some c 2 R. Furthermore, for ⇠ 2 R, we have

d

dt
P (g + th)

����
t=⇠

=
Z

h dµ
g+⇠h

.

4.4. Proof of Theorem ??. The ASIP which we have stated as Theorem ??
will follow from the next result.

Theorem 4.10. Let � : ⌃ ! ⌃ be a mixing subshift of finite type and let µ be
a Gibbs measure for a Hölder continuous function and let f : ⌃ ! R be a Hölder
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continuous function such that
R

fdµ = 0. Then, provided f is not a coboundary,
the sequence

n�1X

k=0

f(�kx), n � 1,

satisfies an Almost Sure Invariance Principle with error term O(n 1
2�✏).

This was obtained in [?] with an error term O(n 1
2�✏) (which is su�cient for the

CLT) but, using arguments from [?], the stronger error term is now standard (cf.
[?]).

To deduce Theorem ?? from this, we first observe that, by Lemma ??, r �
� : ⌃ ! R is not a coboundary. Thus, by Theorem ??, the sequence of sumsP

n�1
k=0 r(�ki)� n� satsisfies an ASIP. However, as in the proof of Corollary ??,

d(x, g
i0 · · · gin�1x)� n� =

n�1X

k=0

r(�ki(n))� n� =

 
n�1X

k=0

r(�ki)� n�

!
+ O(1),

with the last error being smaller than O(n 1
2�✏).

5. The Local Central Limit Theorem

In this section we turn to the proof of the stronger Local Central Limit Theorem
for the action on the boundary, presented in the introduction as Theorem ??. We
begin by a more detailed formulation of the result.

Given i 2 ⌃ we can associate the corresponding limit point ⇣
i

= ⇡(i) 2 @H2.
In the case of SL(2, R) there is natural conformal action on the boundary. If

g =
✓
↵ �
� �

◆
2 SL(2, R) then g⇣ = ↵⇣+�

�⇣+�

. The action on the boundary has

derivative g0(⇣) = (�⇣ + �)�2.

Definition 5.1. We say that, for a sequence ✏
n

> 0, the reciprocals ✏�1
n

grow
subexponentially if lim

n!+1�
1
n

log ✏
n

= 0.

Theorem 5.2 (Local Central Limit Theorem). There exists � > 0 such that
for any sequence ✏

n

> 0, such that ✏�1
n

grows subexponentially then,
�����

p

n

2✏
n

µ
�
i 2 ⌃ : log |(g

in�1gin�2 · · · gi0)
0(⇣

i

)|� n�
µ

2 (⇠ � ✏
n

, ⇠ + ✏
n

)
 
�

e�⇠

2
/2�

2
n

p

2⇡�

�����

converges to zero, as n ! +1, uniformly for ⇠ 2 R.

The proof of the local central limit theorem is similar the standard version for
shifts of finite type (cf. [?], [?]); however, the presence of shrinking intervals require
more careful estimates. Define f : ⌃ ! R by

f(i) = log |(g�1
i0

)0(⇣
i

)|� �
µ

= log |(g�1
i0

)0(⇡(i))|� �
µ

.

We can then write
n�1X

k=0

f(�ki) =
n�1X

k=0

log |(g�1
ik

)0(⇡(�ki))|� n�
µ

= log |(g�1
in�1

g�1
in�2

· · · g�1
i0

)0(⇡(i))|� n�
µ

.

We shall need to use properties of transfer operators defined in Section 4.
Recall that the measure µ is the Gibbs state for some Hölder continuous function
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g : ⌃ ! R. Choose ↵ > 0 such that g, f 2 C↵(⌃). We shall study the family
L

g+itf

: C↵(⌃) ! C↵(⌃), t 2 R. We recall that g is normalized so that L
g

1 = 1
and L⇤

g

µ = µ. We need the following bound on Ln

g+itf

.

Lemma 5.3. There exist C > 0, 0 < ✓ < 1 and � > 0 such that, for |t| � 1, we
have

kLn

g+itf

k  C min{✓n

|t|� , 1}.

Remark 5.4. This type of bound was first obtained by Dolgopyat [?] in his
work on the rate of decay of correlations for geodesic flows. For co-compact groups,
the above result (where the operator is acting on Hölder continuous functions) was
proved in §6 of [?]. For convex co-compact groups, the analogous bound was estab-
lished by Naud in [?]; however, the operators there were defined with respect to the
boundary map and acted on C1 functions. We could carry out our analysis in that
context but, for simplicity of exposition, we continue to work with the shift space ⌃.

Let � : R ! R be a compactly supported function which is a Ck approximation
to the indicator function of [�1, 1]. (The value of k will be chosen later.) Write
�

(⇠)
n

(x) = �(✏�1
n

(x�⇠)). Then b�(⇠)
n

(t) = ei⇠t✏
n

b�(✏
n

t). Writing fn(i) =
P

n�1
k=0 f(�ki)

and

⇢(n, ⇠) :=
Z
�(⇠)

n

(fn(i))dµ,

we define

A(n, ⇠) :=
����
�
p

n

✏
n

⇢(n, ⇠)�
R
�(y)dy
p

2⇡�
e�⇠

2
/2�

2
n

���� .

We shall show the following.

Lemma 5.5. Provided ✏�1
n

grows at a subexponential rate, we have

lim
n!+1

sup
⇠2R

A(n, ⇠) = 0.

We shall begin by obtaining a more useful formula for A(n, ⇠). Using Fourier
inversion and Fubini’s Theorem, we have

�
p

n

✏
n

⇢(n, ⇠) =
1
2⇡

�
p

n

✏
n

Z 1

�1

✓Z
eitf

n(i)dµ(i)
◆
b�(⇠)

n

(t)dt

=
1
2⇡
�
p

n

Z 1

�1

✓Z
eitf

n(i)dµ(i)
◆

ei⇠tb�(✏
n

t)dt.

If we make the substitution u = t�
p

n, then this becomes
p

n

2✏
n

⇢(n, ⇠) =
1
2⇡

Z 1

�1

✓Z
eiuf

n(i)/�

p
ndµ(i)

◆
ei⇠u/�

p
nb�
✓
✏
n

u

�
p

n

◆
du.

Combining this with the standard identity

e�⇠

2
/2�

2
n =

1
2⇡

Z 1

�1
eiu⇠/�

p
ne�u

2
/2du,

we obtain

2⇡A(n, ⇠)

=
����
Z 1

�1
eit⇠/�

p
n

⇢✓Z
eiuf

n(i)/�

p
ndµ(i)

◆
b�
✓
✏
n

u

�
p

n

◆
�

✓Z
�(y)dy

◆
e�u

2
/2

�
du

���� .
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In particular, we have the bound

2⇡A(n, ⇠)  A1(n, ⇠) + A2(n, ⇠) + A3(n, ⇠),

where, given � > 0,

A1(n, ⇠) =
�����

Z
��

p
n

���

p
n

eiu⇠/�

p
n

⇢✓Z
eiuf

n(i)/�

p
ndµ(i)

◆
b�
✓
✏
n

u

�
p

n

◆
�

✓Z
�(y)dy

◆
e�u

2
/2

�
du

����� ,

A2(n, ⇠) =

�����

Z

|u|���

p
n

eiu⇠/�

p
n

⇢✓Z
eiuf

n(i)/�

p
ndµ(i)

◆
b�
✓
✏
n

u

�
p

n

◆�
du

����� ,

A3(n, ⇠) =

�����

Z

|u|���

p
n

eiu⇠/�

p
n

✓Z
�(y)dy

◆
e�u

2
/2du

����� .

We shall proceed by estimating A1, A2 and A3. First note that an elementary
argument gives the following.

Lemma 5.6. We have

lim
n!+1

sup
⇠2R

A3(n, ⇠) = 0.

Lemma 5.7. We have

lim
n!+1

sup
⇠2R

A1(n, ⇠) = 0.

Proof. This proof is based on [?] (see also [?]). We have

A1(n, ⇠) =
�����

Z
��

p
n

���

p
n

eiu⇠/�

p
n

⇢✓Z
Ln

g+iuf/�

p
n

1dµ(i)
◆
b�
✓
✏
n

u

�
p

n

◆
�

✓Z
�dµ

◆
e�u

2
/2

�
du

����� .

On the domain of integration, as n ! +1, we have

(i) b�
⇣

✏nu

�

p
n

⌘
converges to b�(0) =

R
�(y)dy;

(ii)
R

Ln

g+iuf/�

p
n

1dµ(i) converges to e�u

2
/2.

Furthermore, we have the bounds
����
Z

Ln

g+iuf/�

p
n

1dµ(i)
����  e�u

2
/4 and

����
Z

Ln

g+iuf/�

p
n

1dµ(i)� e�u

2
/2

����  2e�u

2
/4.

The result now follows from the Dominated Convergence Theorem. ⇤

In order to estimate A2(n, ⇠), we need to use Lemma ??. We shall also use the
following result, which is each to prove using integration by parts.

Lemma 5.8. If � : R ! R is compactly supported and Ck then we have that
b�(u) = O(|u|�k), as |u|! +1.

Lemma 5.9. We have

lim
n!+1

sup
⇠2R

A2(n, ⇠) = 0.
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Proof. Using Lemma ??, we have the bound

A2(n, ⇠)  C✓n

Z

|u|���

p
n

����b�
✓
✏
n

u

�
p

n

◆����

✓
|u|

�
p

n

◆
�

du.

Splitting [��
p

n,1) into [��
p

n, e�n) and [e�n,1), for some small � > 0, this gives
us

A2(n, ⇠) 
C✓n

kb�k1
(�
p

n)�

Z
e

�n

��

p
n

|u|�du +
Z 1

e

�n

����b�
✓
✏
n

u

�
p

n

◆����

✓
|u|

�
p

n

◆
�

du.

The first term on the Right Hand Side is O(✓ne�n(�+1)), which, provided we choose
� > 0 su�ciently small, tends to zero exponentially fast. To estimate the second
term, we use Lemma ?? to obtain

Z 1

e

�n

����b�
✓
✏
n

u

�
p

n

◆����

✓
|u|

�
p

n

◆
�

du = O

✓
n(k��)/2

✏k
n

Z 1

e

�n

1
uk��

du

◆

= O

✓
n(k��)/2

✏k
n

e(k�1��)�n

◆
,

which tends to zero, as n ! +1, provided we choose k > �+ 1. The uniformity in
⇠ is obvious from the proof. ⇤

Combining Lemmas ??, ?? and ??, proves Lemma ??. Theorem ?? now follows
by a standard approximation argument. More precisely, for � > 0, choose compactly
supported Ck functions �1  1[�1,1]  �2 such that

2� � 

Z
�1(x)dx 

Z
�2(x)dx  2 + �.

Then
��

2
p

2⇡�
 lim inf

n!+1
sup
⇠2R

✓
p

n

2✏
n

µ {i 2 ⌃ : fn(i) 2 [⇠ � ✏
n

, ⇠ + ✏
n

]}�
1

p

2⇡�
e�⇠

2
/2�

2
n

◆

 lim sup
n!+1

sup
⇠2R

✓
p

n

2✏
n

µ {i 2 ⌃ : fn(i) 2 [⇠ � ✏
n

, ⇠ + ✏
n

]}�
1

p

2⇡�
e�⇠

2
/2�

2
n

◆



�

2
p

2⇡�
.

6. Large Deviations

We will use the notation of the preceding section. In particular, µ will be the
Gibbs measure associated to a Hölder continuous function g : ⌃ ! R, which is
assumed to be normalized so that L

g

1 = 1 and L⇤
g

µ = µ. Writing f = r � �
µ

and
noting that

n�1X

k=0

f(�ki) = d(x, g
i1gi2 · · · ginx)� n�

µ

+ O(1),

we see that Theorem ?? follows from the result below.

Theorem 6.1 (Large Deviations Theorem). Let ✏ > 0. We have that

lim sup
n!+1

1
n

log µ

(
i 2 ⌃ :

�����
1
n

n�1X

k=0

f(�ji)

����� > ✏

)
< 0.
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Proof. We recall the straightforward proof (cf. [?], [?], [?]). For t 2 R, let
L

g+tf

: C↵(⌃) ! C↵(⌃) be the transfer operator defined on C↵(⌃) by

L
g+tf

h(i) =
X

�(j)=i

eg(j)+tf(j)h(j).

Then, in particular, kLn

g+tf

1k1  CenP (tf), for some constant C > 0, where P (tf)
denotes the pressure of the function tf 2 C↵(⌃). Thus, for any t 2 R,

µ

(
i 2 ⌃ :

n�1X

k=0

f(�ki) > n✏

)


Z
et(Pn�1

k=0 f(�k
i)�n✏)dµ(i)

= e�tn✏

Z
Ln

g+tf

1(i)dµ(i).

Similarly, for any t 2 R,

µ

(
i 2 ⌃ :

n�1X

k=0

f(�ki) < �n✏

)


Z
e�t(Pn�1

k=0 f(�k
i)+n✏)dµ(i)

= e�tn✏

Z
Ln

g�tf

1(i)dµ(i).

Therefore, one can bound the rate of convergence

lim sup
n!+1

1
n

log µ

(
i 2 ⌃ :

�����
1
n

n�1X

k=0

f(T ii)

����� > ✏

)

by the maximum of inf
t2R {P (g + tf)� t✏} and inf

t2R {P (g + tf) + t✏}. Now,

inf
t2R

{P (g + tf)� t✏} = P (g + ⇠f)� ⇠✏,

where ⇠ is the unique real number such that

d

dt
P (g + tf)

����
t=⇠

=
Z

fdµ
g+⇠f

= ✏.

In particular, using
R

fdµ = 0 and the fact that P (g + tf) is strictly convex, ⇠ = 0
if and only if ✏ = 0. Now, by definition,

P (g + ⇠f) = h(µ
g+⇠f

) + ⇠

Z
fdµ

g+⇠f

+
Z

gdµ
g+⇠f

,

and so

P (g + ⇠f)� ⇠✏ = h(µ
g+⇠f

) +
Z

gdµ
g+⇠f

 P (g) = 0,

with equality if and only if ⇠ = 0. A similar calculation for �✏ completes the
proof. ⇤
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