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Abstract. The aim of this note is to study a pair of length functions on a free group, asso-
ciated to a point in the unprojectivized Outer space. We discuss various characteristics which

compare them and describe how these may be unified by a “Manhattan curve” analogous to

those used to study pairs of hyperbolic surfaces. Our approach involves the thermodynamic
formalism used in the ergodic theory of hyperbolic dynamical systems.

0. Introduction

Let F be a free group on k ≥ 2 generators and let C(F ) denote the set of its non-
trivial conjugacy classes. A natural class of length functions on F , or, more precisely,
C(F ), may be obtained from free isometric actions on metric trees (i.e., simplicial R-trees).
More precisely, if F acts freely on the metric tree T then we may define a length function
l : C(F )→ R+ by

l(w) = inf
o∈T

dT (o, ox),

where x ∈ w. It is easy to see that l is well-defined. Furthermore, the image of l is strictly
positive. An equivalent formulation is to consider a metric graph Γ with fundamental
group identified with F (and some additional non-degeneracy conditions). Then w ∈ C(F )
corresponds to a unique closed path in Γ (provided backtracking is not allowed) and l(w) is
equal to the sum of edge lengths around this path. Such length functions are parametrized
by a set cv(F ), which is an unprojectivized version of the Culler-Vogtmann Outer space,
defined in section 1.

A natural quantity associated to l ∈ cv(F ) is the critical exponent δ = δ(l). This is
defined by

δ = inf

s ∈ R :
∑

w∈C(F )

e−sl(w) < +∞

 .

It is a standard result that δ > 0. We also have that

δ = lim sup
T→+∞

1

T
log #{w ∈ C(F ) : l(w) ≤ T}.

In fact, there are more precise results for counting conjugacy classes with respect to l;
these are described in section 3.

Typeset by AMS-TEX
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The aim of this paper is to compare two arbitrary length functions l1, l2 ∈ cv(F ). It is
convenient to describe this in terms of the so-called Manhattan curve, an object first defined
by Burger to compare two convex co-compact representations of a group as isometries of
the hyperbolic space Hn+1 [6]. A particularly interesting case is given by two points in the
Teichmüller space associated to a compact surface [6], [36].

Here we define the Manhattan curve M(l1, l2) associated to l1, l2 ∈ cv(F ) in the following
way:

M(l1, l2) = ∂

(a, b) ∈ R2 :
∑

w∈C(F )

e−al1(w)−bl2(w) < +∞

 .

(This may be thought of as the natural analogue of the critical exponent for a single length
function.) Many numerical characteristics which compare l1 and l2 may be read off from
M(l1, l2):

(i) the intersection

i(l1, l2) := lim
T→+∞

1

#{w ∈ C(F ) : l1(w) ≤ T}
∑

l1(w)≤T

l2(w)

l1(w)
;

(ii) the distortion interval

D(l1, l2) :=

{
l2(w)

l1(w)
: w ∈ C(F )

}
;

(iii) the correlation number

α1(l1, l2) := lim
ε→0

lim sup
T→+∞

1

T
log #

{
w ∈ C(F ) : l1(w) ≤ T, l2(w)

l1(w)
∈ (1− ε, 1 + ε)

}
.

We shall study these in section 4 and establish the relation to M(l1, l2) in section 5.
The earlier parts of the paper are devoted to preliminaries. In section 1, we give some

background on length functions and the Outer space. In section 2, we introduce ergodic
theoretic ideas in the shape of the shift of finite type Σ+ formed by infinite reduced words
in the generators of F . As we mentioned above, a length function l ∈ cv(F ) is associated
(up to equivalence) to a metric graph Γ. It is a crucial point that we always use one fixed
shift of finite type associated to a preferred generating set, rather than the shift formed by
paths in the oriented line graph of Γ. In section 3, we show that a length function in cv(F )
may be encoded in a cohomology class of locally constant functions on Σ+. So, different
points in cv(F ) correspond to different cohomology classes of functions on the fixed shift
Σ+. As mentioned in the preceding paragraph, the main results of the paper are in sections
4 and 5. An appendix gives an introduction to the thermodynamic formalism we use.

1. Length Functions and the Outer Space

Let A = {a1, . . . , ak} be a free generating set for F . Any x ∈ F (x 6= 1) may be written
uniquely as a reduced word in these generators:

x = x0x1 . . . xn,
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with xi ∈ A ∪ A−1 and xi+1 6= x−1
i , i = 0, . . . , n − 1, and we call |x| = |x|A = n the

word length of x (with respect to A). We may then define a function ‖ · ‖ : C(F )→ R on
conjugacy classes by

‖w‖ = min
x∈w
|x|.

The above is only one of many length functions which may be defined and in this
section we characterize the class of them that we shall study. (See [14] for a discussion of
a more general class of length functions.) These correspond to isometric actions of F on
simplicial trees or, equivalently, to equivalence classes of metric graphs with fundamental
group isomorphic to F .

To give some background, we briefly digress to discuss automorphisms of free groups.
Let Aut(F ) denote the group of automorphisms of F . An automorphism α : F → F is
called inner if it takes the form α(x) = yxy−1, for some y ∈ F . Let Inn(F ) denote the the
set of all inner automorphisms of F ; this is a normal subgroup of Aut(F ). The quotient
Out(F ) = Aut(F )/Inn(F ) is called the group of outer automorphisms of F . In [10], Culler
and Vogtmann studied Out(F ) by constructing a space CV (F ), called the Outer space, on
which it acts in a natural way. (This is analogous to the study of the mapping class group
of a surface via its action on Teichmüller space.)

The Outer space is defined in the following way [10], [38]. Let G be a fixed graph
with one vertex ∗ and k edges and identify F with π1(G) so that each ai, i = 1, . . . , k,
corresponds to an (oriented) edge. A metric graph is a graph together with an assignment
of a positive length to each edge, making it into a metric space in the obvious way. Let Γ
be a metric graph with fundamental group F such that each vertex has valency at least
three together with a homotopy equivalence g : G → Γ; we call (Γ, g) a marked metric
graph. Consider the set of all marked metric graphs whose edge lengths sum to one. We
say that (Γ, g) and (Γ′, g′) are equivalent if there is an isometry h : Γ→ Γ′ such that g ◦ h
is homotopic to g′. Then the Outer space CV (F ) is defined to be the set of equivalence
classes. (An alternative definition is the set of equivalence classes of marked metric graphs
under the relation (Γ, g) ∼ (Γ′, g′) if there is a homothety h : Γ → Γ′ such that g ◦ h is
homotopic to g′.)

There is a natural action of Out(F ) on CV (F ) as follows. Any α ∈ Aut(F ) induces a
map A : G → G. Define (Γ, g) · α = (Γ, g ◦A). Since the action of inner automorphisms is
trivial, this gives a well-defined action of Out(F ).

The universal cover of a marked metric graph Γ (with the lifted metric) is a metric tree
(simplicial R-tree) T on which F acts on the right by isometries. For a choice of o ∈ T ,
define a based length function L : F → R by

L(x) = dT (o, ox).

If we change base point then we obtain a different function but it is easy to see that L
only depends the image of o under the covering map π : T → Γ. We may eliminate the
dependence on the base point by defining a new length function l by

l(x) = inf
o∈T

dT (o, ox).

We have dT (o, oyxy−1) = dT (oy, oyx), so it is easy to see that l(x) depends only on the
conjugacy class of x. Thus we think of l as a function l : C(F ) → R. Futhermore, l only
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depends on the point in CV (F ) represented by (Γ, g). (Alternatively, identifying x ∈ F
with a homotopy class in π1(G), l(x) may be defined to be the length of the shortest loop
in Γ freely homotopic to g(x).)

Lemma 1.1 [9]. The map from CV (F ) to the set of functions from C(F ) to R+ is injective.

Thus we may identify CV (F ) with a subset of (R+)C(F ). In this paper, we consider a
larger space

cv(F ) = {λl : l ∈ CV (F ), λ > 0}.

Remark. The functions l : C(F )→ R are called hyperbolic length functions [1] or transla-
tion length functions [9]. The notation CV (F ) and cv(F ) has been used in [18] and [19],
for example. Clearly, CV (F ) is the projectivization of cv(F ).

The based length function L : F → R which arise in the above construction are also
completely characterized by the following conditions [7], [24]. Write

(x, y)L =
(
L(x) + L(y)− L(xy−1)

)
/2.

For x, y, z ∈ F ,

(L1) L(x) = 0 if and only if x = 1;
(L2) L(x−1) = L(x);
(L3) (x, y)L ≥ 0;
(L4) (x, y)L < (x, z)L implies that (y, z)L = (x, y)L; and
(L5) (x, y)L + (x−1, y−1)L > L(x) = L(y) implies that x = y.
(L6) L(x2) > L(x) for every x 6= 1.

(Note that L(x) = (x, x)L, so (L3) implies that L(x) > 0 for every x 6= 1. A func-
tion satisfying properties (L1)-(L5) is called a Lyndon length function. (L6) is called the
Archimedean property.)

Remark. The functions l ∈ cv(F ) are also characterized by a set of axioms [9], [27].

We shall use the following facts later. For x, y ∈ F and o, p, q ∈ T , define Gromov
products

(x, y) = 1/2(|x|+ |y| − |xy−1|)

and
(p, q)o = 1/2((dT (o, p) + dT (o, q)− dT (p, q)).

As above, write L(x) = dT (o, ox). Then (x, y)L = (ox, oy)o. Furthermore, there exist
constants A1, A2 > 0 such that, for all x ∈ F ,

A1|x| ≤ dT (o, ox) ≤ A2|x| (1.1)

and constants B1, B2,K > 0 such that, for all x, y ∈ F ,

B1(x, y)−K ≤ (x, y)L ≤ B2(x, y) +K. (1.2)

These results follow because the map f : F → T given by f(x) = ox is a quasi-isometry
between F equipped with the word metric dword(x, y) = |x−1y| and T . Then (1.1) is
standard and (1.2) follows from Proposition 15 in Chapitre 5 of [12].
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2. Shifts and Free Groups

In this section we shall consider the shift of finite type σ : Σ+ → Σ+ associated to the
free group F and free basis A = {a1, . . . , ak}. (Shifts of finite type and their properties
are discussed in greater detail in the appendix.) We define

Σ+ =

{
x = (xn)∞n=0 ∈

∞∏
n=0

(A ∪A−1) : xn+1 6= x−1
n ∀n ∈ Z+

}
,

i.e., Σ+ is the space of infinite reduced words in A∪A−1. Of course, Σ+ be identified with
the Gromov boundary of F . The shift map σ : Σ+ → Σ+ is defined by (σx)n = xn+1.

In the notation of the appendix, Σ+ = Σ+
A, where the index set is I = A∪A−1 and the

zero-one I × I matrix A is defined by A(i, j) = 1 unless j is the inverse of i. It is easy to

see that A is aperiodic. Furthermore, the set W (n) = W
(n)
A of allowed words of length n

may be identified with the set {x ∈ F : |x| = n}.
A cylinder set is defined by

[y0, . . . yn−1]m = {(xn)∞n=0 ∈ Σ+ : xm+j = yj , j = 0, . . . , n− 1}.

The cylinder sets generate the topology and Borel σ-algebra on Σ+.
A simple calculation shows that the topological entropy of σ : Σ+ → Σ+ is h(σ) =

log(2k−1) and the measure of maximal entropy is the measure µ0 defined on cylinder sets
by

µ0([x0, x1, . . . , xn−1]m) =
1

2k(2k − 1)(n−1)

and extended to Borel sets by the Kolmogorov extension theorem.
Recall that C(F ) denotes the set of non-trivial conjugacy classes in F . A conjugacy class

w ∈ C(F ) contains a cyclically reduced word in A∪A−1, i.e., a reduced word x0x1 · · ·xn−1

such that xn−1 6= x−1
0 . The only other cyclically reduced elements of w are obtained

from this by cyclic permutation (and also have word length n) and non-cyclically reduced
elements of w have word length greater than n. Therefore it is natural to define the length
‖w‖ of w (with respect to A) to be

‖w‖ := n = min
x∈w
|x|.

It is immediate from the definition that, for m ≥ 1,

‖wm‖ = m‖w‖,

where wm is the conjugacy class {xm : x ∈ w}. Furthermore, it is clear from the preceding
discussion that there is a natural bijection between C(F ) and the set of periodic points of
σ : Σ+ → Σ+, such that, if x, σx, . . . , σn−1x (σnx = x) corresponds to w ∈ C(F ) then
‖w‖ = n.
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In order to represent elements of F as elements of a shift space (rather than simply
as finite words), it is convenient to augment Σ+ by adding an extra “dummy” symbol 0.
Introduce a square matrix A0, with rows indexed by A ∪A−1 ∪ {0}, such that

A0(i, j) =


A(i, j) if i, j ∈ A ∪A−1

1 if i ∈ A ∪A−1 ∪ {0} and j = 0

0 if i = 0 and j ∈ A ∪A−1.

We then define Σ+
0 = Σ+

A0
. In other words, an element of Σ+

0 is either an element of Σ+

or an element of W (n), for some n ≥ 1, followed by an infinite string of 0s, which we shall
denote by 0̇. Of course, this procedure does not introduce any extra periodic points.

3. Locally Constant Functions

Let l ∈ cv(F ). We wish to encode the lengths {l(w) : w ∈ C(F )} in terms of the periodic
points of σ : Σ+ → Σ+ and a function r : Σ+ → R. In fact, it will turn out that r is locally
constant.

The construction of r is somewhat technical. Let T be a metric tree associated to l. We
need to introduce an arbitrarily chosen basepoint o ∈ T and write L(x) = dT (o, ox). The
function r that we construct will depend on o only up to the addition of a coboundary.

We begin by relating the value L(x) to the description of x ∈ F as a word in the
generators {a1, . . . , ak}. For n ≥ 1 and m ≤ n, we define the following sets of n-tuples:

W (0)
n = {(0, 0, . . . , 0)},

W (m)
n = {(x0, x1, . . . , xm−1, 0, . . . , 0) : (x0, x1, . . . , xm−1) ∈W (m)}

and

Wn =
n⋃

m=0

W (m)
n .

The map ι : Wn → {x ∈ F : |x| ≤ n} defined by ι((0, 0, . . . , 0)) = 1 and, for x0 6= 0,

ι((x0, x1, . . . , xm−1, 0, . . . , 0)) = x0x1 · · ·xm−1

is a bijection. We shall abuse notation by using x to denote the sequence in Wn corre-

sponding to x ∈ F . Clearly, ι restricts to a bijection ι : W
(n)
n = W (n) → {x ∈ F : |x| = n}.

We begin with the following lemma, which should be compared with Proposition 4 of
[30].

Lemma 3.1. There exists an integer N ≥ 1 such that if n ≥ N and x0x1 · · ·xn−1 is a
reduced word then

L(x0x1 · · ·xn−1)− L(x1 · · ·xn−1) = L(x0x1 · · ·xN−1)− L(x1 · · ·xN−1).

Proof. Note that

(x0x1 · · ·xN−1, x0x1 · · ·xn−1) = 1/2(N + n− (n−N)) = N.
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Write x = x0x1 · · ·xn−1 and y = x0x1 · · ·xN−1. We need to show that L(y)− L(x−1
0 y) =

L(x)− L(x−1
0 x) or, equivalently

L(x0) + L(y)− L(x−1
0 y) = L(x0) + L(x)− L(x−1

0 x).

Using property (L2), this may be rewritten as

L(x−1
0 ) + L(y−1)− L(y−1(x−1

0 )−1) = L(x−1
0 ) + L(x−1)− L(x−1(x−1

0 )−1)

or as
(y−1, x−1

0 )L = (x−1, x−1
0 )L.

By property (L4), this will hold provided

(x−1, x−1
0 )L < (x−1, y−1)L.

By inequality (1.2), this will be satisfied if N = (x−1, y−1) ≥ B−1
1 (x−1, x−1

0 )L + B−1
1 K.

Since B−1
1 (x−1, x−1

0 )L+B−1
1 K ≤ B−1

1 B2(x−1, x−1
0 )+2B−1

1 K and (x−1, x−1
0 ) = 1, this will

be satisfied provided N ≥ B−1
1 (B2 + 2K). �

We now introduce a function on Σ+
0 , which “encodes” the values {L(x) : x ∈ F}.

Definition. Define a locally constant function r : Σ+
0 → R by

r((xn)∞n=0) = L(x0 · · ·xN−1)− L(x1 · · ·xN−1), (3.1)

where N is chosen so that the conclusion of Lemma 3.1 holds.

The following result is immediate from the definition.

Lemma 3.2. Suppose that |x| = n and x = x0x1 · · ·xn−1. Then

L(x) = r((x0, x1, . . . , xN−1), (x1, x2, . . . , xN )) + · · ·
+ r((xn−N , xn−N+1, . . . , xn−1), (xn−N+1, . . . , xn−1, 0)) + · · ·
+ r((xn−2, xn−1, 0, . . . , 0), (xn−1, 0, . . . , 0)) + r((xn−1, 0, . . . , 0), (0, 0, . . . , 0)).

Proof. We have

L(x) = (L(x0x1 · · ·xn−1)− L(x1x2 · · ·xn−1))

+ (L((x1x2 · · ·xn−1)− L(x2x3 · · ·xn−1)) + · · ·
+ (L(xn−2xn−1)− L(xn−1)) + (L(xn−1)− L(1)).

The result then follows from the definition of r. �

Remark. This construction has been used by Lalley [23], Bourdon [5] and Pollicott and
Sharp [31],[32] in the context of convex co-compact group actions on hyperbolic space or,
more generally, CAT(−1) spaces to obtain Hölder continuous functions.

We now describe how we may recover the l-lengths of conjugacy classes. For a point
x ∈ Σ+

0 , rn(x) = r(x) + r(σx) + · · ·+ r(σn−1x).
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Lemma 3.3. Let σnx = x correspond to the conjugacy class w containing the cyclically
reduced word x0x1 · · ·xn−1. Then

l(w) = rn(x).

In particular, the cohomology class of r only depends on l.

Proof. Let x(m) denote the reduced word obtained from the m-fold concatenation of
x0x1 · · ·xn−1. Since r is locally constant, there exists N ≥ 1 such that

|rmn(x)− rmn(x(m), 0, 0, . . . )| ≤ 2N‖r‖∞.

Noting that rmn(x) = mrn(x), the above estimate gives us that

rn(x) = lim
m→+∞

1

m
rmn(x(m), 0, 0, . . . ) = lim

m→+∞

1

m
L(x(m)).

Thus it remains to show that this last quantity is equal to l(w). We shall do this by proving
inequalities in both directions.

First observe that x(m) is a cyclically reduced word in wm. Therefore

ml(w) = l(wm) ≤ L(x(m))

and so l(w) ≤ limm→+∞m−1L(x(m))).
Now suppose that v ∈ w. It is clear that

lim
m→+∞

m−1L(vm) = lim
m→+∞

m−1L(x(m)).

On the other hand, since {L(vm)}m≥1 is a subadditive sequence,

lim
m→+∞

m−1L(vm) = inf
m≥1

m−1L(vm)

and so limm→+∞m−1L(x(m)) ≤ L(v). Hence

lim
m→+∞

m−1L(vm) ≤ inf
v∈w

L(v) = l(w).

The final statement follows from Proposition A.1 in the appendix, i.e., the cohomology
class of r only depends on the data rn(x), where σnx = x. �

Lemma 3.4. r : Σ+ → R is cohomologous to a strictly positive locally constant function.

Proof. It is clear from Lemma 3.2 that that rN is strictly positive. Futhermore, r is
cohomologous to N−1rN . �

Let LC(Σ+) denote the linear space of cohomology classes [f ] locally constant functions
f : Σ+ → R. We say that a class [f ] ∈ LC(Σ+) is positive if fn(x) > 0, whenever σnx = x,
for any (and hence all) f ∈ [f ]. Let LC+(Σ+) denote the set of positive classes in LC(Σ+).
By Lemmas 3.3 and 3.4, the above construction gives us a well-defined map

S : cv(F )→ LC+(Σ+).

8



Lemma 3.5. The map S : cv(F ) → LC+(Σ+) is injective and, for l ∈ cv(F ), c > 0,
S(cl) = cS(l).

Proof. If l1, l2 ∈ cv(F ) and [r1] = S(l1) = S(l2) = [r2] then rn1 (x) = rn2 (x), whenever
σnx = x. Hence, by Lemma 3.3, l1(w) = l2(w), for all w ∈ C(F ), and so, by Lemma 1.1,
l1 = l2.

Remark. S : cv(F ) → LC+(Σ+) is not a surjection. It is shown in [9] that a function
l : F → R is a hyperbolic length function for an isometric action of F on an R-tree only if
it is well-defined as a function l : C(F )→ R and

(i) for x, y ∈ F , either

l(xy) = l(xy−1) or max{l(xy), l(xy−1)} ≤ l(x) + l(y);

(ii) for x, y ∈ F with l(x) > 0 and l(y) > 0, either

l(xy) = l(xy−1) < l(x) + l(y) or max{l(xy), l(xy−1)} = l(x) + l(y).

(Here the action is not assumed to be free. The conditions were shown to be sufficient in
[27]) It is easy to construct elements of LC+(Σ+) for which these are violated.

It follows from the above construction that there are rather precise results for counting
conjugacy classes with respect to l. We say that l ∈ cv(F ) is mixing if {l(w) : w ∈ C(F )}
is not contained in a discrete subgroup of R. Let πl(T ) = #{w ∈ C(F ) : l(w) ≤ T}. If l is
mixing then

πl(T ) ∼ eδT

δT
, as T → +∞.

If l is not mixing then

πl(T ) ∼ e2πδ/a

e2πδ/a − 1

2πe2πδ[aT/2π]/a

aT
, as T → +∞,

where a > 0 is the smallest number such that {l(w) : w ∈ C(F )} ⊂ aZ. This may be
derived from the results in [28], [29] and an alternative direct proof may be found in [13].

Remark. There is an alternative way of relating a length l ∈ cv(F ) to a shift of finite type
and locally constant function (and of thus obtaining the asymptotics for πl(T )). To describe
this, let Γ be a choice of metric graph corresponding to l. Let E denote the set of oriented
edges in Γ and let le denote the length of an edge e ∈ E. (Of course, le = lē, where ē is
the same geometric edge as e but with the reversed orientation.) The oriented line graph
associated to Γ is the directed graph with vertices E and a directed edge (e, e′) if and only
if the final vertex of e coincides with the initial vertex of e′, and e′ 6= ē. We may then define

a shift of finite type Σ+(Γ) to be the subset of EZ+

formed by all (one-sided) infinite paths
in the oriented line graph. A locally constant function ω : Σ+(Γ) → R+ is then defined
by ω((en)∞n=0) = le0 . Despite it simplicity, this construction has disadvantages when one
wishes to compare two length functions. Then we would have two different shifts and, in
particular, the periodic orbits corresponding to a given conjugacy class would generally
have different periods.
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4. Intersection, Distortion and Correlation

In this section we discuss a number of quantities which may be used to compare two
length functions l1, l2 ∈ cv(F ). First we define the intersection i(l1, l2) to be the quantity

i(l1, l2) = lim
T→+∞

1

πl1(T )

∑
l1(w)≤T

l2(w)

l1(w)
. (4.1)

(Note that this is not necessarily symmetric.) This is a direct analogy of the intersection
of two Riemannian metris on a smooth manifold M considered in [3], [4], [6], [8], [11],
[21], [41]. If M is a compact and the metrics have negative sectional curvature then the
intersection is given by an expression of the form (4.1), involving the lengths of the closed
geodesic in each free homotopy class with respect to the two metrics.

The intersection may be characterized directly in terms of functions ri ∈ S(li), i =
1, 2, or, more precisely their integrals. We write δ1, δ2 for the critical exponents of l,l2,
respectively, and µ1 = µ−δ1r1 for the equilibrium state of −δ1r1. (Of course, this measure
only depends on li or, equivalently, the cohomology class [ri] = S(li).)

Theorem 4.1. For l1, l2 ∈ cv(F ), let r1, r2 : Σ+ → R be locally constant functions with
ri ∈ S(li), i = 1, 2. Then the limit defining i(l1, l2) exists and is equal to∫

r2 dµ
1∫

r1 dµ1
.

Furthermore, if L1 and L2 are based length functions corresponding to l1 and l2, then

i(l1, l2) = lim
n→+∞

L2(x0x1 · · ·xn−1)

L1(x0x1 · · ·xn−1)
for µ1-a.e. (xn)∞n=0 ∈ Σ+.

Proof. Consider the r1-suspended semi-flow σr1t : Σr1 → Σr1 over Σ+. Choose R : Σr1 → R
so that I(R) = r2. If the periodic σr1t -orbit τ corresponds to the σ-orbit x, σx, . . . , σn−1x

(and the conjugacy class w) then τ has period λ(τ) = r
|w|
1 (x) = l1(w) and we have

πl1(T ) = #{τ : λ(τ) ≤ T} and

∫ l1(w)

0

R(σt(x, 0))dt = r
|w|
2 (x) = l2(w).

It is a standard result for suspended flows that

lim
T→+∞

1

#{τ : λ(τ) ≤ T}
∑

λ(τ)≤T

∫
R dmτ =

∫
R dm0 =

∫
r2 dµ

1∫
r1 dµ1

[29], where m0 is the measure of maximal entropy for σr1t , giving the first part of the result.
Now consider x = (xn)∞n=0 ∈ Σ+. Choose the ri, so that they are related by equation

(3.1) to the based length functions Li, i = 1, 2. Then

Li(x0x1 · · ·xn−1) = rni (x0x1 · · ·xn−1, 0̇).
10



It is easy to see that

lim
n→+∞

rni (x0x1 · · ·xn−1, 0̇)

n
= lim
n→+∞

rn(x)

n

and, by the ergodic theorem, for µ1-a.e. x, the limit is equal to
∫
ridµ

1. Combinining
these observations gives the second equality. �

Remark. Kapovich [18] has defined an intersection pairing on cv(F ) × Curr(F ), where
Curr(F ) denotes the space of geodesic currents on F . There is a natural embedding
of cv(F ) in Curr(F ), using the Patterson-Sullivan currents described by Kapovich and
Nagnibeda in [19]. However, unlike the case of surfaces, the intersection does not extend
to Curr(F )×Curr(F ). There is a natural identication between Curr(F ) andMσ and it is
natural to conjecture that, for l ∈ cv(F ) and µ ∈Mσ,

I(l, µ) =

∫
r dµ,

where r ∈ S(l), but we have been unable to prove it. If φ is an automorphism of F then
i(‖ · ‖, ‖φ(·)‖) is equal to the generic stretch of φ [16], [37].

Theorem 4.2. If {wm}∞m=1 is a sequence in C(F ) such that the associated periodic orbit
measures µwm converge weak∗ to µ1 then

i(l1, l2) = lim
m→+∞

l2(wm)

l1(wm)
.

Proof. By Lemma 3.3, li(wm)/|wm| =
∫
ri dµwm . Suppose that µwm converge to µ1. Then

lim
m→+∞

∫
ri dµwm =

∫
ri dµ

1,

i = 1, 2. The result now follows from Theorem 4.1. �

Theorem 4.3. For l1, l2 ∈ cv(F ), we have

i(l1, l2) ≥ δ1
δ2

with equality if and only if l2 is a constant multiple of l1 (i.e., l1 and l2 define the same
point in CV (F ).)

Proof. The inequality may be rewritten as∫
r2 dµ

1∫
r1 dµ1

≥ h(µ1)∫
r1 dµ1

∫
r2 dµ

2

h(µ2)
.

Rearranging, this becomes
h(µ2)∫
r2 dµ2

≥ h(µ1)∫
r2 dµ1

,

11



which is true by the variational principle. Furthermore, we have equality if and only if
µ1 = µ2, i.e., if and only if −δ2r2 is cohomologous to −δ1r1 + c, c ∈ R. If this holds then,
since P (−δ1r1) = P (−δ2r2) = 0, we must have c = 0, so −δ2r2 is cohomologous to −δ1r1.
By Lemma 3.5, this is equivalent to l2 = (δ1/δ2)l1. �

The intersection defined above quantifies the typical distortion when l2 is compared to
l1, where “typical” is with respect to the measure µ−δ1r1 . It is natural to generalize this
notion to consider all possible distortions. As for intersection, we give a definition based
to conjugacy classes and then show that is has other equivalent characterizations.

Set

D(l1, l2) =

{
l2(w)

l1(w)
: w ∈ C(F )

}
and D(l1, l2) = D(l1, l2).

Proposition 4.1.

D(l1, l2) = I(r1, r2) :=

{∫
r2 dµ∫
r1 dµ

: µ ∈Mσ

}
.

In particular, if l1 is not a constant multiple of l2 then the closure D(l1, l2) is a non-trivial
interval.

Proof. For w ∈ C(F ), let τ = τw be the corresponding periodic σr1t . The characterization
of D(l1, l2) then follows from the identity

l2(w)

l1(w)
=

∫
R dmτ =

∫
r2 dµw∫
r1 dµw

and the fact that the periodic orbit measures mτ are weak∗ dense in Mσr1 . If l1 is not a
constant multiple of l2 then r1 is not cohomologous to a constant multiple of r2. Hence,
by Proposition A.2, I(r1, r2) is a non-trivial interval. �

In [37], we considered the case where l1(w) = ‖w‖ and l2(w) = ‖φ(w)‖, where φ is an
automorphism of F . In this setting, Kapovich [17] showed that ‖φ(w)‖/‖w‖ may take any
rational value in D(l1, l2)) and we studied the growth rate of the number of w ∈ C(F )
(counted by ‖w‖) for which ‖φ(w)‖/‖w‖ = ρ, for any rational ρ ∈ int(D(l1, l2)). For
arbitrary (non-discrete) l1 and l2, D(l1, l2) is hard to characterize. In particular, for any
ρ ∈ D(l1, l2), it is not clear that #{w ∈ C(F ) : l1(w) ≤ T, l2(w)/l1(w) = ρ} has good
asymptotic properties. Thus, in this general setting, it is more natural to study those
w ∈ C(F ) for which l2(w)/l1(w) are close to some prescribed value. With this in mind,
for two length functions l1, l2 ∈ cv(F ) and ρ ∈ int(D(l1, l2)), we define the ρ-correlation
number αρ(l1, l2) by

αρ(l1, l2) = lim
ε→0

lim sup
T→+∞

1

T
log #

{
w ∈ C(F ) : l1(w) ≤ T, l2(w)

l1(w)
∈ (ρ− ε, ρ+ ε)

}
.

Note that if δ1 = δ2 then 1 ∈ int(D(l1, l2)). The next result, from the thesis of T.
White, shows that this also holds for lengths in CV (F ).

12



Lemma 4.2 [40]. Suppose that l1, l2 ∈ CV (F ) (i.e., they are associated to graphs with total
side length 1). There exist w′, w′′ ∈ C(F ) such that l1(w′) < l2(w′) and l1(w′′) > l2(w′′).
In particular 1 ∈ int(D(l1, l2)).

In the following theorem, we shall characterize the ρ-correlation number αρ(l1, l2) in
terms of a variational principle for entropy over a set of measures satisfying a constraint.
A more precise asymptotic holds if we impose an extra condition on the lengths. We say
that l1, l2 ∈ cv(F ) are independent if, for a, b ∈ R,

{al1(w) + bl2(w) : w ∈ C(F )} ⊂ Z =⇒ a = b = 0.

(By setting a = 0 or b = 0, this implies that l1 and l2 are each non-discrete.)

Theorem 4.4.

(i) Suppose that l1, l2 ∈ cv(F ). Then, for every ρ ∈ int(D(l1, l2)), αρ(l1, l2) > 0 and
satisfies αρ(l1, l2) = hr1,r2(ρ), where

hr1,r2(ρ) = sup

{
h(µ)∫
r1 dµ

: µ ∈Mσ and

∫
r2 dµ∫
r1 dµ

= ρ

}
.

(ii) Suppose that l1, l2 ∈ cv(F ) are independent. Then, for any ρ ∈ int(D(l1, l2)),

#{w ∈ C(F ) : l1(w) ∈ (T, T + ε), l2(w) ∈ (ρT, ρT + ε)} ∼ C(ρ, ε)
eαρ(l1,l2)

T 3/2
,

as T → +∞.

Proof. We apply results from the periodic theory of hyperbolic flows, which immediately
carry over to suspended semi-flows over subshifts of finite type. For part (i), observe that

#

{
w ∈ C(F ) : l1(w) ≤ T, l2(w)

l1(w)
∈ (ρ− ε, ρ+ ε)

}
= #

{
τ : λ(τ) ≤ T,

∫
R dmτ ∈ (ρ− ε, ρ+ ε)

}
.

By large deviations results for periodic orbits [20], this has growth rate

lim
T→+∞

1

T
log #

{
τ : λ(τ) ≤ T,

∫
R dmτ ∈ (ρ− ε, ρ+ ε)

}
= sup

{
h(m) : m ∈Mσr1 and

∫
R dm ∈ (ρ− ε, ρ+ ε)

}
= sup

{
h(µ)∫
r1 dµ

: µ ∈Mσ and

∫
r2 dµ∫
r1 dµ

∈ (ρ− ε, ρ+ ε)

}
= sup{hr1,r2(ρ′) : ρ′ ∈ (ρ− ε, ρ+ ε)}.

Since hr1,r2 is analytic, we obtain αρ(l1, l2) = hr1,r2(ρ), as required. Part (ii) follows from
local limit results for suspended semi-flows [2], [22], [34]. �
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Corollary 4.4.1. α1(l1, l2) = α1(l2, l1).

Proof. From Theorem 4.4, α1(l1, l2) = hr1,r2(1) and α1(l2, l1) = hr2,r1(1). Clearly, we have

hr1,r2(1) = sup

{
h(µ)∫
r1 dµ

: µ ∈Mσ and

∫
r1 dµ =

∫
r2 dµ

}
= sup

{
h(µ)∫
r2 dµ

: µ ∈Mσ and

∫
r1 dµ =

∫
r2 dµ

}
= hr2,r1(1),

as required. �

If φ is an automorphism of F and l1 = ‖ · ‖ and l2 = ‖φ(·)‖ then the critical exponents
are both log(2k − 1) and α1(l1, l2) is related to the quantity Curl(φ) [26], [37].

Remark. As noted in the appendix, hr1,r2 is a continuous function on the closed interval
D(l1, l2) = [ρmin, ρmax]. Typically, the value of hr1,r2 is zero at the endpoints but it is easy
to construct examples where hr1,r2(ρmin) > 0 or hr1,r2(ρmax) > 0.

Consider the graph G, with one vertex and k edges. Make this into a metric graph by

assigning lengths 0 < l
(1)
1 < l

(2)
1 < · · · < l

(k)
1 to the edges corresponding to the generators

a±1
1 , a±1

2 , . . . , a±1
k , respectively. Repeat the procedure with a diffferent set of lengths 0 <

l
(1)
2 < l

(2)
2 < · · · < l

(k)
2 to obtain another metric graph. These give rise to two length

functions l1, l2 ∈ cv(F ).
Suppose that we choose the edge lengths so that

l
(1)
2

l
(1)
1

< min
2≤j≤k

l
(j)
2

l
(j)
1

.

Let r1, r2 : Σ+ → R be functions in S(l1),S(l2), respectively. It is easy to see that
minD(l1, l2) = min Ir1,r2 is only attained for convex combinations of the periodic point

measures supported on (a1, a1, 0 . . . ) and (a−1
1 , a−1

1 , 0 . . . ). In paticular, hr1,r2(ρmin) = 0.
Now modify the lengths so that

l
(1)
2

l
(1)
1

=
l
(2)
2

l
(2)
1

< min
3≤j≤k

l
(j)
2

l
(j)
1

.

Then minD(l1, l2) = min Ir1,r2 is attained, in particular, for the measure of maximal en-

tropy for the subshift of finite type obtained by restricting to the symbols {a1, a
−1
1 , a2, a

−1
2 }.

A simple caluclation then shows that

hr1,r2(ρmin) ≥ 2 log 3

l
(1)
1 + l

(2)
1

> 0.

Of course, a small perturbation returns us to the situation of zero entropy at the endpoints.
For analogous results in the context of Hölder continuous function on subshifts of finite
type, see [25].
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5. The Manhattan Curve

In this section, we discuss the Manhattan curve M(l1, l2) associated to a pair of lengths
l1, l2 ∈ cv(F ). This is defined by

M(l1, l2) = ∂

(a, b) ∈ R2 :
∑

w∈C(F )

e−al1(w)−bl2(w) < +∞

 .

As noted in the introduction, this may be thought of as the natural analogue of the critical
exponent for a single length function.

The following theorem describes how various quantities may be read off from M(l1, l2).

Theorem 5.1. Let l1, l2 ∈ cv(F ).

(i) M(l1, l2) is a straight line if and only if l1 is a constant multiple of l2.
(ii) M(l1, l2) is real analytic.

(iii) The set of slopes of normals to M(l1, l2) is equal to int(D(l1, l2)). Furthermore,
M(l1, l2) has asymptotes whose normals have slopes equal to maxD(l1, l2) and
minD(l1, l2).

(iv) M(l1, l2) passes through (δ1, 0), where its normal has slope equal to i(l1, l2) (and
through (0, δ2), where its normal has slope equal to 1/i(l2, l1)).

If l1, l2 ∈ CV (F ) then

(v) there is a unique point (a, b) ∈M(l1, l2) where the normal has slope 1 and a+ b =
α1(l1, l2).

Proof. We modify the analysis of [36],[37]. Rewriting the definition of the Manhattan
curve in terms of periodic points for σ : Σ+ → Σ+, we have

M(l1, l2) = ∂

{
(a, b) ∈ R2 :

∞∑
n=1

1

n

∑
σnx=x

e−ar
n
1 (x)−brn2 (x) < +∞

}
.

By (A.2), this may be described as the set {(a, b) ∈ R2 : P (−ar1−br2) = 0}. Let us define
q(t) implicitly by

P (−tr1 − q(t)r2) = 0; (5.1)

then M(l1, l2) is the graph of q. Since

∂

∂s
P (−tr1 − sr2) = −

∫
r2 dµ−tr1−sr2 6= 0,

the Implicit Function Theorem gives that q is real analytic, establishing (ii).
If we define p(s) = pr1,r2(s) (i.e. P (−p(s)r1+sr2) = 0 or, equivalently, p(s) = Pσr1 (sR))

then
q(t) = −p−1(t).

Now Pσr1 (sR) is strictly convex and P ′′σr1 (sR) > 0 unless R is not cohomologous to a
constant, c say. This latter condition gives

∫
τ
R = cλ(τ), for all periodic σr1 -orbits τ , i.e.,
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l2(w) = cl1(w), for all w ∈ C(F ). So M(l1, l2) is strictly convex unless l2 is a constant
multiple of l1, proving (i).

Let us examine the slope of the normal at a point (a, b) = (t, q(t)) on M(l1, l2). At this
point, the normal has slope −1/q′(t). Now, differentiating (5.1),

0 =
d

dt
P (−tr1 − q(t)r2) = −

∫
r1dµ−tr1−q(t)r2 −

(∫
r2 dµ−tr1−q(t)r2

)
q′(t),

i.e.,

q′(t) = −
∫
r1dµ−tr1−q(t)r2∫
r2 dµ−tr1−q(t)r2

.

Thus the normal to M(l1, l2) at (t, q(t)) has slope

−1

q′(t)
=

∫
r2 dµ−tr1−q(t)r2∫
r1dµ−tr1−q(t)r2

.

Therefore, using Proposition A.3, the set of slopes of normals to M(l1, l2) is equal to{∫
r2 dµ−tr1−q(t)r2∫
r1dµ−tr1−q(t)r2

: t ∈ R
}

= int(Ir2,r1) = int(D(l1, l2)).

This proves the first part of (iii) and the statement about the asymptotes follows. It is
clear that M(l1, l2) passes through (δ1, 0) at at this point the normal has slope∫

r2 dµ
1∫

r1 dµ1
= i(l1, l2).

The statement about (0, δ2) follows easily. This proves (iv).
Suppose that l1, l2 ∈ CV (F ), l1 6= l2. Then, by Lemma 4.2, 1 ∈ int(D(l1, l2)). If the

normal has slope 1 at (a, b) = (t, q(t)) then∫
r2 dµ−tr1−q(t)r2∫
r1 dµ−tr1−q(t)r2

= 1

and
a+ b = t+ q(t) = p(−q(t)) + q(t) = p(ξ)− ξ,

where ξ is chosen so that p′(ξ) = 1. Then

p(ξ)− ξ =
h(µ−p(ξ)−ξr2)∫
r1 dµ−p(ξ)r1−ξr2

= hr1,r2(1)

and so
a+ b = hr1,r2(1) = α1(l1, l2),

as required. This proves (v). �
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Appendix: Shifts of Finite Type and Thermodynamic Formalism

We shall study length functions on free groups via a dynamical system called a subshift
of finite type. In this appendix we review some background material about the ergodic
theory of these systems. For basic facts about ergodic theory, see [39].

We begin with the definition of a subshift of finite type. Let A be finite matrix, indexed
by a set I, with entries zero and one. We define the shift space

Σ+
A = {(xn)∞n=0 ∈ IZ

+

: A(xn, xn+1) = 1 ∀n ∈ Z+}

and the (one-sided) subshift of finite type σ : Σ+
A → Σ+

A by (σx)n = xn+1. We give I the

discrete topology, IZ+

the product topology and Σ+
A the subspace topology. A compatible

metric is given by

d((xn)∞n=0, (yn)∞n=0) =

∞∑
n=0

1− δxnyn
2n

,

where δij is the Kronecker symbol.
We say that A is irreducible if, for each (i, j) ∈ I2, there exists n(i, j) ≥ 1 such

that An(i,j)(i, j) > 0 and aperiodic if there exists n ≥ 1 such that, for each (i, j) ∈ I2,
An(i, j) > 0. The latter statement is equivalent to σ : Σ+

A → Σ+
A being topologically

mixing (i.e. that there exists n ≥ 1 such that for any two non-empty open sets U, V ⊂ Σ+
A,

σ−m(U) ∩ V 6= ∅, for all m ≥ n).
If A is aperiodic then it has a positive simple eigenvalue β which is strictly maximal in

modulus (i.e. every other eigenvalue has modulus strictly less that β) and the topological
entropy h(σ) of σ is equal to log β.

If an ordered n-tuple (x0, x1, . . . , xn−1) ∈ In is such that A(xm, xm+1) = 1, m =
0, 1, . . . , n−2 then we say that (x0, x1, . . . , xn−1) is an allowed word of length n in Σ+

A; the

set of these is denoted W
(n)
A . If σnx = x then we say that {x, σx, . . . , σn−1x} is a periodic

orbit for σ. Clearly any such an x is obtained by repeating a word (x0, x1, . . . , xn−1) ∈
W

(n)
A with the additional property that A(xn−1, x0) = 1. Note that we regard the periodic

orbits {x, σx, . . . , σn−1x}, {x, σx, . . . , σn−1x}, x, . . . , σn−1x, etc., as distinct objects (even
though they are identical as point sets). If σnx = x but σmx 6= x for 0 < m < n then we
say that {x, σx, . . . , σn−1x} is a prime periodic orbit.

A function f : Σ+
A → R is Hölder continuous if there exists α > 0 and C(f, α) ≥ 0 such

that |f(x)− f(y)| ≤ C(f, α)d(x, y)α, for all x, y ∈ Σ+
A. We say that a function f : Σ+

A → R
is locally constant if there exists N ≥ 0 such that if x = (xn)∞n=0, y = (xn)∞n=0 have xn = yn
for all n ≥ N then f(x) = f(y). Clearly, if f is locally constant then f is Hölder continuous
(for any choice of exponent α > 0).

Let M denote the space of all Borel probability measures on Σ+
A, equipped with the

weak∗ topology, and let Mσ denote the subspace consisting of σ-invariant probability
measures. For µ ∈ M1

σ, write h(µ) for the measure theoretic entropy of µ. There is a
unique measure µ0 ∈M1

σ, called the measure of maximal entropy, for which

h(µ0) = sup
µ∈M1

σ

h(µ)
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and this value coincides with the topological entropy h(σ).
For a continuous function f : Σ+

A → R, we define the pressure P (f) of f by the formula

P (f) = sup
µ∈Mσ

(
h(µ) +

∫
f dµ

)
(A.1)

and call any measure for which the supremum is attained an equilibrium state for f . If f
is Hölder continuous then f has a unique equilibrium state which we denote by µf . The
latter is fully supported and h(µf ) > 0. The equilibrium state of the zero function is the
measure of maximal entropy, so this is consistent with our earlier notation. The pressure
of f also has the following characterization in terms of periodic points:

P (f) = lim
n→+∞

1

n
log

∑
σnx=x

ef
n(x), (A.2)

where fn = f + f ◦ σ + · · ·+ f ◦ σn−1.
We say that two functions f, g : Σ+

A → R are (continuously) cohomologous if there is

a continuous function u : Σ+
A → R such that f = g + u ◦ σ − u. The cohomology class

of a Hölder continuous function is determined by its values around periodic orbits. More
precisely, we have the following.

Proposition A.1 (Livsic Theorem). Two Hölder continuous functions f, g : Σ+
A → R

are cohomologous if and only if fn(x) = gn(x) whenever σnx = x.

If f and g are cohomologous then P (f) = P (g) and if c is a real number then P (f+c) =
P (f) + c. Now suppose that f and g are Hölder continuous and, for t ∈ R, consider the
function t 7→ P (tf) This function is convex and real analytic and

P ′(tf + g) =

∫
f dµtf+g. (A.3)

Furthermore, if f is not cohomologous to a constant then P (tf + g) is strictly convex
and P ′′(tf + g) > 0 everywhere. (If f is cohomologous to a constant c then clearly
P (tf + g) = P (g) + tc.)

Suppose that a Hölder continuous function r : Σ+
A → R is cohomologous to a strictly

positive function. Since we are only interested in sums over periodic orbits and integrals
with respect to invariant measures, we shall, in fact, assume that r itself is strictly positive.
If δ > 0 satisfies P (−δr) = 0 then, since µ−δr attains the supremum in (A.1), we have the
relation

δ =
h(µ−δr)∫
r dµ−δr

. (A.4)

More generally, given another Hölder continuous function r : Σ+
A → R, we define pr,f (s)

by P (−pr,f (s)r + sf) = 0. Note that, by (A.3),

P ′(−tr + f) =

∫
r dµ−tr+f > 0.
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Therefore, by the Implicit Function Theorem, pr,f (s) is real analytic and

p′r,f (s) =

∫
f dµ−pr,f (s)r+sf∫
r dµ−pr,f (s)r+sf

. (A.5)

We write

If,r :=

{∫
fdµ∫
rdµ

: µ ∈Mσ

}
.

Since
∫
rdµ > 0, for any µ ∈ Mσ, µ 7→

∫
fdµ/

∫
rdµ is continuous with respect to the

weak∗ topology on Mσ. So, as Mσ is compact and convex, If,r is a closed interval.

Proposition A.2.

(i) We have Ir,f = {c} if and only if f is cohomologous to cr.
(ii) If int(Ir,f ) 6= ∅ and

∫
fdµ/

∫
rdµ is an endpoint of Ir,f then µ does not have full

support.
(iii) If int(Ir,f ) 6= ∅ then

int(Ir,f ) = {p′r,f (s) : s ∈ R} =

{∫
f dµ−pr,f (s)r+sf∫
r dµ−pr,f (s)r+sf

: s ∈ R
}
.

(iv) We have int(Ir,f ) 6= ∅ if and only if p′′r,f (s) > 0 for some (or, equivalently, all)
s ∈ R.

Proof. (i) The statement Ir,f = {c} is equivalent to∫
f dµ−

∫
cr dµ = 0,

for all µ ∈Mσ. In particular, this is equivalent to fn(x) = crn(x), whenever σnx = x. By
Proposition A.1, this is equivalent to f and cr being cohomologous.

(ii) Suppose that Ir,f = [a, b] and that
∫
fdµ/

∫
rdµ = b. Then µ is a maximizing measure

for f−br. Then supp µ is contained in a closed subset of Σ+
A on which f−br is cohomologous

to 0 [15, Lemma 2]. By (i), this closed set cannot be Σ+
A itself.

(iii) Since pr,f is strictly convex, {p′r,f (s) : s ∈ R} is an open interval. The following

argument is taken from [15]. From the definition of pr,f (s), for any µ ∈Mσ,

pr,f (s) ≥ h(µ)∫
r dµ

+ s

∫
f dµ∫
r dµ

,

for all s ∈ R. In particular, the graph of the convex function pr,f lies above a line
with slope

∫
fdµ/

∫
rdµ in R2 (possibly touching it tangentially) and so

∫
fdµ/

∫
rdµ ∈

{p′r,f (s) : s ∈ R}. Thus, since µ is arbitrary,

Ir,f ⊂ {p′r,f (s) : s ∈ R}.
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By (A.5), {p′r,f (s) : s ∈ R} ⊂ Ir,f . Therefore, int(Ir,f ) = {p′r,f (s) : s ∈ R}, as required.

(iv) If p′′r,f (s) > 0 for some s ∈ R then the graph of pr,f cannot be a straight line, so

int(Ir,f ) 6= ∅. On the other hand, suppose that int(Ir,f ) 6= ∅ and choose ξ ∈ R. Write
ρ = p′r,f (ξ). Note that pr,f−ρr(s) = pr,f (s) − sρ, so p′r,f−ρr(ξ) = 0. Differentiating the

identity P (−pr,f−ρr(s)r + s(f − ρr)) = 0 twice at s = ξ gives

p′′r,f (ξ) = p′′r,f−ρr(ξ) =

(∫
r dµpr,f−ρr(ξ)r+ξ(f−ρr)

)−1
∂2P (−pr,f−ρr(ξ)r + s(f − ρr))

∂s2
,

which is positive unless f − ρr is cohomologous to a constant. By the choice of ρ, this
constant must necessarily be zero, so p′′r,f (ξ) > 0 unless f is cohomologous to ρr, which

contradicts the assumption that int(Ir,f ) 6= ∅. �

We also define a weighted entropy function hr,f : Ir,f → R+ by

hr,f (ρ) = sup

{
h(µ)∫
r dµ

: µ ∈Mσ and

∫
f dµ = ρ

}
. (A.6)

From its definition,

pr,f (s) = sup

{
h(µ)∫
r dµ

+ s

∫
f dµ∫
r dµ

: µ ∈Mσ

}
= sup
ρ∈Ir,f

sup

{
h(µ)∫
r dµ

+ s

∫
f dµ∫
r dµ

: µ ∈Mσ,

∫
f dµ∫
r dµ

= ρ

}
= sup
ρ∈Ir,f

(
sup

{
h(µ)∫
r dµ

: µ ∈Mσ,

∫
f dµ∫
r dµ

= ρ

}
+ sρ

)
= sup
ρ∈Ir,f

(hr,f (ρ) + sρ).

In the language of convex analysis, −hr,f is the convex conjugate of pr,f [33,p.104]. As-
suming that f is not cohomologous to a constant multiple of r, pr,f is strictly convex, so
hr,f is strictly concave. Since the entropy map µ 7→ h(µ) is upper semi-continuous, this
implies that hr,f : Ir,f → R is continuous. The next result follows from the theory of
convex functions [33].

Proposition A.3. Suppose that f is not cohomologous to a constant multiple of r. If, for
ρ ∈ int(Ir,f ), ξ ∈ R is the unique solution to p′(ξ) = ρ then pr,f (ξ) = hr,f (ρ) + ξρ, so that

hr,f (ρ) =
h(µ−pr,f (ξ)r+ξf )∫
r dµ−pr,f (ξ)r+ξf

and µ−pr,f (ξ)r+ξf is the only element ofMσ realizing the supremum in (A.6). Furthermore,
hr,f : int(Ir,f )→ R is real analytic.

In the remainder of this appendix, we shall reinterpret Ir,f , pr,f and hr,f in terms of
a suspended semi-flow over Σ+

A. The reason for this is that it will allow us to quote a
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number of results from the theory of suspended and hyperbolic flows (which also hold
automatically for semi-flows.)

We define the r-suspension space

ΣrA = {(x, s) : x ∈ Σ+
A, 0 ≤ s ≤ r(x)}/ ∼,

where (x, r(x)) ∼ (σx, 0). (It was for this construction to make sense that we took r to
be strictly positive, rather than merely cohomologous to a strictly positive function.) This
supports the suspended semi-flow σrt : ΣrA → ΣrA defined (for small t > 0) by σrt (x, s) =
(x, s+t) and respecting the identifications. A more familiar object of study is the suspended
flow over the corresponding two-sided shift space ΣA = {(xn)∞n=−∞ ∈ IZ : A(xn, xn+1) =
1 ∀n ∈ Z}. Such flows and their periodic orbits are well understood [22][29],[35] and it is
easy to see that the same results hold for semi-flows.

We let Mσr denote the space of σrt -invariant probability measures on ΣrA. Every m ∈
Mσr may be written locally as

m =
µ× Leb∫
r dµ

, (A.7)

where µ ∈Mσ and Leb is one dimensional Lebesgue measure, and has entropy

hσr (m) =
h(µ)∫
r dµ

. (A.8)

Given a Hölder continuous function F : ΣrA → R, we may associate a Hölder continuous
function f = I(F ) : Σ+

A → R by

I(F ) :=

∫ r(x)

0

F (x, t) dt.

One easily sees that if m and µ are related by (A.7) then∫
Fdm =

∫
f dµ∫
r dµ

.

Given a Hölder continuous function f : Σ+
A → R, it is easy to construct a Hölder continuous

function F : ΣrA → R such that I(F ) = f . For example, choose a smooth function
∆ : [0, 1]→ R+ with ∆(0) = ∆(1) = 0 and

∫
∆(y)dy = 1. Then set

F (x, s) = ∆

(
s

r(x)

)
f(x)

r(x)
, 0 ≤ s ≤ r(x).

(The function ∆ is introduced so that F respects the equivalence relation (x, r(x)) ∼
(σx, 0).) In particular,

Ir,f =

{∫
Fdm : m ∈Mσr

}
.

We define the pressure Pσr (F ) of a function F : ΣrA → R by the formula

Pσr (F ) = sup
m∈Mσr

(
h(m) +

∫
F dm

)
and call any measure for which the supremum is attained an equilibrium state for F . If F
is Hölder continuous then F has a unique equilibrium state which we denote by mF .
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Proposition A.4. We have P (−Pσr (F )r + f) = 0, where f = I(F ), and, locally,

mF =
µ−P (F )r+f × Leb∫
r dµ−P (F )r+f

.

Proof. The identity P (−cr + f) = 0 is equivalent to

sup
µ∈Mσ

(
h(µ) +

∫
(−cr + f) dµ

)
= 0,

which may be rewritten as

sup
µ∈Mσ

(
h(µ)∫
r dµ

+

∫
f dµ∫
r dµ

)
= c.

By (A.7) and (A.8), this becomes

c = sup
m∈Mσr

(
hσr (m) +

∫
F dm

)
= Pσr (F ).

This calculations also give the formula for mF . �

Remark. In particular, the equilibrium state of the zero function m0 is the measure of
maximal entropy for σrt and, locally,

m0 =
µ−h(σ)r × Leb∫
r dµ−h(σ)r

.

Applying the lemma to sF , gives Pσr (sF ) = pr,f (s). Hence, by (A.5),

P ′σr (sF ) = p′r,f (s) =

∫
f dµ−pr,f (s)r+sf∫
r dµ−pr,f (s)r+sf

=

∫
F dmsF . (A.9)

There is clearly an exact correspondence between periodic orbits for σrt and σ. If τ is
the prime periodic σr-orbit passing through the prime periodic σ-orbit x, σx, . . . , σn−1x
(σnx = x) then the period of τ is

λ(τ) := inf{t > 0 : σrt (x, 0) = (x, 0)} = rn(x).

Furthermore, if we let mτ denote the σr-invariant probability measure supported on τ
then, for F : ΣrA → R,∫

F dmτ :=
1

λ(τ)

∫ λ(τ)

0

F (σrt (x, 0)) dt =
fn(x)

rn(x)
, (A.10)

where f = I(F ). Since the periodic orbit measures mτ are weak∗ dense in Mσr , we have

If,r =

{∫
Fdmτ : τ periodic σr-orbit

}
=

{
fn(x)

rn(x)
: σnx = x

}
. (A.11)
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