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Abstract. In this article we consider natural counting problems for closed geodesics

on negatively curved surfaces. We present asymptotic estimates for pairs of closed
geodesics, the differences of whose lengths lie in a prescribed family of shrinking

intervals. Related pair correlation problems have been studied in both Quantum

Chaos and number theory.

0. Introduction

One of the most striking properties of negatively curved surfaces is the regularity
of the distribution of the lengths of their closed geodesics. This is shown by the well-
known prime geodesic theorem. More precisely, let V denote a compact surface with
a C∞ Riemannian metric of strictly negative curvature. Given any closed geodesic
γ we denote its length by λ(γ). By a remarkable result of Margulis, there exists
h > 0 such that

# {γ : λ(γ) ≤ T} ∼ ehT

hT
, as T → +∞ (0.1)

[15], where A(T ) ∼ B(T ) denotes that limT→+∞ A(T )/B(T ) = 1. The quan-
tity h is the topological entropy of the associated geodesic flow. In the spe-
cial case of surfaces with constant curvature κ < 0, this was proved earlier by
Huber, with h =

√
−κ > 0 [9]. Let π1(V ) denote the fundamental group of

V . If V has genus g ≥ 2 then we consider the standard presentation π1(V ) =

〈a1, . . . , ag, b1, . . . , bg :
∏2g

i=1[ai, bi] = 1〉 and set S = {a±1
1 , . . . , a±1

g
, b±1

1 , . . . , b±1
g

}.
We can associate to each element g ∈ π1(V ) − {1} the word length |g|, i.e., the
smallest number of elements from S needed to write g. Every conjugacy class
in π1(V ) contains a unique closed geodesic. Given a closed geodesic γ we define
|γ| = inf{|g| : g ∈ 〈γ〉}, where the infimum is over the elements in the conjugacy
class 〈γ〉 associated to γ. An analogue of (0.1) for word lengths is the following

# {γ : |γ| ≤ n} ∼ eh0

eh0 − 1

eh0n

n
, as n→ +∞. (0.2)

The quantity h0 is the logarithm of an algebraic integer and depends on the choice
of generators S. Given a < b we denote

π(n, [a, b]) = # {(γ, γ′) : |γ|, |γ′| ≤ n, a ≤ λ(γ) − λ(γ′) ≤ b} .
We shall prove the following result.
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Theorem 1. There exists σ > 0 such that, for any a < b,

π(n, [a, b]) ∼ (b− a)e2h0

(2π)1/2σ(eh0 − 1)2
e2h0n

n5/2
, as n→ +∞.

Related questions have been studied numerically [2],[3]. The proof of Theorem 1
depends on techniques developed in [20]. However, using a more delicate analysis,
incorporating Dolgopyat’s estimates on transfer operators [8], it is possible to prove
a version of Theorem 1 which is stronger in two respects. Firstly, we will allow the
interval in which the differences lie to shrink as the word length n tends to infinity
and, secondly, we will obtain a result uniform in the positioning of the interval.
To make this more precise, it is convenient to write the initial interval in the form
[z+a, z+ b], for some choice of z ∈ R. We will then consider a sequence of intervals
of the form In(z) := [z + εna, z + εnb], where εn > 0 tends to zero. We will also
allow z to vary over R and obtain a uniform result. We say that a sequence of
positive numbers εn tends to zero subexponentially if lim supn→+∞ | log εn|/n = 0.

Theorem 2. There exists σ > 0 such that for any a < b and a sequence εn > 0
which tends to zero at a subexponential rate, we have that

lim
n→+∞

sup
z∈R

∣∣∣∣
σn5/2

εne2h0n
π(n, In(z)) − (b− a)e2h0

(2π)1/2(eh0 − 1)2
e−z2/2σ2n

∣∣∣∣ = 0.

In particular, this implies that, for any fixed z ∈ R,

π(n, In(z)) ∼ (b− a)e2h0εn
(2π)1/2σ(eh0 − 1)2

e2h0n

n5/2
, as n→ +∞.

Clearly, we cannot expect the result to hold if εn tends to zero too quickly. In
particular, counting the diagonal terms (γ, γ) guarantees that, provided 0 ∈ In,
π(n, In) ≥ ceh0n, for some c > 0 and sufficiently large n ≥ 1. Thus the asymptotics
in Theorem 2 cannot hold if εn = O(e−ηn), with η > h0. Theorem 1 and Theorem
2 may be compared with pair correlation results in other contexts [4], [13], [17],
[18], [24]. Similar asymptotic formula do not seem to be available if we order the
pairs by their geometric length. For example, we might consider ordering the pairs
(γ, γ) by the sum of their lengths λ(γ) + λ(γ ′) but this apparently only leads to
weaker estimates of the form

∑

λ(γ)+λ(γ′)≤T
0≤λ(γ)−λ(γ′)≤ε

λ(γ)λ(γ′)e−h(λ(γ)+λ(γ′)) ∼ AT, as T → +∞, (0.3)

for some A > 0. We shall now outline the contents of the paper. Section 1 con-
tains some preliminary results on subshifts of finite type and the coding of closed
geodesics by periodic orbits. Section 2 presents an estimate on certain sums over
periodic points of subshifts of finite type in terms of pressure functions. The proof
of Theorem 1 is presented in section 3. The proof of Theorem 2 is presented in
section 5, following additional estimates on transfer operators, given in section 4.
Section 6 gives asymptotic estimates related to (0.3). In section 7, we describe a
generalization to higher dimensional correlation functions and analogous results for
the action of the fundamental group of V on its universal cover. We would like to
thank Jon Keating and Jens Marklof for interesting discussions.
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1. Symbolic dynamics

We shall study closed geodesics on V via the geodesic flow φt : SV → SV .
Note that there is a one-to-one correspondence between closed geodesics on V and
periodic orbits for the geodesic flow. An essential ingredient in our analysis will
be a symbolic model for the geodesic flow. Given a k × k aperiodic matrix A with
entries 0 or 1, we define a space

Σ = {x = (xn)∞n=0 : A(xn, xn+1) = 1, ∀n ∈ Z
+}

and a shift σ : Σ → Σ given by (σx)n = xn+1. There is a metric on Σ given by
d(x, y) =

∑∞
n=0 2−n(1 − δ(xn, yn)). A shift is mixing if the matrix A is aperiodic,

i.e., there exists N ≥ 1 such that AN (i, j) ≥ 1 for any 1 ≤ i, j ≤ k. Given n ≥ 1,
we denote rn(x) := r(x) + r(σx) + · · ·+ r(σn−1x).

Lemma 1.1. We can associate to the geodesic flow a mixing subshift σ : Σ → Σ
and a Hölder continuous function r : Σ → R such that, with at most a finite number
of exceptions, prime periodic orbits {x, σx, . . . , σn−1x} correspond to prime closed
geodesics γ whose word length is given by |γ| = n and whose length is λ(γ) = rn(x).

Proof. This essentially follows from the work of Series [28, 29, 30, 31] (or alterna-
tively Adler and Flatto [1]) and is now folklore in this subject. We shall give a
sketch of the main points. Consider first the case of a constant curvature surface.

In this case we may identify the universal cover Ṽ with the Poincaré disk D2 = {z ∈
C : |z| < 1} equipped with the Poincaré metric ds2 = 1

4(dx2 +dy2)/(1− (x2 +y2))2

and regard the covering group Γ as a discrete group of isometries. Consider a finite
symmetric generating set S. In particular, S is a set of side pairing transformations
for a fundamental domain R ⊂ D2 whose boundary ∂R is a finite union of geodesic
arcs. We first assume for convenience that R satisfies the even corners condition.
More precisely, this condition means that if any side of R is extended to a complete
geodesic in D2 then this geodesic is contained in ∪g∈Γg(∂R). The importance of
this condition lies in the following. The lift of any geodesic γ on V to D

2 cuts a se-
quence of sides . . . , s−1, s0, s1, . . . , sk, . . . of ∪g∈Γg(∂R). The associated sequence
of labels . . . , g−1, g0, g1, . . . , gk, . . . (of side identifications, where we take the label
on the far side of each si) is called the cutting sequence of γ. If the even corners
condition is satisfied, we have that g = g0 · · ·gn−1 has word length equal to n (i.e,
the cutting sequence gives an expression for g which is shortest with respect to the
word metric) [5]. (In the exceptional case γ passes through a vertex of ∪g∈Γg(∂R)
then one needs to make a slight technical modification, but this contribution is neg-
ligible for closed geodesics.) We can now outline the construction of an associated
expanding Markov map f : S1 → S1 on the boundary of D2 (see [31, p.134-138] for
full details). Given g ∈ S, let H(g) denote the half-space in D2∪S1 (i.e., the closed
unit disk) obtained by extending the corresponding side of R and the requirement
that H(g) does not contain R. For each non-empty intersection of pairs of such sets
H(gi)∩H(gj), gi, gj ∈ S, one makes a consistent choice of gm ∈ {gi, gj} and defines

f |H(gi)∩H(gj) = g−1
m . On the remaining part of H(gi), H(gj), one defines f = g−1

i ,

f = g−1
j , respectively. We set B(gi) = {x ∈ H(gi) : f(x) = g−1

i x} and define

I(gi) ⊂ S1 to be the intersection of the closure of B(gi) with S1. A key property of
f : D2\R→ D2\R is that if f(gR) = hR then |h| = |g| − 1 [31, Theorem 5.10]. It is
useful to consider the alternative construction using the Cayley graph of (Γ, S) in
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[29]. More precisely, using the relations in Γ (which correspond geometrically to the
side pairings) Series presented an algorithm for (uniquely) writing each g ∈ Γ−{e}
of word length |g| = n, say, as a composition g = gi0 . . . gin−1

of elements from S [29,
Theorem 3.5]. The key idea was to look at paths in the Cayley graph and specify
how closed loops associated to the relations are negotiated. This presentation of el-
ements of Γ−{e} is called admissible [29, p.356]. In this construction, each interval
I(gi) in the partition of the boundary is associated to a generator gi ∈ S, and is the
union of limit points of the sequences g0 = gigi2 . . . gin

0. Distinct intervals I(gi) can
only intersect at end points [29, p.351] and one can define f :

∐
i I(gi) →

∐
i I(gi)

by f |I(gi) = g−1
i [29, p.351]. The collection of closed intervals (or, more accurately,

arcs) I(g), g ∈ S, arising the above constructions can be refined by intersections
with their preimages to give a collection J = {J1, . . . , Jk} of closed intervals with
the crucial property that each image f(Ji) is the union of intervals in J [31, p.
138]. In particular, this property makes the expanding map f :

∐
Ji →

∐
Ji on

the disjoint union of closed intervals into a Markov mapping, and thus by a stan-
dard construction it is semi-conjugate to a subshift of finite type σ : Σ → Σ [31,
Corollary 5.11]. More precisely, there exists a continuous map π : Σ → S1, which
is bijective except possibly at a countable number of points, with the property that
f ◦ π = π ◦ σ. The transition matrix A is given by the condition

A(i, j) =

{
1 if f−1(int(Jj)) ∩ int(Ji) 6= ∅

0 otherwise.

To code geodesics on V we need to consider the associated two-sided subshift of
finite type. Let σ : Σ∗ → Σ∗ correspond to Σ, i.e.,

Σ∗ = {x = (xn)∞n=−∞ : A(xn, xn+1) = 1, ∀n ∈ Z}.

The sequence (xn)∞n=0 ∈ Σ codes a point π(x) = γ̃(+∞) ∈ S1. A complementary
map f on the boundary similarly allows (xn)−1

n=−∞ to code a second point γ̃(−∞)
(cf. [31, §5.3.2]). Let γ̃ be the corresponding geodesic on D2 with these endpoints
at times t = +∞ and t = −∞, respectively. Finally, let γ be the projection onto a
geodesic on V . Let Σ∗∗ be the subset of Σ∗ defined on page 617 of [30] (where it is
called Σ) of uniquely coded geodesics. Note that Σ∗∗ contains all the periodic points
in Σ∗. Let R denote the set of geodesics on H2 which intersect the interior of R.
Define τ : R → R by defining τ(γ) to be the geodesic equivalent to γ which enters
R at a point equivalent to the point where γ leaves R. One of the main results of
[30] is that there are large subsets of Σ∗∗ and R on which σ and τ are conjugate. We
can identify R with Markov sections corresponding to inwardly directed tangent
vectors based on the sides of R (and τ with a Poincaré map). Once this coding is
established we can easily dispense with the even corners condition (cf. [28], or by
using structural stability [11, Corollary 18.2.2]). In the particular case of a closed

geodesic γ, we can associate a finite number of lifts to the universal cover Ṽ which
intersect the interior of R. Let γ̃ be one of these lifts and let γ̃(+∞) ∈ S1 again
denote its endpoint at time t = +∞. At the symbolic level, if γ̃ corresponds to a
closed geodesic then τn(γ) = γ, for some n ≥ 1, and it is coded by a periodic orbit in
Σ . Provided γ̃(+∞) does not lie in the intersection of two of the intervals in {Ji}k

i=1,
there is a unique sequence x ∈ Σ such that π(x) = γ̃(+∞). (There are at most 2k
exceptional closed geodesics.) The shift σ : Σ → Σ corresponds to the action of f
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on π(x). Since γ is closed there exists g ∈ Γ such that gγ̃(+∞) = γ̃(+∞). The
f -orbit of the endpoint γ̃(+∞) gives a word x0, . . . , xn−1 where f i(γ̃(+∞)) ∈ Jxi

,
for i = 0, . . . , n − 1, and we can write g = gx0

· · · gxn−1
. Since f and σ are semi-

conjugate, x ∈ Σ is the associated σ-periodic point (of period n). Thus we have
a correspondence between closed geodesics γ and periodic orbits for σ, with at
most finitely many exceptions (cf. also [29, proof of Theorem 4.12]). Moreover, by
construction |g| = n, and since (cyclically reduced) conjugate elements have the
same word length [5, Theorem 2.12], we can write |γ| = n. We can take r : Σ → R

to be the map r(x) := log |f ′(π(x))| (cf. [29, §5]). For a periodic point σnx = x
we have that rn(x) = log |(fn)′(π(x))|, which is easily checked to be the expansion
rate at γ̃(−∞) of the element g ∈ Γ with gγ̃(−∞) = γ̃(−∞). In particular, in the
constant curvature case this is exactly the length of the closed geodesic. In the case
of variable negative curvature, every metric is conformally equivalent to a metric
of constant curvature (cf. [10, p.139]). We can carry out the above construction
for the constant curvature metric, and then the coding persists for the metric of
variable curvature by structural stability [11, Corollary 18.2.2]. Furthermore, the
word length of closed geodesics still corresponds to the period of periodic σ-orbits.
However, the function r will be replaced by a Hölder continuous function arising
from the standard (Hölder) reparametrization of the geodesic flow. �

The finite number of possible exceptional geodesics which may be inaccurately
counted clearly does not affect the asymptotics we consider later. Since the geodesic
flow is mixing, the function r has the additional property that it is not cohomologous
to a constant, i.e., it is not possible to find a continuous function ψ : Σ → R and
c ∈ R such that r = ψ ◦ σ − ψ + c. Theorem 1 involves estimates on numbers
of closed geodesics ordered by word length. In order to obtain these we need to
consider periodic orbits for the subshift of finite type Σ. By the Perron-Frobenius
Theorem, A has a unique simple positive maximal eigenvalue λ > 1 which is a
algebraic integer. It is clear that #{x ∈ Σ : σnx = x} = TraceAn and from this
it is easy to deduce that #{x ∈ Σ : σnx = x} = λn(1 + O(e−εn)), for some ε > 0.
By Lemma 1.1, the number of closed geodesics of word length n is equal, up to a
bounded error, to the number of periodic orbits for σ of period n. In particular,
we see that logλ is equal to the growth rate h0 defined in (0.2). Moreover, as is
well known, h0 = logλ is equal to the topological entropy of σ : Σ → Σ. Let
Mσ denote the set of all σ-invariant probability measures on Σ. For µ ∈ Mσ,
we let h(µ) denote the measure theoretic entropy of σ with respect to µ. By the
variational principle, h0 = sup {h(µ) : µ ∈ Mσ} and there is a unique measure µ0,
called the measure of maximal entropy, for which h(µ0) = h0. For the standard
presentation of a surface of genus g described in the introduction, it can be shown
that log(4g−2) ≤ h0 ≤ log(4g−1). For a continuous function g : Σ → R, we define
the pressure P (g) by

P (g) = sup

{
h(m) +

∫
gdm : m ∈ Mσ

}
.

If g is a Hölder continuous function then the supremum is attained at a unique
measure µg, called the equilibrium state of g. We shall be particularly interested in
the function s 7→ P (sr), s ∈ R. This function is real analytic and has an analytic
extension to a neighbourhood of the real line, furthermore, at s = 0, it takes the
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value h0,

d

ds
P (sr)

∣∣∣∣
s=0

=

∫
rdµ0 and

d2

ds2
P (sr)

∣∣∣∣
s=0

> 0

(where the last statement uses that r is not cohomologous to a constant) [25]. In
order to study pairs of closed geodesics we shall consider a product space. Let
Σ = Σ × Σ, and consider the product transformation σ = σ × σ on Σ defined by
σ(x, y) = (σx, σy). This is again a mixing subshift of finite type. The symbols for Σ
are pairs (i, j), where i, j and the associated matrix A is given by A ((i, j), (i′, j′)) =
A(i, j)A(i′, j′). The topological entropy of σ is equal to 2h0. Given the Hölder
continuous function r : Σ → R we can associate a function R : Σ → R defined by
R(x, y) = r(x)−r(y). The following lemma illustrates the usefulness of introducing
Σ to studying problems on pairs of closed geodesics.

Lemma 1.2. Periodic points σn(x, y) = (x, y) ∈ Σ project to periodic points σnx =
x, σny = y ∈ Σ which correspond to closed geodesics γ and γ ′, say, with |γ| = |γ′| =
n. Moreover, Rn(x, y) = λ(γ) − λ(γ′).

Proof. This follows from the above definitions and Lemma 1.1. �

The following technical result will be prove important later.

Lemma 1.3. R is not cohomologous to the sum of a continuous function taking
values in a discrete subgroup of R and a constant, i.e., there are no continuous
ψ : Σ → R, M : Σ → aZ (with a > 0) and c ∈ R such that R = ψ ◦ σ − ψ +M + c.

Proof. Assume for a contradiction that R is cohomologous to such a M + c, as
above, then Rn(x, y)− nc = rn(x)− rn(y)− nc = Mn(x, y) whenever σnx = x and
σny = y. Suppose that γ0 is a closed geodesic with |γ0| = 1 and let σy = y be the
associated fixed point. Then, for any closed geodesic γ with |γ| = n and associated
periodic point σnx = x, we have l(γ)−n(l(γ0)+c) = rn(x)−nr(y)−nc = Mn(x, y).
In other words, r : Σ → R is cohomologous to r(y) + c+M(·, y), i.e., the sum of a
constant and a function valued in aZ. However, it is easy to see that this cannot
be the case. More precisely, we can find sequences of closed geodesics γn, γ′n with
|γn| = |γ′n|, but such that the lengths satisfy l(γn) 6= l(γ′n) and l(γn) − l(γ′n) → 0,
as n→ +∞. �

As for σ : Σ → Σ, given a continuous function G : Σ → R, we define the pressure
P (G) by

P (G) = sup

{
h(m) +

∫
Gdm : m ∈ Mσ

}
.

If G is a Hölder continuous function then the supremum is attained at a unique
measure mG, called the equilibrium state of G. In particular, m0 is the measure of
maximal entropy for σ, i.e., h(m0) = 2h0. By uniqueness, it is easy to see that m0

is equal to the product measure µ0 × µ0. We shall need to consider the function
s 7→ P (sR), s ∈ R. This function is real analytic and has an analytic extension to
a neighbourhood of the real line, furthermore, at s = 0, it takes the value 2h0,

d

ds
P (sR)

∣∣∣∣
s=0

=

∫
R(x, y)dm0(x, y) =

∫
r(x)dµ0(x) −

∫
r(y)dµ0(y) = 0 (1.1)
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and, since, by Lemma 1.3, R is not cohomologous to a constant,

d2

ds2
P (sR)

∣∣∣∣
s=0

> 0. (1.2)

In our subsequent analysis, we shall be particularly interested in P (sr) and P (sR)
for small imaginary values of s. The following lemma relates P (itR) and P (±itr).
Lemma 1.4. Suppose that |t| is sufficiently small that P (itR), P (itr) and P (−itr)
are defined. Then P (itR) is real valued and eP (itR) = eP (itr)+P (−itr). Furthermore,

N∑

n,m=1

enP (itr)emP (−itr) =
e(N+1)P (itR)

(eP (itr) − 1)(eP (−itr) − 1)
(1 + O(τN)) (1.3)

for some 0 < τ < 1.

Proof. For the first part we observe by the variational principle (cf. [33]) that for
s ∈ R,

eP (sR) = lim
n→+∞


 ∑

σn(x,y)=(x,y)

esRn(x,y)




1/n

= lim
n→+∞

(
∑

σnx=x

esrn(x,y)

)1/n( ∑

σny=y

e−srn(x,y)

)1/n

= eP (sr)+P (−sr).

The identity then follows by the uniqueness of the analytic extension. Furthermore,
since Rn(x, y) = −Rn(y, x), we have that

∑
σn(x,y)=(x,y) e

itRn(x,y) is real valued and

thus so is P (itR). For the second part, we can write

N∑

n,m=1

enP (itr)emP (−itr) =

(
e(N+1)P (itr) − 1

eP (itr) − 1

)(
e(N+1)P (−itr) − 1

eP (−itr) − 1

)

=
e(N+1)[P (itr)+P (−itr)]

(eP (itr) − 1)(eP (−itr) − 1)
(1 + O(τN ))

=
e(N+1)P (itR)

(eP (itr) − 1)(eP (−itr) − 1)
(1 + O(τN )),

for some 0 < τ < 1, as required �

The next lemma describes the local behaviour of P (itR).

Lemma 1.5. The function t 7→ eP (itR) has a Taylor expansion

eP (itR) = e2h0

(
1 − σ2t2

2
+O(|t|3)

)
,

where the order term is uniform on any bounded interval. Moreover, there exists
a change of coordinates v = v(t) such that for t ∈ (−ε, ε), we can have eP (itR) =
e2h0(1 − v2).
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Proof. It follows from equations (1.1) and (1.2) that the function t 7→ P (itR) has

the following properties: d
dt
P (itR)

∣∣
t=0

= 0 and d2

dt2
P (itR)

∣∣∣
t=0

< 0 [25]. This gives

the required expansion in t, with σ2 = − d2

dt2P (itR)
∣∣∣
t=0

. For the second statement

we can use the Morse Lemma to make the suitable change of coordinates and the
result follows (cf. [12]). (Note that v′(0) = σ/

√
2.) �

2. A sum over periodic points

In this section, we shall analyse the sums

N∑

n,m=1

∑

σnx=x
σmy=y

χ(rn(x) − rm(y)),

over pairs of periodic points, for appropriate test functions χ. We shall use Fourier
analysis to relate these to a family of exponential sums of periodic points. We begin
with two estimates.

Lemma 2.1. Let K ⊂ R be a compact set. There exists ε > 0, 0 < θ < 1 and
C0 > 0 such that:

(1) for t ∈ K − (−ε, ε), we can bound
∣∣∑

σnx=x e
±itrn(x)

∣∣ ≤ C0e
h0nθn/2; and

(2) for t ∈ (−ε, ε) we can bound,

∑

σnx=x

e±itrn(x) = enP (±itr) + O(eh0nθn/2).

Proof. These estimates can be derived from [20]. �

Let χ : R → C be an integrable function such that its Fourier transform χ̂ is
compactly supported and such that, for |t| < ε, we have χ̂(t) = χ̂(0) + O(|t|). In
particular, we shall suppose that the support of χ̂ is contained in [−M,M ], for
some M > 0. Let us denote

SN (t) =
N∑

n,m=1

∑

σnx=x
σmy=y

eit(rn(x)−rm(y)) and ψN (χ) =
N∑

n,m=1

∑

σnx=x
σmy=y

χ(rn(x) − rm(y)).

Then, by the Fourier inversion formula,

ψN (χ) =
1

2π

∫ ∞

−∞
SN (t)χ̂(t)dt

=
1

2π

∫

|t|<ε

(
N∑

n,m=1

enP (itr)emP (−itr)(1 + O(θn+m))

)
χ̂(t)dt

+
1

2π

∫

ε≤|t|≤M

SN (t)χ̂(t)dt+O(e2h0NθN )

=
1

2π

∫

|t|<ε

(
e(N+1)P (itR)

(eP (itr) − 1)(eP (−itr) − 1)

)
χ̂(t)du+O(e2h0N max{θN , τN}),

(2.1)
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where we have used Lemma 2.1 (i) and (1.3). Using Lemma 1.5 we can estimate

ψN (χ) =
χ̂(0)

√
2

2πσ

e2h0(N+1)

(eh0 − 1)2

∫ ε

−ε

(
1 − v2

)N+1
(1 + R(v))dv

+O(e2h0N max{θN , τN}),
(2.2)

where R(v) is a smooth function with R(0) = 0 and for the final line we have also
used

1

(eP (itr) − 1)(eP (−itr) − 1)
=

1

(eh0 − 1)2
+ O(|t|).

Moreover, the leading term in (2.2) may be estimated using

∫ ε

−ε

(1 − v2)N+1dv = 2

∫ ε

0

(1 − v2)N+1dv

=

∫ ε2

0

(1 − w)N+1w−1/2dw

=
Γ(N + 2)

√
π

Γ(N + 2 + 1/2)
+O((1 − ε2)N ).

cf. [32, p.236]. Thus, since χ̂(0) =
∫
χ(x)dx, we have

ψN (χ) ∼
∫
χ(x)dx

(2π)1/2σ(eh0 − 1)2
e2h0(N+1)

√
N

, as N → +∞. (2.3)

Finally, in the next lemma we remove the hypothesis that χ̂ is compactly supported.

Lemma 2.2. Let χ : R → R be a continuous non-negative function with compact
support. Then

ψN (χ) ∼ e2h0

(2π)1/2σ(eh0 − 1)2

∫
χ(x)dx

e2h0N

√
N

, as N → +∞.

Proof. By equation (2.3), the required convergence holds whenever χ : R → C is
such that χ̂ compactly supported and satisfies χ̂(t) = χ̂(0) + O(|t|). In particular,
(2.3) holds for all functions of the form χ(x) = eivxχ0(x), where v ∈ R and χ0 is
the strictly positive function

χ0(x) =
sin2 x

x2
+

sin2(
√

2x)

2x2
.

The lemma now follows by a standard result (see, for example, Theorem 10.7 of
[6]). �

3. Proof of Theorem 1

Given a continuous compactly supported non-negative function χ : R → R, we
can define

ρN (χ) :=
∑

(γ,γ′)
|γ|,|γ′|≤N

χ(λ(γ) − λ(γ′)).

Theorem 1 follows from the following result.
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Proposition 3.1. We have that

ρN (χ) ∼ e2h0

(2π)1/2σ(eh0 − 1)2

∫
χ(x)dx

e2h0N

N5/2
, as N → +∞.

Proof. Suppose that γ is a prime closed geodesic of word length |γ| = n. Then γ
corresponds to a prime periodic orbit {x, σx, . . . , σn−1x} and hence to n terms in
the sum

∑
σnx=x. Taking into account non-prime orbits, we have that

ρN (χ) =

N∑

n,m=1

∑

|γ|=n

∑

|γ′|=m

χ(λ(γ) − λ(γ′))

= ΞN (χ) + O
(
||χ||∞(logN)2e3h0N/2

)
,

where

ΞN (χ) =

N∑

n,m=1

1

nm

∑

σnx=x
σmy=y

χ (rn(x) − rm(y)) .

Thus we need only prove the asymptotics for ΞN (χ). We immediately have the
asymptotic lower bound

ΞN (χ) ≥ 1

N2
ψN (χ) ∼ e2h0

(2π)1/2σ(eh0 − 1)2

∫
χ(x)dx

e2h0N

N5/2
, as N → +∞.

To get an asymptotic upper bound we fix 1
2 < α < 1 and then

ΞN (χ) =

N∑

n,m=[αN ]+1

1

nm

∑

σnx=x
σmy=y

χ (rn(x) − rm(y)) + O(||χ||∞N2e(1+α)h0N )

≤ 1

(αN)2

N∑

n,m=[αN ]+1

∑

σnx=x
σmy=y

χ (rn(x) − rm(y)) +O(||χ||∞N2e(1+α)h0N )

∼ 1

α2

e2h0

(2π)1/2σ(eh0 − 1)2

∫
χ(x)dx

e2h0N

N5/2
+ O(||χ||∞N2e(1+α)h0N ).

However, since we can choose α arbitrarily close to 1 the result follows. �

Proof of Theorem 1. This follows from Proposition 3.1 and a standard L1 approx-
imation of the characteristic function of [a, b] from above and below by smooth
functions. The interpretation in terms of closed geodesics comes from Lemma
1.1 �

It is easy to see that the same methods give a similar comparison for orbits of
precisely the same word length. In particular, we can show the following.

Proposition 3.2. We have that

# {(γ, γ′) : |γ| = |γ′| = n, a ≤ λ(γ) − λ(γ′) ≤ b} ∼ (b− a)

(2π)1/2σ

e2h0n

n5/2
,

as n→ +∞.
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4. Some estimates

Before giving the proof of Theorem 2, we need to prove some preliminary as-
ymptotic estimates. Their importance will become apparent in the next section.
We first define, for some small ε > 0,

A1(N, z) =

∣∣∣∣∣

∫ εσ
√

N

−εσ
√

N

eizt/σ
√

N

{
e−2h0NSN

(
t

σ
√
N

)
χ̂

(
1

κN

t

σ
√
N

)

− 1√
2π

(∫
χ(x)dx

)
e2h0

(eh0 − 1)2
e−t2/2

}
dt

∣∣∣∣∣ ,

where SN is as defined in section 2.

Lemma 4.1. supz∈R
A1(N, z) → 0 as N → +∞

Proof. Using the proof of Lemma 1.4.

A1(N, z) =

∣∣∣∣∣

∫ εσ
√

N

−εσ
√

N

eizt/σ
√

N

{
e−2h0N

(
e(N+1)P (itR/σ

√
N (1 + O(τN ))

(eP (itr/σ
√

N) − 1)(eP (−itr/σ
√

N) − 1)

χ̂

(
1

κN

t

σ
√
N

))
−
(∫
χ(x)dx

)
e2h0

(eh0 − 1)2
e−t2/2

}
dt

∣∣∣∣∣ .

On the domain of integration, we see that as N → +∞:

(i) χ̂
(

1
κN

t
σ
√

N

)
converges to χ̂(0) =

∫
χ(x)dx;

(ii) eP (itR/σ
√

N)(eP (itr/σ
√

N)−1)−1(eP (−itr/σ
√

N)−1)−1 converges to e2h0(eh0 −
1)−2; and

(iii) eN(P (itR/σ
√

N)−2h0) converges to e−t2/2,

Furthermore, we have the bounds eN(P (itR/σ
√

N)−2h0) ≤ e−t2/4 and

|eN(P (itR/σ
√

N)−2h0) − e−t2/2| ≤ 2e−t2/4.

Applying the Dominated Convergence Theorem, gives limN→+∞ supz∈R
A1(N, z) =

0, as required. �

Let us now define

A2(N, z) =

∣∣∣∣∣

∫

|t|≥εσ
√

N

eizt/σ
√

N

{
e−2h0N

(
SN

(
t

σ
√
N

)
χ̂

(
1

κN

t

σ
√
N

))}
dt

∣∣∣∣∣ .

To bound A2(N, z) we shall need certain estimates on transfer operators. We begin
by recalling the definitions. Given α > 0, we let Cα(Σ) be the Banach space of
Hölder continuous functions f : Σ → R with norm ||f || = |f |α + ||f ||∞, where

|f |α = sup

{ |f(x) − f(y)|
d(x, y)α

: x, y ∈ Σ

}

and ||f ||∞ is the supremum norm. Let Litr : Cα(Σ) → Cα(Σ) be the transfer
operator defined by

Litrw(x) =
∑

σx′=x

eitr(x′)w(x′).
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We can similarly denote by Cα(Σ) the space of Hölder continuous functions on Σ
and let LitR : Cα(Σ) → Cα(Σ) be the transfer operator defined by

LitRw(x, y) =
∑

σ(x′,y′)=(x,y)

eitR(x′,y′)w(x′, y′).

The following lemma gives the connection between the transfer operators and the
sum over periodic orbits.

Lemma 4.2. There exists 0 < θ < 1 such that for any x0, y0 ∈ Σ

∑

σn(x,y)=(x,y)

eitRn(x,y) = (Ln
itR1)(x0, y0) (1 + O(max{1, |t|}nθn)) .

Proof. This result appears in [26]. �

The next result is central to our analysis and is a reinterpretation of a result of
Dolgopyat [8].

Lemma 4.3. There exists C > 0, 0 < θ < 1 and α > 0 such that for |t| > ε and
n ≥ 1, we can bound

||Ln
itR1||∞ ≤ Ce2h0n min{θn|t|α, 1}.

Proof. Observe from the definitions that we can immediately write

Ln
itR1(x0, y0) =

∑

σnx=x0

σny=y0

eitRn(x,y) =
∑

σnx=x0

eitrn(x)
∑

σny=y0

e−itrn(y)

= Ln
itr1(x0)Ln

−itr1(y0).

However, Dolgopyat [8] showed that there exists C > 0 and 0 < θ < 1 such that
for |t| > ε and p[log |t|] ≤ n ≤ (p+ 1)[log |t|], where p ≥ 1,

||Ln
itr1||∞, ||Ln

−itr1||∞ ≤ C1/2eh0nθp[log |t|]/2, for n ≥ 1.

In particular, there exists C > 0 and 0 < θ < 1 such that for |t| > ε and p[log |t|] ≤
n ≤ (p+ 1)[log |t|], where p ≥ 1, we can bound

||Ln
itR1||∞ ≤ Ce2h0nθp[log |t|] ≤ Ce2h0nθnθ− log |t|.

In particular, the lemma follows with α = | log θ|. �

The following estimate is useful.

Lemma 4.4. If χ is Ck and compactly supported then χ̂(u) = O(|u|−k).

Proof. This standard result follows with integration by parts on the definition of
the Fourier transform. �

We are now in a position to bound A2(N, z):
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Lemma 4.5. supz∈R
A2(N, z) → 0 as N → +∞.

Proof. Using Lemma 4.2 and 4.3, there exists C > 0 such that we can bound

A2(N, z) ≤ CθN

∫

|t|≥εσ
√

N

∣∣∣∣χ̂
(

1

κN

t

σ
√
N

)∣∣∣∣
( |t|
σ
√
N

)α

dt.

In particular, for β > 0 we can bound

A2(N, z) ≤
CθN ||χ̂||∞
(σ

√
N)α

∫ eβN

εσ
√

N

|t|αdt+

∫ ∞

eβN

∣∣∣∣χ̂
(

1

κN

t

σ
√
N

)∣∣∣∣
( |t|
σ
√
N

)α

dt. (4.1)

The first term in (4.1) is of order O(θNeβN(α+1)). This tends to zero (uniformly in
z) as N → +∞ provided we choose β > 0 sufficiently small. For the second term
we can use Lemma 4.4 to bound the integral

∫ ∞

eβN

∣∣∣∣χ̂
(

1

κN

t

σ
√
N

)∣∣∣∣
( |t|
σ
√
N

)α

dt = O

(
κk

NN
(k−α)/2

∫ ∞

eβN

1

tk−α
dt

)

= O

(
κk

NN
(k−α)/2

e(k−1−α)βN

)

which tends to zero as N → +∞, provided we assume k > 1 + α. �

Finally, let us define

A3(N, z) =

∣∣∣∣∣

∫

|t|≥εσ
√

N

eizt/σ
√

N

{(∫
χ(x)dx

)
e2h0

(eh0 − 1)2
e−t2/2

}
dt

∣∣∣∣∣ .

Lemma 4.6. supz∈R
A3(N, z) → 0 as N → +∞.

Proof. This follows easily from the inequality

A3(N, z) ≤
2
(∫
χ(x)dx

)
e2h0

(eh0 − 1)2

∫ ∞

εσ
√

N

e−t2/2dt,

which is independent of z and tends to zero as N → +∞. �

5. Proof of Theorem 2

In this section χ : R → R will denote a smooth integrable non-negative function.
(Ultimately, χ will be used to approximate the indicator function of the interval
[a, b].) In order to obtain results for the shrinking intervals [z+εNa, z+εN b], we shall

consider a sequence of rescaled functions χ
(z)
N , defined by χ

(z)
N (x) = χ(ε−1

N (x− z)).
We can write

χ̂
(z)
N (u) = eizu 1

κN
χ̂

(
u

κN

)
. (5.1)

We need to consider

A(N, z) :=

∣∣∣∣∣
σ
√
N

εNe2h0N
ψN (χ

(z)
N ) − e2h0

∫
χ(x)dx

(eh0 − 1)2
e−z2/2σ2N

∣∣∣∣∣ ,

where ψN (χ
(z)
N ) =

∑N
n,m=1

∑
σnx=x
σmy=y

χ
(z)
N (rn(x) − rm(y)).
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Proposition 5.1.

lim
N→+∞

sup
z∈R

A(N, z) = 0.

We begin with the following observation.

Lemma 5.1. We can write

e−z2/2σ2N =
1

2π

∫ ∞

−∞
eiuz/σ

√
Ne−u2/2du.

Using Fourier inversion and (5.1) we can write

σ
√
Nκn

e2h0N
ψN (χ

(z)
N ) =

1

2π

σ
√
Nκn

e2h0N

∫ ∞

−∞
SN (u)χ̂

(z)
N (u)du

=
1

2π

σ
√
N

e2h0N

∫ ∞

−∞
SN (u)eizuχ̂

(
u

κN

)
du

(5.2)

We can substitute t = uσ
√
N and then (5.2) becomes:

σ
√
Nκn

e2h0N
ψN (χ

(z)
N )

=
e−2h0N

2π

∫ ∞

−∞

(
SN

(
t

σ
√
N

)
eizt/σ

√
N χ̂

(
1

κN

t

σ
√
N

))
dt.

(5.3)

We can write

2πA(z,N) =

∣∣∣∣
∫ ∞

−∞
eizt/σ

√
N

{
e−2h0NSN

(
t

σ
√
N

)
χ̂

(
1

κN

t

σ
√
N

)

−
(∫

χ(x)dx
)
e2h0

(eh0 − 1)2
e−t2/2

}
dt

∣∣∣∣∣

In particular, we can bound

2πA(z,N) ≤ A1(N, z) +A2(N, z) +A3(N, z)

and thus we can complete the proof of Proposition 5.1 with the bounds in Lemma

4.1, 4.2 and 4.6. In order to prove Theorem 2, we first need to replace ψN (χ
(z)
N )

with a sum over (prime) closed geodesics. More precisely, we define

ρN (χ
(z)
N ) =

N∑

n,m=1

∑

|γ|=n

∑

|γ′|=m

χ
(z)
N (λ(γ)− λ(γ′)).

As in section 3, we have the estimate

ρN (χ
(z)
N ) = ΞN (χ

(z)
N ) +O

(
||χ||∞(logN)2e3h0N/2

)
,
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where

ΞN (χ
(z)
N ) =

N∑

n,m=1

1

nm

∑

σnx=x
σmy=y

χ
(z)
N (rn(x) − rm(y))

and the implied constant in the big-O term is independent of z. Clearly we have
that

N5/2κN

e2h0N
ΞN (χ

(z)
N ) ≥ N1/2κN

e2h0N
ψN (χ

(z)
N ).

On the other hand, for any 0 < α < 1,

N5/2κN

e2h0N
ΞN (χ

(z)
N ) =

N5/2κN

e2h0N

N∑

n,m=[αN ]+1

1

nm

∑

σnx=x
σmy=y

χ
(z)
N (rn(x) − rm(y))

+ O
(
||χ||∞(logN)2N5/2κNe

(α−1)h0N
)

≤ N1/2κN

αe2h0N
ψN (χ

(z)
N ) +O

(
||χ||∞(logN)2N5/2κNe

(α−1)h0N
)
.

Also, by Proposition 5.1 we have that

lim
N→+∞

sup
z∈R

N1/2κN

e2h0N
ψN (χ

(z)
N ) =

e2h0

∫
χ(x)dx

(2π)1/2σ(eh0 − 1)2
.

Thus, we see that

0 ≤ lim sup
N→+∞

sup
z∈R

(
N5/2κN

e2h0n
ΞN (χ

(z)
N ) − N1/2κN

e2h0n
ψN (χ

(z)
N )

)

≤
(

1

α
− 1

)
e2h0

∫
χ(x)dx

(2π)1/2σ(eh0 − 1)2
.

Since we may take α arbitrarily close to 1, the above limit exists and is equal to
zero. We have shown the following.

Proposition 5.2.

lim
N→+∞

sup
z∈R

∣∣∣∣
N5/2

εNe2h0N
ρN (χ

(z)
N ) − e2h0

∫
χdx

(2π)1/2σ(eh0 − 1)2
e−z2/2σ2N

∣∣∣∣ = 0.

The final step in the proof of Theorem 2 is to replace the smooth function χ
by the indicator function χ[a,b] of the interval [a, b]. Given ε > 0 we can choose
compactly supported smooth functions χ− ≤ χ[a,b] ≤ χ+ such that

∫
χ[a,b](x)dx− ε ≤

∫
χ−(x)dx ≤

∫
χ+(x)dx ≤

∫
χ[a,b](x)dx+ ε.

¿From this we can deduce that

− e2h0

σ(eh0 − 1)2
ε ≤ lim inf

N→+∞
sup
z∈R

(
σN5/2

εNe2h0N
π(N, IN(z)) − e2h0

∫
χ[a,b]dx

(eh0 − 1)2
e−σ2z2/2N

)

≤ lim sup
N→+∞

sup
z∈R

(
σN5/2

εNe2h0N
π(N, IN(z)) −

e2h0

∫
χ[a,b]dx

(eh0 − 1)2
e−σ2z2/2N

)

≤ e2h0

σ(eh0 − 1)2
ε.
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Since ε > 0 can be chosen arbitrarily small, Theorem 2 follows. We can similarly
improve Proposition 3.2 to the following statement.

Proposition 5.3. If we write

ω(n, In(z)) = # {(γ, γ′) : |γ| = |γ′| = n, z + εna ≤ λ(γ) − λ(γ′) ≤ z + εnb}

then

lim
n→+∞

sup
z∈R

∣∣∣∣
n5/2

εne2h0n
ω(n, In(z)) − 1

(2π)1/2σ
(b− a)e−z2/2σ2n

∣∣∣∣ = 0.

A more careful consideration of the proof of Proposition 5.3 shows that it re-
mains valid under a slightly weaker hypothesis than Theorem 2, namely that
ε−1
n = O(eηn), for sufficiently small η > 0. Unfortunately, there is no effective

estimate on the value of η > 0.

Remark on multiplicities. It is known by a result of Randol (based on work of
Horowitz) that any such surface of constant negative curvature must have un-
bounded multiplicities in its length spectra [22]. Moreover, Buser observed that for
each such surface there exists C > 0 and lengths Tn for which the multiplicity is at
least CT β

n , where β = log 2
log 5 [7]. If we consider arithmetic surfaces then the set of

traces {tr(g) : g ∈ Γ} takes values in an appropriate algebraic number field. Each
g corresponds to a closed geodesic γ of length λ(γ) = cosh−1(tr(g)). Unfortunately,
determining the multiplicity of geodesics with a given length is a very difficult prob-
lem. For example, with Γ = PSL(2,Z) these multiplicities are class numbers [27].
However, the distributions of such numbers are irregular, their average over inter-
vals [l, l+∆l] being at least cel/2/l [16]. Moreover, Luo and Sarnak established the
Bounded Cluster property, i.e., the number of lengths of closed geodesics between
T and T + e−T is uniformly bounded [14]. It is an easy exercise using Theorem
2 to give (for any surface) an exponentially growing lower bound for the number
of distinct pairs of closed orbits of maximal length T with lengths differing by a
subexponentially shrinking sequence εn.

6. Orderings by lengths

It might seem natural to consider counting problems for pairs of closed geodesics
ordered solely by their (geometric) lengths, rather than in terms of word length.
However, as well shall see in this section, it only seems possible to obtain relatively
weak asymptotic results. Let χ : R → R be a smooth compactly supported non-
negative function and let us denote

ξ(T ) =
∑

λ(γ)+λ(γ′)≤T

χ(λ(γ) − λ(γ′))
(
λ(γ)λ(γ′)e−h(λ(γ)+λ(γ′))

)
.

The following weak asymptotic estimate for ξ(T ) implies the result (0.3) stated in
the introduction.

Proposition 6.1. There exists A > 0 such that ξ(T ) = AT , as T → +∞.

The proof is based on a sequence of lemmas. Let us first define

ξ∗(T ) =
∑

λ(γ)+λ(γ′)≤T

χ ∗ k(λ(γ) − λ(γ′))
(
λ(γ)λ(γ′)e−h(λ(γ)+λ(γ′))

)
,
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where k : R → R is a smooth function whose Fourier transform k̂ is compactly
supported in an interval [−a, a]. This has the technical advantage of making more
tractable the associated Dirichlet series defined, for Re(s) sufficiently large, by

η(s) =
∑

γ,γ′

λ(γ)λ(γ′)χ ∗ k(λ(γ) − λ(γ′))e−s(λ(γ)+λ(γ′)). (6.1)

It is also useful for us to also introduce the Dirichlet series κ(s) =
∑

γ λ(γ)e−sλ(γ).
This is useful for formulating the following lemma.

Lemma 6.2. κ(s) converges to an analytic function for Re(s) > h. In a neigh-
bourhood of s = h we may write

κ(s) =
1

s− h
+ F (s),

where F (s) is analytic in a neighbourhood of Re(s) ≥ h.

Proof. The result follows easily from results on the domain of the zeta function for
a weak-mixing hyperbolic flow, see for example [19]. �

The description of the domain of κ(s), in the above lemma, can now be used in
the proof of the following lemma, on the domain of η(s).

Lemma 6.3.

(1) The abscissa of convergence of η(s) is the topological entropy h > 0;
(2) There exists D > 0, such that, for real values of s, η(s) ∼ D(s − h)−1 as

s↘ h.

Proof. Using the Fourier inversion theorem we can write η(s) as

∫ a

−a

κ(s− iu)κ(s+ iu)χ̂(u)k̂(u)du =

∫ a

−a

χ̂(u)k̂(u)

(s− h)2 + u2
du

+

∫ a

−a

F (s+ iu)χ̂(u)k̂(u)

(s− h) − iu
du+

∫ a

−a

F (s− iu)χ̂(u)k̂(u)

(s− h) + iu
du+G(s)

where F (s) and G(s) are analytic functions on the half plane Re(s) > h. For part
(1), we observe that this expression is analytic on Re(s) > h. For part (2) a simple
change of variables shows that there exists D > 0 such that, for real values of s,

∫ a

−a

χ̂(u)k̂(u)

(s− h)2 + u2
du ∼ D

s− h
, as s↘ h,

while the remaining terms make a contribution which is at worst O(log(s−h)). �

The final ingredient in the proof of Proposition 6.1 is the following result, due
to Freud, which is a variant on the famous Hardy-Littlewood Tauberian Theorem
[21, p.30].
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Lemma 6.4. Let α(T ) be a monotone increasing. Assume that, for real values of
s, the function f(s) =

∫∞
0
e−stdα(t) satisfies

f(s) =
A

s
(1 + O (sε)) , as s↘ 0,

where ε > 0. Then α(T ) = Ax
(
1 +O

(
(log T )−1

))
, as T → +∞.

We are now in a position to complete the proof of Proposition 6.1. Since η(s+
h) =

∫∞
0
e−stdξ∗(t), we can use Lemma 6.3 and Lemma 6.4 to deduce that

ξ∗(T ) = Ax

(
1 + O

(
1

log T

))
, as T → +∞.

Finally, we use an approximation argument to remove the dependence on k and to
give the asymptotic formula in Proposition 6.1.

Remark. At first, it might seem more natural to modify ξ(T ) by removing the
exponential term and consider instead counting functions of the form

∑

λ(γ)+λ(γ′)≤T

χ(λ(γ) − λ(γ′))λ(γ)λ(γ′),

say. However, it does not appear to be possible to obtain an asymptotic expression
for this function, as this would require η(s) to have an extension to neighbourhoods
of points h+ it, t 6= 0, and this is not the case.

7. Related results

7.1 Higher dimensional correlation functions. Following Rudnick and Sarnak
[23], we can consider more general k-correlation functions

πk

(
n,

k−1∏

i=1

[ai, bi]

)
:=

∑

|γ1|,... ,|γk|≤n

k−1∏

i=1

χi (λ(γi+1) − λ(γ1)) ,

where χ1, . . . , χk−1 : R → R are the indicator functions of [a1, b1], . . . , [ak−1, bk−1],
respectively. Here the symbolic dynamics should be that for Σk = Σ × · · · × Σ︸ ︷︷ ︸

k

and

the function R : Σk → Rk−1 given by R(x1, . . . , xk) = (r(x2) − r(x1), . . . , r(xk) −
r(x1)). Modifying the proof of Theorem 1 shows that there exists σk > 0 such that

πk

(
n,

k−1∏

i=1

[ai, bi]

)
∼ 1

(2π)(k−1)/2σk−1
k

k−1∏

i=1

(bi − ai)
ekh0

(eh0 − 1)k

ekh0n

nk+ 1

2
(k−1)

,

as n → +∞. Furthermore, Theorem 2 has a particular interesting generalization.

For each i = 1, . . . k − 1, we let ε
(i)
n > 0, for n ≥ 1, be sequences which tend to

zero subexponentially. For z = (z1, . . . , zk−1) ∈ Rk−1, we shall write I
(i)
n (z) =

[zi + aiε
(i)
n , zi + biε

(i)
n ], for i = 1, . . . k − 1, and In(z) =

∏k−1
i=1 I

(i)
n (z). We shall also

write εn =
∏k−1

i=1 ε
(i)
n . The generalization of Theorem 2 is the following. (We write

〈·, ·〉 for the usual Euclidean inner product on Rk−1.)



CORRELATIONS FOR PAIRS OF CLOSED GEODESICS 19

Theorem 3. Given sequences ε
(i)
n > 0, i = 1, . . . , k − 1, which tend to zero at a

subexponential rate, we have that

lim
n→+∞

sup
z∈Rk−1

∣∣∣∣∣
σk−1

k nk+(k−1)/2

εne
2h0N

π(n, In(z)) − Cke
−〈z,A−1z〉/2n

∣∣∣∣∣ = 0,

where the matrix A = (aij) is defined by aij = ∂2

∂si∂sj
P (〈s,R〉)

∣∣∣
s=0

, σk = (detA)
1

2k

and

Ck =
1

(2π)(k−1)/2

k−1∏

i=1

(bi − ai)
ekh0

(eh0 − 1)k
.

In particular, this implies that, for any fixed z ∈ Rk−1,

π(n, In(z)) ∼ Ck

σk−1
k

εn
e2h0n

nk+(k−1)/2
, as n→ +∞.

The proof follows the same lines as that of Theorem 2.

7.2 Orbital counting functions. As we remarked in the introduction, closed
geodesics on V correspond to conjugacy classes in the fundamental group π1(V ).
However, we may also consider elements of π1(V ) itself. It is well-known that
{g ∈ π1(V ) : |g| ≤ n} ∼ Ceh0n, for some C > 0. The fundamental group has a

natural isometric action on the universal cover Ṽ and, if we fix a point x0 ∈ Ṽ ,
say, we may consider the set of displacements {d(x0, gx0) : g ∈ π1(V )}. A natural
analogue of the questions we have considered for closed geodesics is to study the
asymptotics of the number of pairs (g, g′) ∈ π1(V ) × π1(V ) satisfying |g|, |g′| ≤ n
such that d(x0, gx0)−d(x0, g

′x0) lies in a prescribed interval. For example, one can
show that there exists C ′ > 0 such that, for a < b,

{(g, g′) : |g|, |g′| ≤ n, a < d(x0, gx0) − d(x0, g
′x0) < b} ∼ C ′(b− a)

e2h0n

n1/2
,

as n→ +∞. It is also possible to prove a stronger result analogous to Theorem 2.
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