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0. Introduction

In this paper we shall consider error terms in estimates for the number of closed
orbits for a large class of C1 flows φt : M → M , restricted to a hyperbolic set Λ.
Let π(T ) be the number of closed orbits of least period at most T > 0. It is well
known that

h = lim
T→+∞

1
T

log π(T ),

where h > 0 denotes the topological entropy of the flow. It was shown by Parry
and the first author in [7] that if φ is a weak-mixing Axiom A flow (restricted to a
non-trivial basic set) then

π(T ) ∼ ehT

hT
, as T → +∞

i.e. limT→+∞
π(T )

ehT /hT
= 1. This generalized a result of Margulis for geodesic flows

over manifolds of negative sectional curvature [6].
It is an interesting problem to estimate the error terms in such asymptotic for-

mulae. In the particular case of geodesic flows over compact negatively curved
manifolds we showed that there was an exponential error term (with a suitable
principal term) [10].

Our first result gives an error term in the case of weak-mixing transitive Anosov
flows, in which case Λ = M .

Theorem 1. Let φt : M → M be a weak-mixing transitive Anosov flow. Then
there exists δ > 0 such that

π(T ) =
ehT

hT

(
1 +O

(
1
T δ

))
.

There are examples of Axiom A flows for which the error term may be arbitrarily
bad [9]. In particular, it need not be the case that an error term as in the statement
of Theorem 1 is satisfied. In order to obtain a positive result, we shall consider flows
satisfying the following condition.
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Approximability condition. The flow φ has three closed orbits γ1, γ2 and γ3 with
distinct least periods l(γ1), l(γ2) and l(γ3), respectively, such that

β =
l(γ1)− l(γ2)
l(γ2)− l(γ3)

is badly approximable, i.e., there exists α > 2 and C > 0 such that we have
|β − p

q | ≥
C
qα , for all p, q ∈ Z (q > 0).

The set of β satisfying this condition is a large set. For example, it is a set of
full measure in the real line. Moreover, its complement has Hausdorff dimension
zero.

Our second result is the following.

Theorem 2. For a weak-mixing hyperbolic flow φt : Λ → Λ satisfying the approx-
imability condition there exists δ > 0 such that

π(T ) =
ehT

hT

(
1 +O

(
1
T δ

))
.

The method of proof of both theorems follows the lines of the error term result
for the prime number theorem in analytic number theory. In [7] a dynamical zeta
function ζ(s) was used to obtain the principal term in the asymptotic formula for
π(T ). In this paper we develop an approach introduced by Dolgopyat [2] to get
more precise estimates on the location of the poles of ζ(s) and modulus of (ζ ′/ζ)(s).
We employ these estimates to prove the theorems using techniques from analytic
number theory.

We briefly outline the contents of this paper. In the first section we explain how,
through the use of symbolic dynamics, the counting problem for hyperbolic flows
can be reduced to one for periodic points for a subshift of finite type with respect
to a weighting by a positive Hölder continuous function. In the second section we
introduce a dynamical zeta function and derive some important properties of its
analytic extension. This makes essential use of bounds on the norm of the associated
Ruelle transfer operators (presented in Proposition 2). In section 3, we deduce
Theorems 1 and 2 from these properties of the dynamical zeta functions. The
method of proof here is inspired by approachs to proving error terms for counting
prime numbers via the Riemman zeta function [3], [5]. Finally, in section 4 we
explain the proof of Proposition 2 on the necessary spectral properties of the transfer
operators. Although this section follows closely ideas of Dolgopyat, our exposition
is somewhat different and is principally included for completeness.

1. Hyperbolic flows and Symbolic dynamics

Let M be a compact C∞ manifold and let φt : M →M be a C1 flow. We call a
closed φ-invariant subset Λ ⊂M hyperbolic if:

(1) there exist Dφ-invariant sub-bundles E0, Eu and Es such that TΛM =
E0 ⊕Eu ⊕Es, where E0 is the one dimensional sub-bundle tangent to the
flow direction and there are constants C, λ > 0 such that ||Dφt|Es|| ≤ Ce−λt

and ||Dφ−t|Eu|| ≤ Ce−λt for t ≥ 0;
(2) φt : Λ → Λ is transitive;
(3) closed orbits are dense in Λ; and
(4) there is an open set U ⊃ Λ such that Λ =

⋂
t∈R φtU .
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The restriction φt : Λ → Λ is called a hyperbolic flow. If Λ = M then φt : M →M
is called a transitive Anosov flow. Given any sufficiently small ε > 0, we define the
(local) strong stable manifold by

W ss
ε (x) := {y ∈ Λ : dΛ(φt(x), φt(y)) ≤ ε for all t ≥ 0}

and the (local) strong unstable manifold by

W su
ε (x) := {y ∈ Λ : dΛ(φ−t(x), φ−t(y)) ≤ ε for all t ≥ 0}.

Given x, y ∈ Λ sufficiently close, there exists a unique |t| ≤ ε such that W ss
ε (x) ∩

W su
ε (φty) 6= ∅. Furthermore, this non-empty set consists of a single point denoted

by [x, y].
A particularly desirable feature of such flows is that they can be studied through

an associated symbolic model. In 1969, Ratner carried out such a construction
for three dimensional Anosov flows, building on earlier work of Sinai for Anosov
diffeomorphisms. Subsequently, she extended her results to arbitrary dimensions
[11]. The general case of hyperbolic flows was treated by Bowen [1].

Given an aperiodic k × k matrix A with entries zero or one, we denote

X+
A =

{
x = (xn)∞n=0 ∈

∞∏
n=0

{1, . . . , k} : A(xn, xn+1) = 1, n ≥ 0

}
.

For any 0 < θ < 1 we can define a metric d(x, y) = θN where, for x 6= y, we
choose N = N(x, y) to be the largest value for which xi = yi, for 0 ≤ i ≤ N . We
define the (one-sided) subshift of finite type σ : X+

A → X+
A by (σx)n = xn+1.

Given 1 ≤ i ≤ k we associate a one-cylinder by [i] := {x ∈ X+
A : x0 = i}. Given

a finite string i = (i0, . . . , in−1) we denote the n-cylinder

[i] = {x ∈ X+
A : x0 = i0, . . . , xn−1 = in−1}.

(Equivalently, [i] := [i0] ∩ σ−1[i1] ∩ . . . ∩ σ−(n−1)[in−1].)
Let r : XA → R+ be a strictly positive Hölder continuous function. We can

define
π∗(T ) =

∑
rn(x)≤T

1,

where the sum is over period points σnx = x with rn(x) ≤ T where we denote
rn(x) = r(x) + r(σx) + . . .+ r(σn−1x).

The next result describes the connection between π∗(T ) and π(T ).

Proposition 1 (Bowen [1], Ratner [11]). Given a hyperbolic flow φt : Λ → Λ
with topological entropy h > 0 there exists a subshift of finite type σ : X+

A → X+
A ,

a Hölder continuous function r : X+
A → R+ and ε > 0 such that |π(T )− π∗(T )| =

O
(
e(h−ε)T

)
.

Let us briefly recall how this result is obtained. The essential idea is to choose a
finite family of local cross sections {T1, . . . , Tk} to the flow. We choose Ti = [Ui, Si],
i = 1, . . . , k, where Ui and Si are closed subsets of strong unstable and strong stable
manifolds, respectively.
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Let P :
∐k

i=1 Ti →
∐k

i=1 Ti denote the Poincaré map. Define a k × k matrix A
by

A(i, j) =
{

1 if intTi ∩ P−1intTj 6= ∅
0 otherwise.

To this we can associate the space

XA =

{
x = (xn)∞n=−∞ ∈

∞∏
n=−∞

{1, . . . , k} : A(xn, xn+1) = 1 ∀n ∈ Z

}

with the metric d(x, y) = θN where for x 6= y we choose N = N(x, y) to be the
largest value for which xi = yi for −N ≤ i ≤ N . We define a (two sided) subshift
of finite type σ : XA → XA by (σx) = xn+1.

Given x̄ ∈
∐k

i=1 intTi such that Pn(x̄) ∈
∐k

i=1 intTi, for all n ∈ Z we can
associate a sequence x ∈ XA by Pn(x̄) ∈ intTxn

. This naturally extends to a
Hölder continuous map p : XA →

∐k
i=1 Ti. By construction, we see that p is a

semi-conjugacy, i.e., p ◦ σ = P ◦ p.
We can associate a a strictly positive Hölder continuous function r : XA → R+

by φr(x)p(x) = p(σx). We can introduce the suspension space

Xr
A = {(x, t) ∈ XA × R : 0 ≤ t ≤ r(x)}

where (x, r(x)) and (σx, 0) are identified. We let σr
t : Xr → Xr be the flow defined

by σr
t (x, u) = (x, u+ t), subject to the identifications.

We can extend p : XA →
∐k

i=1 Ti to a map p : Xr
A → Λ by p(x, t) = φtp(x). The

map p is onto, and one-one on a residual set. Furthermore, p is a semi-conjugacy,
i.e., p ◦ φt = σr

t ◦ p.
Periodic orbits for the suspended flow σr

t : Xr
A → Xr

A correspond to periodic
orbits for σ : XA → XA of the form {x, σx, . . . , σn−1x} where σnx = x while
σmx 6= x for 1 ≤ m < n. The least period of the σr-orbit is precisely rn(x).

Since Ti = [Ui, Si] it follows that the function r : XA → R satisfies r(x) = r(y)
when xi = yi, for i < 0. In particular, r : XA → R can be identified with a function
r : X+

A → R. Thus periodic orbits for the suspended flow can be identified with
periodic orbits {x, σx, . . . , σn−1x} for σ : X+

A → X+
A where their length is rn(x).

In general the map p : Xr
A → Λ will not be a bijection. In particular, there may

not be a one-to-one correspondence between the periodic orbits for the two flows.
However, this discrepancy can be accounted for either by the detailed analysis of
Manning and Bowen [1] or by the simpler observation that the number of closed
orbits passing through the boundaries grows at a slower exponential rate. The
estimate in Proposition 1 follows from these considerations.

2. Transfer operators and zeta functions

When studying π∗(T ) a central role is played by a dynamical zeta function. This
is a function of a complex variable determined by the lengths of periodic orbits for
the suspended flow. An important technical tool in studying the zeta function is a
family of linear operators. We first define the Banach space on which they act.

Given 0 < θ < 1 we define, for f ∈ C(X+
A ,C), a value |f |θ ∈ R+ ∪ {∞} by

|f |θ = sup
{
|f(x)− f(y)|

θn
: xi = yi, 0 ≤ i ≤ n and n ≥ 0

}
.
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If we define Fθ = {f ∈ C(X+
A ,C) : |f |θ < +∞} then this is a Banach space with

respect to the norm ||f ||θ = |f |θ + |f |∞. Since r is Hölder continuous we can
choose 0 < θ < 1 such that r ∈ Fθ. This enables us to define the following family
of operators.

Definition. For s ∈ C, let L−sr : Fθ → Fθ be the transfer operator defined by

L−srf(x) =
∑

σy=x

e−sr(y)f(y).

Given a continuous function f : X+
A → R we define its pressure P (f) by

P (f) = sup
{
h(ν) +

∫
fdν : ν is a σ-invariant probability

}
,

where h(ν) is the entropy of σ with respect to ν. When f is Hölder continuous then
there is a unique measure µ realizing this supremum, which is called the measure
of maximal entropy.

Lemma 1. For s ∈ C the operator L−Re(s)r : Fθ → Fθ has a simple positive
eigenvalue eP (−Re(s)r). Furthermore, the rest of the spectrum is contained in a
strictly smaller disk.

For each s ∈ C it is technically convenient to modify the function r so that
L−Re(s)r1 = eP (−Re(s)r)1, where 1 denotes the constant function taking value 1.
This can achieved by replacing r by r + u ◦ σ − u, for some appropriate Hölder
continuous function u : X+

A → R [15].
The next lemma gives an estimate on the norm of iterates of the operator L−sr :

Fθ → Fθ.

Lemma 2. There exists C0 > 0 such that

||Ll
−srf ||

elP (−Re(s)r)
≤ C0|Im(s)| |f |∞ + θl|f |θ

for all l ≥ 0 and any f ∈ Fθ.

Proof. This is essentially the Basic Inequality in [8]. (The only additional feature
is the factor |Im(s)| which follows from an inspection of the proof).

The next result gives estimates on L−sr and the operator norm || · || under the
hypothesis of either Theorem 1 or Theorem 2.

Proposition 2. Assume that φ is either a transitive Anosov flow or an Axiom A
flow satisfying the approximability condition. There exist constants t0 ≥ 1, τ > 0,
C1 > 0, and C > 0, such that ∀|Im(s)| ≥ t0, ∀m ≥ 1,

||L2Nm
−sr || ≤ C1|Im(s)|e2NmP (−Re(s)r)

(
1− 1

|Im(s)|τ

)m−1
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where |Im(s)| ≥ t0 and N = [C log |Im(s)|].

We shall present a proof of this result in the final section. This will be based on
techniques from [2].

Observe that if n = 2Nm+ l, with p =
[

n
2N

]
≥ 0 and 0 ≤ l ≤ 2N −1 then, using

Lemma 2 and Proposition 2, we can write, for all |Im(s)| ≥ t0,

||Ln
−sr|| ≤ ||L2Nm

−sr || ||Ll
−sr||

≤ C2 |Im(s)|2 enP (−Re(s)r)

(
1− 1

|Im(s)|τ

)m−1 (2.1)

where C2 = C1(C0 + 1) > 0.
We will now define the zeta function and show how it is related to the transfer

operators. Given s ∈ C we set

ζ(s) = exp
∞∑

n=1

1
n
Zn(−sr),

where Zn(−sr) =
∑

σnx=x e
−srn(x). This converges to an analytic function for

Re(s) > h. Moreover, ζ(s) has a simple pole at s = h and, apart from this, has a
non-zero analytic extension to a neighbourhood of Re(s) ≥ h [7], [8].

Lemma 3. For each 1 ≤ i ≤ k, fix a point xi ∈ [i]. There exist constants C3 > 0
and t1 ≥ t0 such that, for all n ≥ 1 and for |Im(s)| ≥ t1,∣∣∣∣∣Zn(−sr)−

k∑
i=1

Ln
−srχ[i](xi)

∣∣∣∣∣ ≤ C3|Im(s)|3enP (−Re(s)r)

(
1− 1

|Im(s)|τ

)[ n
2N ]

,

(2.2)
where χ[i] is the characteristic function for [i].

Proof. The proof follows the general lines of an argument from [13]. Consider all
strings i = (i0, . . . , in−1) with [i] 6= ∅ and write |i| = n. If i = [i] set xi = xi. If
|i| ≥ 2 we choose xi ∈ [i] such that σnxi = xi, if possible, and arbitrarily otherwise.
With these choices we see that

Zn(−sr) =
∑
|i|=n

(Ln
−srχ[i])(xi). (2.3)

If i = (i0, . . . , im−1) then we can adopt the notation j(i) = (i0, . . . , im−2), i.e., we
look at the shorter string after deleting the last term.

We can write∑
|i|=n

Ln
−srχ[i](xi)−

k∑
i=1

Ln
−srχ[i](xi)

=
n∑

m=2

∑
|i|=m

Ln
−srχ[i](xi)−

∑
|j|=m−1

Ln
−srχ[j](xj)


=

n∑
m=2

∑
|i|=m

(
Ln
−srχ[i](xi)− Ln

−srχ[i](xj(i))
)
.
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We can therefore bound∣∣∣∣∣∣
∑
|i|=n

Ln
−srχ[i](xi)−

k∑
i=1

Ln
−srχ[i](xi)

∣∣∣∣∣∣
≤

n∑
m=2

||Ln−m
−sr ||

∑
|i|=m

|Lm
−srχ[i]|θ θm−1.

(2.4)

To get an upper bound on the Right Hand Side of (2.4) we can use the following
estimates

(1) ||Ln−m
−sr || ≤ C2|Im(s)|2e(n−m)P (−Re(s)r)

(
1− 1

|Im(s)|τ

)[n−m
N ]−1

, by (2.1),

(2) since Lm
−srχ[i](x) = e−srm(σix), where σi is the local inverse to σm : [i] →

X+
A ,

|Lm
−srχ[i]|θ

≤ sup
x∈X+

A

{
e−Re(s)rm(σix)

}
exp

(
|Re(s)||r|θ

1− θ

)
(|Re(s)|+ |Im(s)|)|r|θ

1− θ

≤ C ′|Im(s)|

if |Im(s)| ≥ t0, for some C ′ > 0,
(3) there exists C ′′ > 0 such that∑

|i|=m

sup
x∈X+

A

{
e−Re(s)rm(σi)

}
≤ C ′′emP (−Re(s)r).

We can compare the estimates above with the inequality (2.4) to deduce

n∑
m=2

||Ln−m
−sr ||

∑
|i|=m

|Lm
−srχ[i]|θd(xi, xj(i))

≤ C2C
′C ′′|Im(s)|3enP (−Re(s)r)

n∑
m=2

(
1− 1

|Im(s)|τ

)[n−m
2N ]−1

θm−1

≤ C3|Im(s)|3enP (−Re(s)r)

(
1− 1

|Im(s)|τ

)[n/2N ]

,

(2.5)

where the last inequality is valid for |Im(s)| ≥ t1 for some constant t1 ≥ t0 and
C3 > 0. Comparing (2.3), (2.4) and (2.5) we see that we have proved Lemma 3.

We now apply Lemma 3 to get the following result on zeta functions.

Proposition 3. There exist ρ > 0 and t2 ≥ t1 such that the zeta function ζ(s) is
analytic and non-zero in the region

R(ρ) =
{
s : Re(s) > h− 1

|Im(s)|ρ
, |Im(s)| ≥ t2

}
.
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Moreover, we can bound log |ζ(s)| ≤ C4|Im(s)|3+τ log |Im(s)|, for some C4 > 0.

Proof. Using (2.4) Proposition 2 we can bound

|Zn(−sr)| ≤

∣∣∣∣∣Zn(−sr)−
k∑

i=1

Ln
−srχIi

(xi)

∣∣∣∣∣+
∣∣∣∣∣

k∑
i=1

Ln
−srχIi

(xi)

∣∣∣∣∣
≤ C3|Im(s)|3enP (−Re(s)r)

(
1− 1

|Im(s)|τ

)[ n
2N ]

+ kC2|Im(s)|2enP (−Re(s)r)

(
1− 1

|Im(s)|τ

)[ n
2N ]−1

≤ (C3 + kC2)|Im(s)|3enP (−Re(s)r)

(
1− 1

|Im(s)|τ

)[ n
2N ]−1

.

(2.6)

Define the curve A(t) := h − 1
|t|ρ and consider those s for which Re(s) > A(t)

and |Im(s)| ≥ t1. The map t 7→ P (−tr) is analytic with nowhere vanishing first
derivative and, in particular, we can write

eP (−Re(s)r) = 1 + P ′(−hr)(Re(s)− h) +O((Re(s)− h)2),

where P ′(−hr) < 0 [12], [8]. Thus

(
1− 1

|Im(s)|τ

) 1
2N

< e−P (−Re(s)r),

if ρ > τ and |Im(s)| ≥ t2, for some t2 ≥ t1. This causes no loss of generality since
increasing ρ simply corresponds to a narrowing of the region R(ρ). Hence in this
region we have

log |ζ(s)| ≤
∞∑

n=1

1
n
|Zn(−sr)|

≤ (C3 + kC2)|Im(s)|3
∞∑

n=1

enP (−Re(s)r)

n

(
1− 1

|Im(s)|τ

)[ n
2N ]−1

≤ (C3 + kC2)|Im(s)|3eP (−Re(s)r)(
1− 1

|Im(s)|τ

)2−1/2N
(

1− eP (−Re(s)r)
(
1− 1

|Im(s)|τ

)1/2N
)

≤ C4|Im(s)|3+τ log |Im(s)|.

(2.7)

This complete the proof of Proposition 3.

To proceed, we need the following standard result from complex analysis which
allows us to convert the bound (2.7) into a bound for ζ ′(s)/ζ(s) in a smaller region.
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Figure 1: Proof of Proposition 4

Lemma 4. [14] Suppose that ζ(s) is non-zero and analytic on a disk D(R) =
{s : |s − z| ≤ R}. Suppose log |ζ(s)| is bounded by U > 0 on D(R). Then for
0 < r < R and s ∈ D(r) we have the bound∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ≤ 8R
(R− r)2

(U + | log ζ(z)|) .

We can apply Lemma 4 in the following way. Given s ∈ R(ρ) we set z =
(h + 1) + iIm(s). Choose R = 1 + |Im(s)|−ρ and r = 1 + |Im(s)|−ρ/2. Then, by
Lemma 4, we have∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ≤ 32|Im(s)|2ρ
(
|Im(s)|3+τ + | log ζ(h+ 1 + iIm(s))|

)
≤ C5|Im(s)|3(ρ+1),

for some C5 > 0. Hence we have shown the following.

Proposition 4. The logarithic derivative ζ ′(s)/ζ(s) is analytic in

R1(ρ) =
{
s : Re(s) > h− 1

2|Im(s)|ρ
, |Im(s)| ≥ t2

}
,

and, in this domain, satisfies the bound∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ≤ C5|Im(s)|3(ρ+1).
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In the following section it will be slightly more convenient for us to work with
the complex function

η(s) =
∞∑

n=1

1
n

∑
σnx=x

hrn(x)e−shrn(x).

By observing that η(s) = h(ζ ′/ζ)(sh) we conclude the following.

Corollary 4.1.

(1) η(s) is analytic for Re(s) > 1;
(2) η(s) has an analytic extension to a neighbourhood of Re(s) = 1, except for

a simple pole at s = 1;
(3) setting t3 = t2/h > 0, η(s) has a non-zero analytic extension to

R2(ρ) =
{
s : Re(s) > 1− 1

2h(ρ+1)|Im(s)|ρ
, |Im(s)| ≥ t3

}
;

(4) setting C6 = C5h
(3ρ+4) and α = 3(ρ+ 1), we have |η(s)| ≤ C6|Im(s)|α, for

s ∈ R2(ρ).

3. Proof of Theorems 1 and 2

In this section we shall employ ideas from classical analytic number theory to
prove our two main results. By Proposition 1, to prove the asymptotic formula for
π(T ) in Theorems 1 and 2 it suffices to show the corresponding asymptotic formula
for π∗(T ).

It will prove convenient to introduce an auxiliary function ψ0(T ) defined by

ψ0(T ) =
∑

ehrn(x)≤T

hrn(x),

where the summation is over all prime orbits {x, σx, . . . , σn−1x} satisfying the
condition ehrn(x) ≤ T . We then define inductively

ψk(T ) =
∫ T

1

ψk−1(u)du =
1
k!

∑
ehrn(x)≤T

hrn(x)
(
T − ehrn(x)

)k

,

for k ≥ 1. We shall relate ψk(T ), k ≥ 1, to η(s) by applying the formula

1
2πi

∫ d−i∞

d−i∞

ys

s(s+ 1) · · · (s+ k)
ds =

{ 0 if 0 < y < 1

1
k!

(
1− 1

y

)k

if y ≥ 1

term by term to the series defining η(s), where d > 1 [5, p.31]. The functions ψk(T )
and η(s) are related by the following lemma.
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Lemma 5. For d > 1 we may write

ψk(T ) =
1

2πi

∫ d−i∞

d+i∞
η(s)

T s+k

s(s+ 1) · · · (s+ k)
ds. (3.1)

To evaluate this integral, we shall change the contour of integration. The first
step is to replace this integral by a finite integral. Write R = R(T ) = (log T )ε, for
some fixed 0 < ε < 1/ρ, and truncate the integral in (3.1) to obtain the estimate∣∣∣∣∣ψk(T )− 1

2πi

∫ d+iR

d−iR

η(s)
T s+k

s(s+ 1) · · · (s+ k)
ds

∣∣∣∣∣ ≤ 2|η(d)| T d+k

Rk+1(log T )
. (3.2)

If we choose d = 1 + 1
log T , then since η(d) = O((d− 1)−1) we can bound the Right

Hand Side of (3.2) by a term which is O
(

log T ·e·T k+1

Rk·log T

)
= O

(
T k+1

(log T )kε

)
.

By the residue theorem we can write

1
2πi

∫ d−iR

d+iR

η(s)
T s+k

s(s+ 1) . . . (s+ k)
ds

=
T k+1

(k + 1)!
+

1
2πi

∫
Γ

η(s)
T s+1

s(s+ 1) . . . (s+ k)
ds,

where Γ is the union of the line segments [c(R) + iR, d + iR], [d − iR, c(R) − iR]
and [c(R)− iR, c(R) + iR] and where c(R) = 1− 1

2hρ+1Rρ .
Consider first the integral along the line segment [c(R)− iR, c(R)+ iR]. We have

the estimate∣∣∣∣∣ 1
2πi

∫
[c(R)−iR,c(R)+iR]

η(s)
T s+1

s(s+ 1) . . . (s+ k)
ds

∣∣∣∣∣ = O

(
T c(R)+k

∫ R

1

tα−(k+1)dt

)
= O

(
T c(R)+kRα−k

)
.

Since R(T ) = (log T )ε we can bound

T c(R)+kRα−k = T

[
1− 1

2hρ+1(log T )ερ

]
+k(log T )ε(α−k)

= T k+1

(
e
− log T

2hρ+1(log T )ερ (log T )ε(α−k)

)
.

We see that the contribution to ψk(T ) is at most O(T k+1/(log T )γ), for any γ > 0,

since e−
(log T )1−Kρ

2hρ+1 tends to zero faster than (log T )−γ .
If we consider the contours [c(R) + iR, d + iR] and [d − iR, c(R) − iR] then we

have the bound∣∣∣∣∣
∫

[c(R)+iR,d+iR]∪[d−iR,c(R)−iR]

η(s)
T s+k

s(s+ 1) · · · (s+ k)
ds

∣∣∣∣∣ = O
(
R(α−(k+1))T d+k

)
= O

(
T k+1

(log T )(k+1−α)ε

)
.
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Comparing these estimates we see that

ψk(T ) = T k+1 +O

(
T k+1

(log T )(k+1−α)ε

)
.

Using repeatedly the inequality

ψj−1(T −∆T )∆T ≤ ψj(T )− ψj(T −∆T ) ≤ ψj−1(T )∆T

where ∆T = T (log T )−(k+1−α)ε/2k−j+1
we see that

ψ0(T ) = T +O

(
T

(log T )δ

)
,

where δ = (k + 1− α)ε/2k. Setting π0(T ) =
∑

ehrn(x)≤T 1, we see that

π0(T ) =
∫ T

2

1
log u

dψ0(u) +O(1)

=
ψ0(T )
log T

+
∫ T

2

ψ0(u)
u(log u)2

du.

(3.3)

Recall the identity

li(T ) : =
∫ T

2

1
log u

du

=
T

log T
+O(1) +

∫ T

2

du

(log u)2

(3.4)

(so that, in particular, li(T ) = T/ log T + O(T/(log T )2)). Comparing (3.3) and
(3.4) we see that

π0(T )− li(T ) =
ψ0(T )− T

log T
+
∫ T

2

ψ0(u)− u

(log u)2
du+O(1)

= O

(
T

(log T )1+δ

)
+O

(∫ T

2

du

(log u)2+δ

)
.

Moreover, we can estimate

∫ T

2

du

(log u)2+δ
=
∫ T 1/2

2

du

(log u)2+δ
+
∫ T

T 1/2

du

(log u)2+δ

= O(T 1/2) +O

(
T

(log T )2+δ

)

Thus π0(T ) = li(T ) +O
(

T
(log T )1+δ

)
from which the conclusion of Theorems 1 and

2 follows.
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4. Proof of Proposition 2

In this section we give the proof of Proposition 2, which is used to obtain bounds
on the zeta function. It is based on techniques introduced by Dolgopyat [2].

We recall the definition of the transfer operator L−sr : Fθ → Fθ given by the
formula

L−srw(x) =
∑

σy=x

e−sr(y)w(y).

We shall obtain estimates on the iterates LN
−sr, where N = [C log |Im(s)|].

The next three technical lemmas give estimates which will be useful to us later.

Lemma 6. (cf. [2]) Let µ be the unique equilibrium measure for −Re(s)r. Assume
w ∈ Fθ satisfies |w|∞ ≤ 1 and |w|θ ≤ |Im(s)| then for 0 ≤ n ≤ 2N :

|L2N
−srw|∞ ≤

∫
|Ln
−srw|dµ+O

(
||Ln

−sr||δ2N−n
)

(4.1)

for any δ chosen larger than the modulus of the second eigenvalue of L−Re(s)r.

Proof. For x ∈ X+
A , we can bound, for 0 ≤ n ≤ N ,

|L2N
−srw(x)| ≤ L2N−n

−Re(s)r(|L
n
−srw|)(x)

≤
∫
|Ln
−srw|dµ+O

(
||Ln

−sr||δ2N−n
)
.

Recall that we are assuming that L−Re(s)r1 = eP (−Re(s)r)1. By replacing−Re(s)r
by −Re(s)r−P (−Re(s)r) we may assume that L−Re(s)r1 = 1. Using this new nor-
malization, Lemma 2 becomes the following.

Lemma 7. There exists C0 > 0 such that

||Ln
−srw|| ≤ C0|Im(s)||w|∞ + θn|w|θ, ∀n ≥ 0. (4.2)

Lemma 8. Given τ > 0 there exists τ0 > 0 such that provided
(1) |w|∞ = 1 and |w|θ ≤ |Im(s)|,
(2) there exists x ∈ X+

A and 0 ≤ n ≤ N with |L2N
−srw(x)| ≤ 1− 1

|Im(s)|τ ,

then
||L2N

−srw||∞ ≤ 1− 1
|Im(s)|τ0

(4.3)

for |Im(s)| sufficiently large.

Proof. As is easily observed from (4.2), ||Ln
−sr|| ≤ (C0 +1)|Im(s)|, for all n ≥ 0. In

particular, we see that whenever y ∈ Bn(x) = {y : d(x, y) ≤ θn}, where n is chosen
such that θn ≤

(
2(C0 + 1)|Im(s)|τ+1

)−1
< θn−1, we have

|L2N
−srw(y)| ≤ |L2N

−srw(x)|+ (C0 + 1)|Im(s)|θn

≤
(

1− 1
|Im(s)|τ

)
+ (C0 + 1)|Im(s)|θn,

(4.4)
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for n ≥ 0 and w ∈ Fθ with |w|∞ = 1 and |w|θ ≤ |Im(s)|. Furthermore, from a stan-
dard characterization of equilibrium measures [12], there exists D > 0 (independent
of n)

µ(Bn(x)) ≥ θnD =
(

1
2(C0 + 1)|Im(s)|τ+1

)D

. (4.5)

Thus we have from (4.4) and (4.5) that∫
|L2N
−srw|dµ ≤

∫
Bn(x)c

|L2N
−srw|dµ+

∫
Bn(x)

|L2N
−srw|dµ

≤ (1− µ (Bn (x))) + µ (Bn (x))
(

1− 1
2|Im(s)|τ

)
≤ 1− 1

21+D(C0 + 1)D|Im(s)|τ(1+D)+D

(4.7)

for |Im(s)| sufficiently large. Thus comparing (4.1) and (4.7) we see that

|L2N
−srw|∞ ≤

(
1− 1

21+D(C0 + 1)D|Im(s)|τ(1+D)+D

)
+O

(
|Im(s)|δN

)
≤
(

1− 1
21+D(C0 + 1)D|Im(s)|τ(1+D)+D

)
+O

(
|Im(s)|1+C log δ

)
≤ 1− 1

|Im(s)|τ0

(4.8)
for |Im(s)| sufficiently large, where we choose τ0 > min{τ(1+D)+D,C| log δ|−1}.
Since we can assume that C > 0 has been chosen sufficiently large that C| log δ| > 1,
this completes the proof of Lemma 8.

After these preliminary considerations, we can now move onto the proof of Propo-
sition 2. With the earlier reductions it suffices to show that (under the hypotheses
of Theorem 1 or Theorem 2) there exist τ > 0, and C > 0 such that for m ≥ 1,

||L2mN
−sr || ≤ C0|Im(s)|

(
1− 1

|Im(s)|τ

)m−1

, (4.9)

where |Im(s)| is sufficiently large. Observe that the negation of (4.9) is that for
all τ > |r|∞/| log δ|, and C > 0 there exist sequences sk with |Im(sk)| → +∞ and
mk → +∞ such that

||LmkN
−skr || > 2C0|Im(sk)|

(
1− 1

|Im(sk)|τ

)mk−1

. (4.10)

The proof of Proposition 2 is by contradiction. The first step is to show that if
(4.10) holds then there exist

(1) τ > max {2, |r|∞/| log δ|},
(2) 1/| log δ| < C < τ

|r|∞ ,
(3) sk ∈ C with |Im(sk)| → +∞,
(4) wk ∈ Fθ, with |wk|∞ = 1 and |wk|θ ≤ Im(sk)



ERROR TERMS FOR CLOSED ORBITS OF HYPERBOLIC FLOWS 15

such that for all 0 ≤ n ≤ N ,

inf
x∈X+

A

|Ln
−skrwk(x)| ≥ 1− 1

|Im(sk)|τ
. (4.11)

The second step will be to show that (4.11) is incompatible with the hypothesis
that φt : Λ → Λ is either a transitive Anosov flow or a hyperbolic flow satisfying
the approximability condition.

We start with the first step. Let us assume for a contradiction that (4.11) is false.
In particular, we then have for all τ > |r|∞/| log δ| and C ∈ (1/| log δ|, τ/|r|∞), for
all sufficiently large |Im(s)| and functions w ∈ Fθ with |w|∞ = 1 and |w|θ ≤ |Im(s)|
there exists 0 ≤ n ≤ N and x ∈ X+

A such that

|Ln
−srw(x)| ≤ 1− 1

|Im(s)|τ
.

By applying Lemma 7 and Lemma 8 we obtain the following norm estimate. For
any m ≥ 1,

||L2Nm
−sr w|| ≤ C0|Im(s)||L2N(m−1)

−sr w|∞ + θ2N(m−1)|L2N
−srw|θ

≤ C0|Im(s)|

((
1− 1

|Im(s)|τ

)(m−1)

+ θ2N(m−1)

)

≤ C0|Im(s)|
(

1− 1
|Im(s)|τ1

)(m−1)

,

for any τ1 > max{C log 4, τ}, and we assume that |Im(s)| is sufficiently large.
However, with the choices s = sk and m = mk this contradicts (4.10) and this
completes the proof of the first step.

For the second step in the proof of Proposition 2 we take as our hypothesis that
(4.11) holds. Set nk = [log |Im(sk)|] and write

wk(x) = R0(x)eiθ0(x),

Lnk
−skrwk(x) = R1(x)eiθ1(x), and

L2nk
−skrwk(x) = R2(x)eiθ2(x),

where R0, R1, R2 are the moduli of these functions, and θ0, θ1, θ2 are the arguments.
Set τ ′ = τ − C|r|∞ > 0. We claim that whenever σnky = x then

exp (iΘ1(y, x)) = 1 +O

(
1

|Im(sk)|τ ′
)

and exp (iΘ2(y, x)) = 1 +O

(
1

|Im(sk)|τ ′
)
,

(4.12)
where we denote

Θ1(y, x) = Im(sk)rnk(y)− θ1(x) + θ0(y),

Θ2(y, x) = Im(sk)rnk(y)− θ2(x) + θ1(y).
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Since we are assuming Lnk

−Re(sk)r1 = 1 we can write∑
σnk y1=x

e−Re(sk)rnk (y1) (1− exp (−iΘ1(y1, x))R0(y1))

= 1− e−iθ1(x)Lnk
−skrwk(x)

= 1−R1(x).

(4.13)

Since by estimate (4.12) we can bound 1−R1(x) = O (1/|Im(sk)|τ ), we can estimate
from (4.13) that for each σnky1 = x we have that

1− exp (−iΘ1(y1, x))R0(y1) = O

(
enk|r|∞

|Im(sk)|τ

)
= O

(
|Im(sk)|C|r|∞ 1

|Im(sk)|τ

)
= O

(
1

|Im(sk)|τ ′
)
.

This proves the first part of (4.12). The second part follows similarly.
We want to show that (4.12) is inconsistent with either of the hypotheses on φt

contained in Theorem 1 or Theorem 2.

The case of Anosov flows. Consider first the case of a transitive Anosov flow.
We begin by making choices such that σnky0 = σnky1 = x and σnky2 = σnky3 = z
where d(y0, y2) = θnk and d(y1, y3) = θnk . We shall use Ξ to denote the set of
values

∆(y0, y1, y2, y3) = rnk(y0) + rnk(y3)− rnk(y1)− rnk(y2),

where y0, y1, y2, y3 range over the above choices.
This corresponds to the following geometric situation. The points y0, y1, y2 and

y3 correspond to points ξ0, ξ1, ξ2 and ξ3 in M which lie on the Markov sections∐k
i=1 Ti. Furthermore, each of the pairs ξ0 ,ξ2 and ξ0, ξ2 lie on the same section. Let

t = t(x, y) ∈ [−ε, ε] denote the unique value such that W ss
ε (x) ∩W su

ε (φty) = [x, y].
Then ∆ takes the form ∆(y0, y1, y2, y3) = t(ξ0, ξ1) + t(ξ2, ξ3). It is not difficult to
see, by continuity of the stable and unstable manifolds, that Ξ contains an interval.
However, we shall show that if (4.11) holds then we obtain a contradiction.

From (4.11) we see that:

exp (iΘ1(y0, x)) = 1 +O

(
1

|Im(sk)|τ ′
)
,

exp (iΘ2(y2, z))) = 1 +O

(
1

|Im(sk)|τ ′
)
,

exp (iΘ1(y1, x)) = 1 +O

(
1

|Im(sk)|τ ′
)

and

exp (iΘ2(y3, z)) = 1 +O

(
1

|Im(sk)|τ ′
)
.

Taking ratios of the first pair of expressions we see that

exp (i(Θ1(y0, x)−Θ2(y2, z))) = 1 +O

(
1

|Im(sk)|τ ′
)
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and taking ratios of the second pair of expressions we see that

exp (i(Θ1(y1, x)−Θ2(y3, z))) = 1 +O

(
1

|Im(sk)|τ ′
)
.

Taking further ratios we get

exp (i(Θ1(y0, x)−Θ2(y2, z))− i(Θ1(y1, x)−Θ2(y3, z)))

= exp (iIm(sk)∆(y0, y1, y2, y3))

= 1 +O

(
1

|Im(sk)|τ ′
)

In particular, we can assume that for |Im(sk)| sufficiently large,

Ξ ⊂
⋃
n∈Z

[
2πn

Im(sk)
− 1
|Im(sk)|τ ′+1

,
2πn

Im(sk)
+

1
|Im(sk)|τ ′+1

]
Since τ ′ > 0 this is an obvious contradiction to Ξ containing an interval (or even
being a set of non-zero measure). This completes the proof of Proposition 2 when
the flow is Anosov.

Remark. Observe that in (4.11) τ can be chosen to be any value strictly larger than
|r|∞/| log δ|. However, the smaller the value of τ we choose, the larger the analytic
extension we have and consequently the smaller the error term we obtain for π(T ).

The case of hyperbolic flows with the approximability condition. Assume
now that the flow is merely hyperbolic, but in addition satisfies the approximability
condition.

Fix a value x0 ∈ X+
A and choose y ∈ X+

A sufficiently close that

|θ1(x0)− θ1(y)| = O

(
1

|Im(sk)|τ ′
)

and |θ0(x0)− θ0(y)| = O

(
1

|Im(sk)|τ ′
)
.

In particular, we have that

θ1(y)− θ0(y) = Υ +O

(
1

|Im(sk)|τ ′
)
, (4.14)

where Υ := θ1(x0) − θ0(x0). Providing nk is sufficiently large, for any x ∈ X+
A we

may choose a point y ∈ σ−nkx satisfying (4.14). By taking the ratio of the two
expressions in (4.12) we see that

1 = exp (i ((θ2(x)− θ1(x))− (θ1(y)− θ0(y)))) +O

(
1

|Im(sk)|τ ′
)

= exp (i ((θ2(x)− θ1(x))−Υ)) +O

(
1

|Im(sk)|τ ′
)
,

where for the last line we have used (4.14). Thus for any x ∈ X+
A ,

exp (i (Im(sk)rnk(x) + θ1(x)− θ1(σnkx)))

= exp (i (Im(sk)rnk(x) + θ1(x)− θ2(σnkx) + Υ)) +O

(
1

|Im(sk)|τ ′
)

= eiΥ +O

(
1

|Im(sk)|τ ′
)
,

(4.15)
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where for the last line we have used the second expression in (4.12) (with x substi-
tuted for y and σnkx substituted for x).

Let γ1, γ2 and γ3 be the three distinct periodic orbits given by the approx-
imablity condition. Using symbolic dynamics we can associate periodic orbits
{x1, σx1, . . . , σ

n−1x1} and {x2, σx2, . . . , σ
m−1x2} for the subshift of finite type

such that l(γ1) = rn(x1), l(γ2) = rm(x2) and l(γ3) = rp(x3). Let us assume for
convenience that σx1 = x1, σx2 = x2 and σx3 = x3(the general case being similar).
Substituting these values of x into (4.15) we see that

Im(sk)nkl(γ1) = Im(sk)rnk(x1) = Υ + 2πpk +O

(
1

|Im(sk)|τ ′
)
,

Im(sk)nkl(γ2) = Im(sk)rnk(x1) = Υ + 2πqk +O

(
1

|Im(sk)|τ ′
)
, and

Im(sk)nkl(γ3) = Im(sk)rnk(x3) = Υ + 2πrk +O

(
1

|Im(sk)|τ ′
)
,

for some pk, qk and rk ∈ Z, and taking differences gives the estimates

Im(sk)nk(l(γ1)− l(γ2)) = 2π(pk − qk) +O

(
1

|Im(sk)|τ ′
)
, and

Im(sk)nk(l(γ2)− l(γ3)) = 2π(qk − rk) +O

(
1

|Im(sk)|τ ′
)
.

In particular, we can conclude that p′k = pk − qk, q
′
k = qk − rk ∈ Z are solutions to

l(γ1)− l(γ2)
l(γ2)− l(γ3)

− pk′

qk′
= O

(
1

|Im(sk)|τ ′
)

= O

(
1
qτ ′
k′

)
.

Recall that we could choose τ ′ arbitrarily large. In particular, if we chose τ ′ > α
then this contradicts the approximability condition and so completes the proof.
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