LARGE DEVIATIONS AND THE DISTRIBUTION OF PRE-IMAGES OF RATIONAL MAPS

MARK POLLICOTT AND RICHARD SHARP

University of Manchester

ABSTRACT. In this article we prove a large deviation result for the pre-images of a point in the Julia set of a rational mapping of the Riemann sphere. As a corollary, we deduce a convergence result for certain weighted averages of orbital measures, generalizing a result of Lyubich.

0. INTRODUCTION

Let $\hat{\mathbb{C}}$ denote the Riemann sphere and let $T : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational map of degree $d \geq 2$, say. Every point has d pre-images (counted according to their multiplicities). There is a well-known result of Lyubich which shows that for a point $x \in \mathbb{J}$ in the Julia set an evenly distributed weight on the set of d^n pre-images

$$S_n(x) = \{ y \in \hat{\mathbb{C}} : T^n y = x \}$$

converges (in the weak* topology) to a measure μ_0 as $n \to +\infty$ [4], [8]. The measure μ_0 is precisely the unique measure of maximal entropy for the map T [2], [5].

Since $T : \mathbb{J} \to \mathbb{J}$ is a continuous map on a compact metric space we can define the pressure of a continuous function $f : \mathbb{J} \to \mathbb{R}$ by

$$P(f) = \sup\left\{h(\nu) + \int f d\nu : \nu \text{ is a } T \text{-invariant probability}\right\},\$$

where $h(\nu)$ denotes the entropy of T with respect to ν . An equilibrium state for f is a T-invariant probability μ realising this supremum.

Let \mathcal{M} denote the set of all probability measures on \mathbb{J} . We shall show the following stronger "large deviation" result on the pre-images of a point $x \in \mathbb{J}$.

Theorem 1. Let $f : \mathbb{J} \to \mathbb{R}$ be a Hölder continuous function such that $P(f) > \sup f$ and let μ be the unique equilibrium state for f. Let $x \in \mathbb{J}$. Then for any weak* open neighbourhood $\mathcal{U} \subset \mathcal{M}$ of μ we have that the weighted proportion of the measures

$$\mu_{y,n} = \frac{1}{n} \left(\delta_y + \delta_{Ty} + \ldots + \delta_{T^{n-1}y} \right) \notin \mathcal{U}$$

The first author was supported by a Royal Society University Fellowship during part of this research.

tends to zero exponentially fast, in the sense that there exists C > 0 and $0 < \eta < 1$ such that

$$\frac{\sum_{\substack{\mu_{y,n}\notin\mathcal{U}\\\sum_{T^n y=x}e^{f^n(y)}}}{e^{f^n(y)}} \le C\eta^n, \quad \text{for } n \ge 0,$$

where we denote $f^{n}(y) = f(y) + f(Ty) + ... + f(T^{n-1}y)$.

Remark. The condition $P(f) > \sup f$ was first introduced by Urbanski in [9]. In the present article, as well as being required as a hypothesis for Lemmas 2 and 3, it is also used to give the lower bound required in establishing Lemma 6.

In the special case that f = 0 then μ becomes the measure of maximal entropy μ_0 for $T : \mathbb{J} \to \mathbb{J}$. The theorem then reduces to the following.

Corollary 1. Let $x \in \mathbb{J}$. For any weak^{*} open neighborhood $\mathcal{U} \subset \mathcal{M}$ of μ_0 the proportion of the points $y \in S_n(x)$ such that

$$\mu_{y,n} = \frac{1}{n} \left(\delta_y + \delta_{Ty} + \ldots + \delta_{T^{n-1}y} \right) \notin \mathcal{U}$$

tends to zero exponentially fast, i.e., there exists C > 0 and $0 < \eta < 1$ such that

$$\frac{1}{d^n} \# \{ y \in S_n(x) : \mu_{y,n} \notin \mathcal{U} \} \le C\eta^n, \quad \text{for } n \ge 0.$$

A second corollary to the theorem is given by the following convergence result.

Corollary 2. Let $x \in \mathbb{J}$. Let $f : \mathbb{J} \to \mathbb{R}$ be a Hölder continuous function such that $P(f) > \sup f$ and let μ be the unique equilibrium state for f. Then the averages

$$\frac{\sum_{T^n y=x} e^{f^n(y)} \mu_{y,n}}{\sum_{T^n y=x} e^{f^n(y)}}$$

converges to μ in the weak* topology as $n \to +\infty$.

These two corollaries provide two different generalizations of the following wellknown result of Lyubich.

Lyubich's Theorem ([4], [8], [2]). Let $x \in \mathbb{J}$. Then the averages

$$\frac{1}{d^n} \sum_{T^n y = x} \mu_{y,n}$$

converge to μ_0 in the weak* topology as $n \to +\infty$.

Remark. Strictly speaking, Lyubich established that the averages $\frac{1}{d^n} \sum_{T^n y=x} \mu_{y,n}$ converge to a non-atomic *T*-invariant probability measure supported on \mathbb{J} . This

measure was subsequently shown to maximise the entropy in [2] and it was shown that there is a unique measure of maximal entropy in [5]. Whereas Lyubich's Theorem can be established using normality of sequences of functions and the Montel-Carathéodory theorem [8], these stronger results (Corollaries 1 and 2) seem to require a different argument.

Previous applications of large deviation ideas to rational maps include the result of Lopes dealing with almost everywhere convergence of Birkhoff averages [3]. (Lopes restricted himself to the case of hyperbolic Julia sets but, as Przytycki observed [7] this is unnecessary provided we assume $P(f) > \sup f$.)

1. Some properties of rational maps

In this section we shall recall some of the basic properties of rational maps which we shall need later. Let $T : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational map of degree $d \ge 2$. i.e.

$$T(z) = \frac{a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0}{b_m z^m + b_{m-1} z^{m-1} + \ldots + b_1 z + b_0}$$

where $a_n, \ldots, a_0, b_m, \ldots, b_0 \in \mathbb{C}$ (with $a_n, b_m \neq 0$) and $d = max\{n, m\} \geq 2$.

Counted according to multiplicity, every point $x \in \hat{\mathbb{C}}$ will have *d*-pre-images. If we consider the *n*-th iterate $T^n : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ then the set of pre-images $S_n(x) = \{y : T^n y = x\}$ of a point $x \in \hat{\mathbb{C}}$ will have cardinality d^n .

Definition. The Julia set $\mathbb{J} \subset \mathbb{C}$ is defined to be the closure of the set of all periodic points $T^n x = x$ for which $|(T^n)'(x)| > 1$.

Clearly \mathbb{J} is closed *T*-invariant set and we shall be interested in the restriction $T: \mathbb{J} \to \mathbb{J}$ of the map *T*. We shall write $C^0(\mathbb{J})$ for the space of real valued continuous functions on \mathbb{J} . We denote by \mathcal{M}_T the space of all *T*-invariant probability measures on \mathbb{J} .

Definition. For any continuous function $f: \mathbb{J} \to \mathbb{R}$ we can define the pressure by

$$P(f) = \sup\{h(\nu) + \int f d\nu : \nu \in \mathcal{M}_T\},\$$

where $h(\nu)$ denotes the entropy of T with respect to the measure ν .

We let h(T) = P(0) denote the topological entropy of $T : \mathbb{J} \to \mathbb{J}$.

The following results about entropy will be useful to us.

Lemma 1 [2], [4].

- (i) $h(T) = \log d$.
- (ii) The map $\nu \to h(\nu)$ is upper semi-continuous in the weak star topology.
- (iii) There is a unique measure of maximal entropy μ_0 for $T: \mathbb{J} \to \mathbb{J}$.

Statement (iii) of Lemma 1 has the following generalization.

Lemma 2 (Denker and Urbanski [1]). If $f : \mathbb{J} \to \mathbb{R}$ is a Hölder continuous function such that $P(f) > \sup f$ them f has a unique equilibrium state μ .

The following lemma gives us some information about the relationship between pressure and the pre-images of a point.

Lemma 3 (Przytycki [6]). Let $x \in \mathbb{J}$. Let f be a Hölder continuous function on the Julia set \mathbb{J} such that $P(f) > \sup f$ and let g be a continuous function on \mathbb{J} . Then

(i)

$$\lim_{n \to +\infty} \frac{1}{n} \log \sum_{T^n y = x} e^{f^n(y)} = P(f);$$

(ii)

$$\limsup_{n \to +\infty} \frac{1}{n} \log \sum_{T^n y = x} e^{f^n(y) + g^n(y)} \le P(f+g).$$

Finally, the following lemma gives us an alternative characterisation of the entropy.

Lemma 4.

(i) If $\nu \in \mathcal{M}_T$ then

$$h(\nu) = \inf\{P(g) - \int g d\nu : g \in C^0(\mathbb{J})\}.$$

(ii) If $\nu \in \mathcal{M} - \mathcal{M}_T$ then

$$0 \ge \inf \{ P(g) - \int g d\nu : g \in C^0(\mathbb{J}) \}.$$

Proof. In fact, these two results hold for any continuous mapping T of a compact metric space for which $h(T) < +\infty$ and, in the case of (i), the map $\nu \to h(\nu)$ is upper semi-continuous (cf. [10,pp. 221-222]).

2. Proof of Theorem 1

In this section we will give the proof of Theorem 1, using the results from the previous section. As before $f : \mathbb{J} \to \mathbb{R}$ is a Hölder continuous function satisfying $P(f) > \sup f$. We can define a map $Q : C^0(\mathbb{J}) \to \mathbb{R}$ by Q(g) = P(f+g) - P(f). For $\nu \in \mathcal{M}$, we then denote the Legendre transform of Q(g) by

$$I(\nu) = \sup_{g \in C^0(\mathbb{J})} (\int g d\nu - Q(g)).$$

Given any weak* closed (and hence compact) subset $\mathcal{K} \subset \mathcal{M}$ we define $\rho = \rho_{\mathcal{K}} := \inf_{\nu \in \mathcal{K}} I(\nu)$.

Our proof will be based upon the following estimate.

Lemma 5.

$$\limsup_{n \to +\infty} \frac{1}{n} \log \left(\frac{\sum_{\substack{T^n y = x \\ \mu_{y,n} \in \mathcal{K}}} e^{f^n(y)}}{\sum_{T^n y = x} e^{f^n(y)}} \right) \le -\rho$$
(1)

Proof. Fix a choice of $\epsilon > 0$. From the definition of ρ , for every $\nu \in \mathcal{K}$, there exists $g \in C^0(\mathbb{J})$ such that

$$\int g d\nu - Q(g) > \rho - \epsilon.$$

Thus we have that

$$\mathcal{K} \subset \bigcup_{g \in C^0(\mathbb{J})} \left\{ \nu \in \mathcal{M} : \int g d\nu - Q(g) > \rho - \epsilon \right\}$$

and by weak^{*} compactness we can choose a finite subcover

$$\mathcal{K} \subset \bigcup_{i=1}^{k} \left\{ \nu \in \mathcal{M} : \int g_i d\nu - Q(g_i) > \rho - \epsilon \right\}.$$

Therefore we have the inequality

$$\sum_{\substack{T^n y = x \\ \mu_{y,n} \in \mathcal{K}}} e^{f^n(y)} \leq \sum_{i=1}^k \left(\sum_{\substack{T^n y = x \\ \frac{1}{n} g_i^n(y) - Q(g_i) > \rho - \epsilon}} e^{f^n(y)} \right)$$
$$\leq \sum_{i=1}^k e^{-n(Q(g_i) + (\rho - \epsilon))} \left(\sum_{\substack{T^n y = x \\ T^n y = x}} e^{f^n(y) + g_i^n(y)} \right)$$

Taking limits we get that

$$\begin{split} &\limsup_{n \to +\infty} \frac{1}{n} \log \left(\frac{\sum_{\substack{\mu_{y,n} \in \mathcal{K} \\ \mu_{y,n} \in \mathcal{K}}} e^{f^n(y)}}{\sum_{T^n y = x} e^{f^n(y)}} \right) \\ &\leq \sup_{1 \le i \le k} \left\{ -Q(g_i) - \rho + \epsilon + \limsup_{n \to +\infty} \frac{1}{n} \log \left(\sum_{\substack{T^n y = x}} e^{f^n(y) + g_i^n(y)} \right) - \liminf_{n \to +\infty} \frac{1}{n} \log \left(\sum_{\substack{T^n y = x}} e^{f^n(y)} \right) \right\} \\ &\leq \sup_{1 \le i \le k} \left\{ -Q(g_i) - \rho + \epsilon + P(f + g_i) - P(f) \right\} \\ &= -\rho + \epsilon, \end{split}$$

where the second inequality uses Lemma 3. Since $\epsilon > 0$ can be chosen arbitrarily small this completes the proof of the lemma.

We next want to show that if \mathcal{K} does not contain μ then $\rho > 0$. This will follow from the next lemma.

Lemma 6.

- (i) If $\nu \neq \mu$ then $I(\nu) > 0$.
- (ii) The map $\nu \to I(\nu)$ is lower semi-continuous on \mathcal{M}_T and I is bounded away from 0 on $\mathcal{M} \mathcal{M}_T$.

Proof. For part (i) we have that

$$\begin{split} I(\nu) &= \sup_{g \in C^{0}(\mathbb{J})} \left(\int g d\nu - P(f+g) + P(f) \right) \\ &= \sup_{g \in C^{0}(\mathbb{J})} \left(\int (g-f) d\nu - P(g) + P(f) \right) \\ &= \sup_{g \in C^{0}(\mathbb{J})} \left(\int g d\nu - P(g) \right) + P(f) - \int f d\nu \\ &= - \inf_{g \in C^{0}(\mathbb{J})} \left(P(g) - \int g d\nu \right) + P(f) - \int f d\nu. \end{split}$$

If $\nu \in \mathcal{M}_T$ then, by part (i) of Lemma 4, this is equal to $-h(\nu) + P(f) - \int f d\nu$, and, by the uniqueness of the equilibrium state μ , $-h(\nu) + P(f) - \int f d\nu > 0$. On the other hand, if $\nu \in \mathcal{M} - \mathcal{M}_T$, then

$$\inf_{g \in C^0(\mathbb{J})} (P(g) - \int g d\nu) < 0$$

by part (ii) of Lemma 4 and so

$$I(\nu) > 0 + P(f) - \int f d\nu$$

$$\geq P(f) - \sup f > 0.$$

For the proof of (ii) we first notice that $I(\nu) = -h(\nu) + P(f) - \int f d\nu$. We then complete the proof with the lower bound in the proof of (i) above. This completes the proof of the lemma.

Since \mathcal{K} is compact, we can conclude that if $\mu \notin \mathcal{K}$ then $\rho > 0$. Theorem 1 now follows by setting $\mathcal{K} = \mathcal{M} - \mathcal{U}$.

Proof of Corollary 2. We shall show that for any $g \in C^0(\mathbb{J})$ we have that

$$\frac{1}{\Sigma(f,n)} \sum_{T^n y = x} e^{f^n(y)} \frac{g^n(y)}{n} \to \int g d\mu, \text{ as } n \to +\infty,$$

where $\Sigma(f, n) = \sum_{T^n y = x} e^{f^n(y)}$.

Given $\epsilon > 0$, define an open neighbourhood \mathcal{U} of μ by

$$\mathcal{U} = \{
u \in \mathcal{M} : | \int g d
u - \int g d\mu | < \epsilon \}.$$

Then we may write

$$\frac{1}{\Sigma(f,n)} \sum_{\substack{T^n y = x \\ \mu y = x}} e^{f^n(y)} \frac{g^n(y)}{n} \\
= \frac{1}{\Sigma(f,n)} \sum_{\substack{T^n y = x \\ \mu y, n \in \mathcal{U}}} e^{f^n(y)} \frac{g^n(y)}{n} + \frac{1}{\Sigma(f,n)} \sum_{\substack{T^n y = x \\ \mu y, n \notin \mathcal{U}}} e^{f^n(y)} \frac{g^n(y)}{n} \\
= \frac{1}{\Sigma(f,n)} \sum_{\substack{T^n y = x \\ \mu y, n \in \mathcal{U}}} e^{f^n(y)} \left\{ \int g d\mu + E_n(y) \right\} + O(\eta^n),$$

where $|E_n(y)| < \epsilon$ and $0 < \eta < 1$ is given by Theorem 1.

Thus we conclude (by adding appropriate constants to g if necessary) that

$$\limsup_{n \to +\infty} \frac{1}{\Sigma(f,n)} \sum_{T^n y = x} e^{f^n(y)} \frac{g^n(y)}{n} \le \int g d\mu + \epsilon$$

and

$$\liminf_{n \to +\infty} \frac{1}{\Sigma(f,n)} \sum_{T^n y = x} e^{f^n(y)} \frac{g^n(y)}{n} \ge \int g d\mu - \epsilon.$$

Since $\epsilon > 0$ is arbitrary, the result is proved.

References

- 1. M. Denker and M. Urbanski, Ergodic theory of equilibrium states for rational maps, Nonlinearity 4 (1991), 103-134.
- A. Freire, A. Lopes, and R. Mañé, An invariant measure for rational maps, Bol. Bras. Mat. Soc. 14 (1983), 45-62.
- 3. A. Lopes, Entropy and Large Deviations, Nonlinearity 3 (1990), 527-546.
- M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dyn. Syst. 3 (1983), 351-385.
- R. Mané, On the uniqueness of the maximising measure for rational maps, Bol. Bras. Mat. Soc. 14 (1983), 27-43.
- F. Przytycki, On the Perron-Frobenius-Ruelle operator for rational maps on the Riemann sphere and for Hölder continuous functions, Bol. Bras. Math. Soc. 20 (1990), 95-125.
- 7. F. Przytycki, *Review of "Entropy and Large Deviations" by A. Lopes*, Mathemaical Reviews, 91m:58092.
- 8. N. Steinmetz, Rational Iteration, de Gruyter, Berlin-New York, 1993.
- M. Urbanski, Invariant subsets of expanding mappings of the circle, Ergodic Theory Dyn. Sys. 7, 627-645.
- 10. P. Walters, Ergodic Theory, Springer-Verlag, New York-Heidelberg-Berlin, 1982.

Mark Pollicott	RICHARD SHARP
Department of Mathematics	Department of Mathematics
University of Manchester	University of Manchester
Oxford Road	Oxford Road
Manchester M13 9PL	Manchester M13 9PL
England	England
Email: mp@ma.man.ac.uk	Email: sharp@ma.man.ac.uk