
POINCARÉ SERIES AND ZETA FUNCTIONS

FOR SURFACE GROUP ACTIONS ON R-TREES

Mark Pollicott and Richard Sharp

Warwick University and Oxford University

0. Introduction

For a discrete group of isometries Γ acting freely on n-dimensional hyperbolic
space Hn we can define a Poincaré series for each point x ∈ Hn by

η(s) =
∑
g∈Γ

e−sd(x,gx)

(where s is a complex variable, and the series converges to an analytic function
providing Re(s) is sufficiently large). If [g] denotes the conjugacy class of g ∈ Γ
then we define a zeta function by

ζ(s) =
∏
[g]

(
1− e−sl(g)

)−1

where the product is over all conjugacy classes of primitive elements in Γ (i.e.,
elements which are not a positive power of another element). Here

l(g) = inf{d(x, gx) : x ∈ Hn}

and it is easy to see that this is constant on conjugacy classes.
In this setting, it can be shown that η(s) and ζ(s) have extensions as meromor-

phic functions to the entire complex plane. The proof relies on non-commutative
harmonic analysis and the functions are studied via the spectral properties of the
Laplace-Beltrami operator.

In this note we shall consider an analogous situation where we replace Hn by
an R-tree. R-trees are a class of metric spaces which generalize the more familiar
simplicial trees. In recent years there has been much interesting work on group
actions on R-trees (for a good survey see [10]) which can, in part, be viewed as a
generalization of the now classical Bass-Serre theory of group actions on trees [16].
In particular, Morgan and Shalen have shown that the fundamental groups Γ of
compact surfaces M with Euler characteristic strictly less than −1 act freely on
R-trees. More precisely, they show that given a hyperbolic structure on M , there
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exists an R-tree T and a free action of Γ by isometries on T [13]. For any such
action, pick a point x ∈ T and define the associated Poincaré series by

η(s) =
∑
g∈Γ

e−sd(x,gx),

where s is a complex variable. It is not difficult to show that the series converges
absolutely if Re(s) is sufficiently large and so defines an analytic function in a
half-plane. Our first main result is the following.

Theorem 1. Let Γ be the fundamental group of a compact surface with Euler
characteristic strictly less than −1 and suppose that Γ×T → T is a free, isometric
action of Γ on T , as constructed by Morgan and Shalen. Then η(s) has an extension
as a meromorphic function to the entire complex plane.

We can define a zeta function for an action Γ×T → T as for the case of actions
on Hn by

ζ(s) =
∏
[g]

(
1− e−sl(g)

)−1

where the product is over all conjugacy classes of primitive elements in Γ and
l(g) = inf{d(gx, x) : x ∈ T }. Our second main result is the following.

Theorem 2. Let Γ be the fundamental group of a compact surface with Euler
characteristic strictly less than−1 and suppose that Γ×T → T is a free, isometric
action of Γ on T , as constructed by Morgan and Shalen. Then ζ(s) has an extension
as a meromorphic function to the entire complex plane.

Our definition of a zeta function has strong parallels with the Ihara zeta function
associated to torsion-free subgroups of SL2(Qp) or, more generally, finite graphs
[1],[9] and [17]. Let G be a finite graph with fundamental group Γ = π1(M) (so
that Γ is a free group). Given a unitary representation Rχ : Γ → U(d) we can
define the Ihara zeta function by

L(z,Rχ) =
∏
[g]

det
(
1−Rχ(g)z|g|

)−1

where |g| denotes the number of edges in the loop corresponding to g. (This covers
the case of finitely generated torsion-free subgroups of SL2(Qp), since such groups
act freely on an associated tree [16] and we can take G to be the quotient graph.)
By the work of Ihara [9] it is known that L(z,Rχ) is a rational function. In [1],
Bass proved an analogous result for the case where Γ < SL2(Qp) is not torsion-
free. Such zeta functions have interesting connections with Ramanujan graphs and
curves over finite fields [1, p.721].

We shall now outline the contents of the paper. In section 1 we recall the
definition and some basic properties of R-trees. In section 2 we recall the definition
of strongly Markov groups. In section 3, we show the strong Markov structure and
the special properties of R-trees may be used to write η(s) in terms of a family of
matrices and hence show that it can be extended as a meromorphic function to the
entire complex plane C. In section 4 we carry out the parallel analysis for the zeta
function.
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1. Some basic properties of R-trees.

We begin by recalling the definition of R-trees. An R-tree is a metric space (T , d)
such that

(i) for any two points x, y ∈ T there is a unique map φ : [0, d(x, y)] → T which
is isometric onto its image and has φ(0) = x and φ(d(x, y)) = y;

(ii) no subset of T is homeomorphic to S1.
The R-trees defined above generalize the familiar notion of a simplicial tree,

i.e., a (non-empty) connected, simply connected 1-complex with the natural met-
ric structure. They were first introduced by Tits [18] (with the extra assumption
of completeness) and were given the name R-trees by Morgan and Shalen in [11].
Earlier, Chiswell, in his study of real valued length functions on groups, had con-
structed a space which was subsequently proved to be an R-tree [6]. As an example
of a space which is an R-tree but not a simplicial tree, consider R2 with the metric

d((x, y), (x′, y′)) =
{ |y|+ |x− x′|+ |y′| if x 6= x′

|y − y′| if x = x′.

This can still be thought of as a collection of vertices and edges but here the vertices
are dense in {(x, y) : y = 0}.

A very important property of R-trees is that they are hyperbolic spaces in the
sense of Gromov, in fact they are 0-hyperbolic, i.e., one side of a (geodesic) triangle
lies in the union of the other two sides [8]. (From another point of view, R-trees
are spaces with “curvature” −∞.)

It is well known that that only groups that act freely on simplicial trees are
free groups [16, Theorem 4, p.27] and it is natural to ask which groups act freely
on R-trees. A major breakthrough in this direction was provided by the work of
Morgan and Shalen. In particular, they proved the following result.

Proposition 1 ([13]). Let Γ be the fundamental group of a compact surface M
with Euler characteristic less than −1. Given a hyperbolic structure on M there
exists an R-tree T and a free isometric action of Γ on T .

It is important for what follows to recall how these R-trees are constructed. Given
a hyperbolic structure on M (i.e., a Riemannian metric of constant curvature −1)
Morgan and Shalen show that there exists a measured geodesic lamination (L, µ) on
M such that both the leaves and the complementary regions are simply connected.
(For a definition and detailed discussion of measured laminations, see [12].) They
then lift (L, µ) to a measured lamination (L̃, µ̃) of the hyperbolic plane H2. Denote
the support of L̃ by Y ⊂ H2 and let C denote the set of components of H2 − Y .
Define a metric on C in the following way. For components c0, c1 ∈ C, let ω be
a path from c0 to c1 which is transverse to L̃ and crosses each leaf of L̃ at most
once. Define d(c0, c1) to be the geometric intersection number of ω with (L̃, µ̃). The
R-tree T is constructed by joining components c0 and c1 with segements of length
d(c0, c1). Of course, one must check that the axioms for an R-tree are satisfied. The
action of Γ on T is induced by its action on C. The fact that the complementary
regions of L are simply connected guarantees that the action is free.

Remark. More recently, Rips has announced that the only finitely generated groups
which act freely on R-trees are free products of surface groups of the above type
and free abelian groups.
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We shall require some estimates relating quantities defined on T and on Γ. These
will follow once we have established that T and Γ (with the word metric) are quasi-
isometric metric spaces (via the map f : Γ → T given by f(g) = gx). A result of
this kind is proved for a discrete isometric action of a group Γ on a metric space
X in Proposition 19 of [8, Chapitre 3] under the assumption that X/Γ is compact
and that closed balls in X are compact. This fails for T and Γ; however a careful
examination of the proof shows that, in fact, one only requires the following two
statements:

(1) the metric space T /Γ has finite diameter, i.e.,

R = sup{dT /Γ(x, y) : x, y ∈ T /Γ} < +∞;

(2) let B be a ball of radius R in T , then {g ∈ Γ : gB ∩B 6= ∅} is finite.

Both of these follow from the construction of T and the action of Γ adumbrated
above. To prove (1), first note that it is sufficient to bound the distances dT /Γ(x, y),
where x, y are the images of branch points in T (those points which are constructed
from components of H2 − Y ). However, there are only finitely many such points in
T /Γ ([10, Theorem 22]), the distances are bounded. To see (2), it suffices to show
that for any x ∈ T and R′ > 0, d(x, gx) ≤ R′ for only finitely many g ∈ Γ. We
may suppose that x = xc is a branch point of T , constructed from the component
c ∈ C. Then d(xc, gxc) = d(c, gc) is equal to the geometric intersection number
of ω with (L̃, µ̃), where ω is a path from c to gc crossing each leaf of L̃ at most
once. Since L̃ is the lift of the measured lamination L on M = H2/Γ and the
complementary regions of L are simply connected, this number tends to infinity as
dH2(p, gp) (p ∈ H2) tends to infinity, so, in particular, d(c, gc) ≤ R′ for only a finite
number of g ∈ Γ.

We can conclude from this that for any x ∈ T and any finite generating set S
for Γ there exist constants C1, C2 > 0 such that

C1|g| ≤ d(x, gx) ≤ C2|g|

for all g ∈ Γ, where |g| denotes the word-length of g, i.e., the minimal length
of g written as a word in S. Furthermore, if we define the Gromov products
(y, w)x := 1/2(d(x, y)+d(x, w)−d(y, w)) and (g, g′) := 1/2(|g|+ |g′|−|g−1g′|) then
there exist constants A > 0, K > 0 such that

(g, g′) ≤ A(gx, g′x)x + K

for all g, g′ ∈ Γ.
The following result will prove useful later.

Lemma 1. Let T be an R-tree and let x, y, w, z be four points in T such that
d(x, z) ≤ l. If (y, w)x = 1/2(d(y, x)+ d(w, x)− d(y, w)) > l then d(x,w)+ d(y, z)−
d(x, y)− d(w, z) = 0.

Proof. Suppose first that the four points are pairwise distinct. From the definition
of T precisely one of the two pictures in the figure must occur.
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FIGURE

If we are in case (a), then it is clear that the required quantity is zero. To
complete the proof, we aim to show that if (y, w)x is sufficiently large then case (b)
cannot occur.

We recall the elementary fact that for R-trees, (y, w)x = d(x, [yw]), where [yw]
denotes the (unique) segment with endpoints y and w [8]. However, observe that
in case (b) we have that d(x, [yw]) ≤ l, but by hypothesis we have that (y, w)x > l
so this case cannot occur and we are done.

It remains to consider the cases where two or more of x, y, w, z are identical.
These can easily be dealt with by a case by case analysis.

2. Strongly Markov groups

In this section we shall describe how to associate to the group Γ (and a symmetric
set of generators S) a finite directed graph which can be thought of as encoding
the group. This is a key object proving the rationality of the growth series and
will, likewise, prove fundamental in constructing the meromorphic extension of the
Poincaré series.

We start by recalling the definition of strongly Markov groups.

Definition. We say that a finitely generated group is strongly Markov if for every
finite symmetric generating set S we can find:

(i) a finite directed graph G, with edges E and vertices V , and a distinguished
vertex ∗ with no edge terminating at ∗; and

(ii) an edge labelling λ : E → S,

such that for each n ≥ 1 there is a bijection between:

(a) elements g ∈ Γ− {e} with |g| = n; and
(b) paths of length n in G which start at ∗ and pass through n consecutive

edges e1, . . . , en,

given by g = λ(e1) . . . λ(en).

The following result tells us that the fundamental groups of surfaces that we are
considering are always strongly Markov.

Proposition 2 (Cannon [4]). The fundamental group of a compact manifold ad-
mitting a hyperbolic structure is strongly Markov.

This theorem was originally proved in 1984 by Cannon [4] and a particularly
nice account can be found in [8].

When Γ is the fundamental group of an orientable compact surface M with Euler
characteristic less than −1 we have the following standard one relator presentation

Γ =< a1, . . . , ag, b1, . . . , bg :
g∏

i=1

[ai, bi] = 1 > .

For generators in the standard presentation, Series [15] anticipated parts of this
theory. It is her work that will prove more suitable for the study of zeta functions
and the proof of Theorem 2. In particular, we shall need the following result.
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Proposition 3 (Series [15]). Let Γ be the fundamental group of a compact sur-
face with negative Euler characteristic with the standard presentation. There is a
correspondence between conjugacy classes [g] (with g ∈ Γ − {e} ) and closed loops
e1, . . . , en, where [g] = [λ(e1) . . . λ(en)], with at most finitely many exceptions.

Remark. In Series’s formulation a (finite type) set of rules is specified for admissible
sequences of generators in S = {a1, . . . , ag, b1, . . . , bg}. (This is easily expressed in
terms of a labelled directed graph). Any element in Γ is shown to have a unique
shortest admissible representation as a product of generators in S ([15], Theorem
3.5). Moreover, there is a map π mapping each admissible infinite sequence of
generators (en)n≥0 to a point on the boundary π ((en)n≥0) ∈ ∂H2 of the hyperbolic
plane (using the equivalent Poincaré disc model) which is equivariant with respect
to the shift map on sequences with a natural action on the the boundary (i.e.
π ((en+1)n≥0) = e0π ((en)n≥0)). Every conjugacy class [g] corresponds to a fixed
point gx = x ∈ ∂H2 (this can be seen, for example, by considering lifts of closed
geodesics) and thus to a periodic sequence of admissible generators. Moreover, this
correspondence is one-to-one, except at for at most finitely many (prime) periodic
sequences (cf. [ 15, Proposition 4.6]).

We shall need to work with the incidence matrix of the graph G; however, it is
convenient to introduce an extra vertex 0 as described below. (This idea has been
used by Bourdon [2] and by the authors [14]. In this context, its usefulness will
be seen in allowing us to obtain a matrix representation of the Poincaré series, in
particular in deriving equation (3.1).) Let k = |V | + 1 then we associate to G a
k × k matrix A with rows and columns indexed by V ∪ {0} and entries given by

(i) A(i, j) = 1 for i, j ∈ V connected by an edge in E;
(ii) A(i, 0) = 1 for i ∈ V
(iii) A(0, 0) = 1
(iv) A(i, j) = 0 for all other entries.

This procedure gives us a new edge set E′ and we extend the labelling map λ :
E → S to a map λ : E′ → S ∪{e} by defining λ(i, 0) = e for i ∈ V ∪{0}, where e is
the identity element in Γ. By a simple recoding argument, we may assume without
loss of generality that there is at most one edge joining any ordered pair of vertices.

3. The proof of Theorem 1

Given a free isometric action of Γ on an R-tree T and a point x ∈ T , it is natural
to consider the Poincaré series defined by

η(s) =
∑
g∈Γ

e−sd(g),

whenever the series converges. (Here, for convenience, we have written d(g) =
d(x, gx).)

Fix a finite symmetric generating set S for Γ. Notice that (in the domain of
convergence) we may write η(s) in the following way:

η(s) = 1 +
∞∑

n=1

∑
g∈Γ
|g|=n

e−sd(g).
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It is not hard to see that η(s) converges to an analytic function providing the
real part Re(s) is sufficiently large. To see this, recall that there exist constants
C1, C2 > 0 such that C1|g| ≤ d(g) ≤ C2|g| for all g ∈ Γ and so, for s ∈ R, we have
the inequalities ξ(e−C2s) ≤ η(s) ≤ ξ(e−C1s), where ξ(z) denotes the growth series

ξ(z) = 1 +
∞∑

n=1

Card{g ∈ Γ : |g| = n}zn,

associated to (Γ, S). Since Γ contains the free group on two genertors as a sub-
group, it is an elementary observation that the coefficients in ξ(z) have exponential
growth. We can therefore conclude that there exists h > 0 such that η(s) converges
absolutely for Re(s) > h (and diverges for Re(s) < h).

The following proposition shows that because of the special nature of R-trees
the displacement function d : Γ → R+ must satisfy the rather strong condition
described below.

Proposition 4. There exists an integer N ≥ 2 such that for all sequences of
vertices i0, i1, . . . , im, m ≥ N with A(ir, ir+1) = 1, for r = 0, . . . , m − 1, we have
that

d(λ(i0, i1)λ(i1, i2) . . . λ(im−1, im))− d(λ(i1, i2) . . . λ(im−1, im))

= d(λ(i0, i1)λ(i1, i2) . . . λ(iN−1, iN ))− d(λ(i1, i2) . . . λ(iN−1, iN )).

Proof. Write gi = λ(ir−1, ir) ∈ S, r = 1, . . . , m. Then

(g1 . . . gN , g1 . . . gNgN+1 . . . gm)

= 1/2(|g1 . . . gN |+ |g1 . . . gN . . . gm| − |gN+1 . . . gm|)
= 1/2(N + m− (m−N))

= N.

Write g = g1 . . . gN and g′ = g1 . . . gNgN+1 . . . gm. Then there exist A > 0 and
K > 0 such that N = (g, g′) ≤ A(gx, g′x)x + K, for all g, g′ ∈ Γ. We need to show
that

d(x, g′x)− d(x, g−1
1 g′x) = d(x, gx)− d(x, g−1

1 gx).

Note that
d(x, gx)− d(x, g′x)− d(x, g−1

1 gx) + d(x, g−1
1 g′x)

= d(x, gx)− d(x, g′x)− d(g1x, gx) + d(g1x, g′x)

= Q, say.

Apply Lemma 1 with x = x, z = g1x, w = gx, y = g′x and note that d(x, z) ≤ l =
max{d(x, ax) : a ∈ S}. Provided (gx, g′x)x > l, we have that Q = 0. To ensure
this, we need only require that N > Al + K.

We shall now show that the function η(s) can be extended as a meromorphic
function to the whole of C. Indeed, we shall give a closed form for the extension in
terms of a family of matrices which we now define.
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We need first to consider a matrix Â whose columns and rows are indexed by
the set of admissible words î = (i0, . . . , iN−1) of length |̂i| = N (that is we require
that A(ir, ir+1) = 1 for 0 ≤ r ≤ N − 1). We define

Â(̂i, ĵ) =
{

1, if i0 6= 0 and ir = jr−1, r = 1, . . . , N − 1
0, otherwise.

Note that by this definition, Â((0, 0, . . . , 0), (0, 0, . . . , 0)) = 0.
Given a pair of admissible words î, ĵ such that Â(̂i, ĵ) = 1, we shall write

r(̂i, ĵ) = d(λ(i0, i1)λ(i1, i2) . . . λ(iN−1, jN−1))− d(λ(i1, i2) . . . λ(iN−1, jN−1)).

For each complex value s ∈ C we can then define a matrix P s again indexed with
the admissible words described above and with entries P s(̂i, ĵ) = Â(̂i, ĵ)e−sr(̂i,ĵ).

Using Proposition 4, we can write∑
g∈Γ
|g|=n

e−sd(g) =
∑

î∈I,ĵ∈J

(P s)(n)(̂i, ĵ) (3.1)

where
(a) I = {̂i : i0 = ∗}
(b) J = {ĵ : j0 6= 0 and jr = 0, r = 1, . . . , N − 1}.

To see this, suppose that g = λ(i0, i1)λ(i1, i2) . . . λ(in−1, in) and that n ≥ N , where
N is given by Proposition 4. (If n < N then the proof is easier.) Write î = î(0) =
(i0, i1, . . . , iN−1) and define î(m) = (̂i(m)

0 , î
(m)
1 , . . . , î

(m)
N−1), for m = 1, . . . , n, by

î
(m)
k =

{
ik+m if k + m ≤ n

0 if k + m > n.

Thus, ĵ = î(n) = (in, 0, . . . , 0). We claim that

R(i0, i1, . . . , in) := r(̂i(0), î(1)) + r(̂i(1), î(2)) + . . . + r(̂i(n−1), î(n)) = d(g).

From the defintion of r we have that

R(i0, i1, . . . , in)

= (d(λ(i0, i1)λ(i1, i2) . . . λ(iN−1, iN ))− d(λ(i1, i2) . . . λ(iN−1, iN )))

+ (d(λ(i1, i2)λ(i2, i3) . . . λ(iN , iN+1))− d(λ(i2, i3) . . . λ(iN , iN+1)))

+ . . .

+
(

d(λ(in−N , in−N+1)λ(in−N+1, in−N+2) . . . λ(in−1, in))
−d(λ(in−N+1, in−N+2) . . . λ(in−1, in))

)
+
(

d(λ(in−N+1, in−N+2)λ(in−N+2, in−N+3) . . . λ(in, 0))
−d(λ(in−N+2, in−N+3) . . . λ(in, 0))

)
+
(

d(λ(in−N+2, in−N+3)λ(in−N+3, in−N+4) . . . λ(0, 0))
−d(λ(in−N+3, in−N+4) . . . λ(0, 0))

)
+ . . .

+ (d(λ(in−1, in)λ(in, 0) . . . λ(0, 0))− d(λ(in, 0) . . . λ(0, 0)))
8



Since all of the labels of the form λ(in, 0) and λ(0, 0) are equal to the identity this
becomes

R(i0, i1, . . . , in)

= (d(λ(i0, i1)λ(i1, i2) . . . λ(iN−1, iN ))− d(λ(i1, i2) . . . λ(iN−1, iN )))

+ (d(λ(i1, i2)λ(i2, i3) . . . λ(iN , iN+1))− d(λ(i2, i3) . . . λ(iN , iN+1)))

+ . . .

+
(

d(λ(in−N , in−N+1)λ(in−N+1, in−N+2) . . . λ(in−1, in))
−d(λ(in−N+1, in−N+2) . . . λ(in−1, in))

)
+
(

d(λ(in−N+1, in−N+2)λ(in−N+2, in−N+3) . . . λ(in−1, in))
−d(λ(in−N+2, in−N+3) . . . λ(in−1, in))

)
+
(

d(λ(in−N+2, in−N+3)λ(in−N+3, in−N+4) . . . λ(in−1, in))
−d(λ(in−N+3, in−N+4) . . . λ(in−1, in))

)
+ . . .

+ d(λ(in−1, in))
Applying Proposition 4 to successive pairs of terms, we obtain that
R(i0, i1, . . . , in) =d(λ(i0, i1)λ(i1, i2) . . . λ(in−1, in))− d(λ(i1, i2) . . . λ(in−1, in))

+ d(λ(i1, i2)λ(i2, i3) . . . λ(in−1, in))− d(λ(i2, i3) . . . λ(in−1, in))

+ . . .

+ d(λ(in−N , in−N+1)λ(in−N+1, in−N+2) . . . λ(in−1, in))

=d(λ(i0, i1)λ(i1, i2) . . . λ(in−1, in))

=d(g),
as required.

To complete the proof of (3.1), note that∑
î∈I,ĵ∈J

(P s)(n)(̂i, ĵ) =
∑

i0=∗,i1,... ,in

Â(̂i(0), î(1)) . . . Â(̂i(n−1), î(n))e−sR(i0,i1,... ,in)

and that there is a one-to-one correspondence between terms in the summation and
elements g ∈ Γ with |g| = n.

Substituting identity (3.1) into the definition of η(s) we can write

η(s) = 1 +
∞∑

n=1

∑
g∈Γ
|g|=n

e−sd(g)

=
∞∑

n=0

∑
î∈I,ĵ∈J

(P s)(n)(̂i, ĵ)

=
∑

î∈I,ĵ∈J

( ∞∑
n=0

(P s)(n)(̂i, ĵ)

)

=
∑

î∈I,ĵ∈J

(I − P s)−1(̂i, ĵ)

=
∑

î∈I,ĵ∈J

(
Minor(I − P s)(̂i, ĵ)

Det(I − P s)

)
.

(3.2)
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This not only shows that η(s) has a meromorphic extension to the entire space C
but also gives an explicit closed form for the extension. This completes the proof
of Theorem 1.

We want to formulate the following conjecture.

Conjecture. The value at s = 0 is given by η(0) = 1/χ(Γ), where χ(Γ) represents
the Euler characteristic of the group Γ (or equivalently, the Euler characteristic of
the associated surface).

This conjecture has some support in the work of Cannon and Wagreich [3,5]
and Floyd and Plotnick [7] concerning the growth series ξ(z) associated to (Γ, S),
defined earlier. By the work of Cannon [4], this is a rational function and thus it is
possible to ask about the value at z = 1. In the articles [3] (see also [5]) and [7] it
is shown that for many choices of generators (including those giving the standard
presentation) we have the identity ξ(1) = 1/χ(Γ).

4. The proof of Theorem 2

In this section, so that we can take advantage of Proposition 3, we must work with
the generators S = {a1, . . . , ag, b1, . . . , bg} giving the standard one-relator presen-
tation. To study the zeta function ζ(s) we need an identity on closed loops for the
graph G. We call a closed loop prime if it is not an iterate of a shorter closed loop.
To a prime closed loop τ corresponding to a string i0, . . . , in−1, in = i0, . . . (ik 6= 0
∀k) we associate the weighting L(τ) =

∑n−1
k=0 r ((ik, . . . , ik+N−1), (ik+1, . . . , ik+N )),

where N is given by Proposition 4.

Lemma 2. If g = λ(i0, i1) . . . λ(in−1, i0) then L(τ) = l(g) := inf{d(x, gx) : x ∈
T }. (In fact, this quantity only depends on the conjugacy class [g] of g.)

Proof. We begin by showing that

L(τ) = lim
m→+∞

1
m

d(x, gmx).

Choose m ≥ N (so that, in particular, mn ≥ N). We have that d(x, gmx) =
d(λ(i0, i1)λ(i1, i2) . . . λ(imn−1, imn). Applying Propostion 4 (mn − N + 1) times,
we obtain

d(x, gmx) =
mn−N∑

k=0

{
d(λ(ik, ik+1)λ(ik+1, ik+2), . . . , λ(ik+N−1, ik+N ))

−d(λ(ik+1, ik+2), . . . , λ(ik+N−1, ik+N ))

}
+ d(λ(imn−N+1, imn−N+2), . . . , λ(imn−1, imn))

= (m−N)L(τ)

+
mn−N∑

k=(m−N)n+1

{
d(λ(ik, ik+1)λ(ik+1, ik+2), . . . , λ(ik+N−1, ik+N ))

−d(λ(ik+1, ik+2), . . . , λ(ik+N−1, ik+N ))

}
+ d(λ(imn−N+1, imn−N+2), . . . , λ(imn−1, imn)).

Thus, using the inequality d(g) ≤ C2|g|, we have the estimate

|d(x, gmx)− (m−N)L(τ)| ≤ (2N(n− 1) + 1)C2N,
10



yielding the required limit upon division by m.
To prove the lemma, we shall show that this limit is equal to l(g). Noting that,

since g is an isometry, d(gmx, gmy) = d(x, y), for any x, y ∈ T , we can apply the
triangle inequality to conclude that

d(x, gmx)− 2d(x, y) ≤ d(y, gmy) ≤ d(x, gmx) + 2d(x, y).

Thus we see that D(g) = limm→+∞
1
md(x, gmx) is independent of the choice of

x ∈ T .
To show that D(g) = l(g) we can choose x to lie on the axis Axis(g) of g i.e. the

isometric copy of R in T upon which g acts as a translation by l(g). With such a
choice of x ∈ Axis(g) we see that D(g) = Dx(g) = l(g), as required [10].

Let τ = {i0, . . . , in−1} denote the loop passing through the vertices i0, . . . , in−1.
Let (i0, . . . , in−1) denote the same loop but with a distinguished starting point. If
we define H(s) =

∏
τ={i0,... ,in−1}

prime

(
1− e−sL(τ)

)−1
(for Re(s) > 0 sufficiently large)

then we have that

H(s) = exp

− ∞∑
n=1

∑
{i0,... ,in−1}

prime

log
(
1− e−sL(τ)

)

= exp

 ∞∑
n=1

∑
{i0,... ,in−1}

prime

( ∞∑
k=1

e−skL(τ)

k

)

= exp

 ∞∑
n=1

∑
(i0,... ,in−1)

prime

( ∞∑
k=1

e−skL(τ)

nk

)
= exp

 ∞∑
m=1

∑
(i0,... ,im−1)

e−s
∑m−1

j=0 r((ij ,... ,ij+N−1),(ij+1,... ,ij+N ))

m


(where m = kn and (i0, . . . , im−1) is n concatenations of the prime orbit (i0, . . . , in−1),
say)

= exp

( ∞∑
m=1

Trace(P s)(m)

m

)

=
1

Det(I − P s)
. (4.1)

(The penultimate identity makes use of the fact that Â((0, 0, . . . , 0), (0, 0, . . . , 0)) =
0, so the loop involving 0 does not appear.) Using Proposition 3 we can make the
formal identification ζ(s) = H(s)T (s) (for Re(s) sufficiently large) where T (s) is the
ratio of two trigonometric polynomials. Thus by (4.1), ζ(s) has the meromorphic
extension T (s)

Det(I−P s) to C.
11



Remark. In analogy with the Ihara zeta function, it is possible to introduce a
unitary representation Rχ of Γ into the definition of the zeta function to obtain
a function L(s,Rχ). The methods we employ in this paper could be adapted to
provide a meromorphic extension in this more general setting.
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