SECTOR ESTIMATES FOR KLEINIAN GROUPS

Richard Sharp
University of Manchester

Abstract

We study the number of lattice points in a fixed sector for certain Kleinian groups. We show that they are asymptotically distributed according to the Patterson-Sullivan measure.

0. Introduction

Let Γ be a (non-elementary) group of isometries of the ($n+1$)-dimensional real hyperbolic space \mathbb{H}^{n+1}. Given a point $x \in \mathbb{H}^{n+1}$, we shall be interested in the behaviour of its orbit Γx under the action of Γ. This orbit accumulates only on the boundary of \mathbb{H}^{n+1}, which we may regard as S^{n}. We call the set of accumulation points, which is independent of x, the limit set of Γ and denote it by L_{Γ}. The limit set is a closed perfect subset of S^{n}; either $L_{\Gamma}=S^{n}$ or L_{Γ} is nowhere dense in S^{n}. Write $\mathcal{C}(\Gamma) \subset \mathbb{H}^{n+1} \cup S^{n}$ for the convex hull of L_{Γ}; if $\Gamma \backslash\left(\mathcal{C}(\Gamma) \cap \mathbb{H}^{n+1}\right)$ is compact then we say that Γ is convex co-compact. (Note that this condition is weaker than requiring that Γ be co-compact, i.e., that $\Gamma \backslash \mathbb{H}^{n+1}$ is compact, since co-compact groups have $L_{\Gamma}=S^{n}$.) In this paper we shall be concerned exclusively with convex co-compact groups.

Given points $p, q \in \mathbb{H}^{n+1}$ we can define the orbital counting function $N_{\Gamma}(p, q, T)=$ $\#\{g \in \Gamma: d(p, g q) \leq T\}$, where $d(\cdot, \cdot)$ denotes distance in \mathbb{H}^{n+1}. A lot of effort has gone into understanding the asymptotic behaviour of this function and it is known that, for convex co-compact $\Gamma, N_{\Gamma}(p, q, T) \sim \mathcal{C}(p, q, \Gamma) e^{\delta T}$, as $T \rightarrow \infty$, where $\mathcal{C}(p, q, \Gamma)>0$ is a constant and where $0<\delta \leq n$ is the exponent of convergence of Γ [12]. (A more precise estimate is known under the additional hypothesis that $\delta>n / 2[7]$.)

A more delicate question is to understand the asymptotics of the number of orbit points lying in a fixed sector. Fix a (closed) ball $B \subset S^{n}$ and let \widehat{B} denote the sector in \mathbb{H}^{n+1} formed by the set of geodesic rays emanating from p with end-points in B. Define

$$
N_{\Gamma}^{B}(p, q, T)=\#\{g \in \Gamma: d(p, g q) \leq T \text { and } g q \in \widehat{B}\} .
$$

The behaviour of this function is closely related to the so-called Patterson-Sullivan measure $\mu_{p, q}$ on S^{n}. It is known that there exist constants $0<C_{1}<C_{2}$ (depending only on Γ) such that if the centre of B lies in the limit set of Γ then, for all sufficiently large T,

$$
C_{1} \mu_{p, q}(B) N_{\Gamma}(p, q, T) \leq N_{\Gamma}^{B}(p, q, T) \leq C_{2} \mu_{p, q}(B) N_{\Gamma}(p, q, T)
$$

The author was supported by an EPSRC Advanced Research Fellowship.
[8]. Our object in this paper is to obtain a more precise result for certain classes of Kleinian groups; namely groups satisfying the condition defined below.
Definition. A Kleinian group Γ is said to satisfy the even corners condition if Γ admits a fundamental domain R which is a finite sided polyhedron (possibly with infinite volume) such that $\bigcup_{g \in \Gamma} g \partial R$ is a union of hyperplanes. (This definition was introduced by Bowen and Series [3] for the case $n=1$ and studied by Bourdon [2] for $n \geq 2$.)
Theorem 1. Let Γ be a convex co-compact group acting on \mathbb{H}^{n+1}. If Γ satisfies the even corners condition then for any $p, q \in \mathbb{H}^{n+1}$ and any Borel set $B \subset S^{n}$ such that $\mu_{p, q}(\partial B)=0$ we have

$$
\lim _{T \rightarrow \infty} \frac{N_{\Gamma}^{B}(p, q, T)}{N_{\Gamma}(p, q, T)}=\mu_{p, q}(B)
$$

This result is known in certain cases. In particular, it is known if Γ is co-compact [9], [10] (in which case $\mu_{p, q}$ is equivalent to n-dimensional Lebesgue measure on S^{n}) or if Γ is a Schottky group [6].

More generally, Theorem 1 is known to hold if Γ is convex co-compact and the points p and q lie in the convex hull of $L_{\Gamma}[13]$. In this case, the result follows from an approach based on an analysis of the orbit structure of hyperbolic flows. More precisely, writing $M=\Gamma \backslash \mathbb{H}^{n+1}$, consider the projection $\pi: \mathbb{H}^{n+1} \rightarrow M$ and the geodesic flow $\phi_{t}: S M \rightarrow S M$ on the unit-tangent bundle of M. The counting function $N_{\Gamma}^{B}(p, q, T)$ may be reinterpreted as the number of ϕ-orbits, with length not exceeding T, passing from the fibre $S_{\pi(p)} M$ to the fibre $S_{\pi(q)} M$, such that the initial point lies in $B \subset S_{\pi(p)} M$. (It is a standard procedure to identify the boundary of \mathbb{H}^{n+1} with the fibre $S_{\pi(p)} M$ lying over a fixed base point.) The non-wandering set $\Omega \subset S M$ for ϕ consists of all vectors tangent to the projection $\pi\left(\mathcal{C}(\Gamma) \cap \mathbb{H}^{n+1}\right)$ and the restriction $\phi_{t}: \Omega \rightarrow \Omega$ is a uniformly hyperbolic flow. If $p, q \in \mathcal{C}(\Gamma)$ then $N_{\Gamma}^{B}(p, q, T)$ counts orbits which lie in Ω and the methods of [13] give the required result. (Roughly speaking, $N_{\Gamma}^{B}(p, q, T)$ is approximated by functions counting orbits passing from small pieces of unstable manifold to small pieces of stable manifold; these latter quantities admit a symbolic description to which one may apply the techniques of thermodynamic formalism.)

However, if p and q do not lie in $\mathcal{C}(\Gamma)$ then the relevant orbits would lie outside Ω and the above arguments no longer hold. In this paper we impose no restrictions on p and q. Instead of formulating the problem in terms of hyperbolic flows, we shall obtain a symbolic description directly from Γ. The "even corners" property ensures that that this description matches the geometry of the action on \mathbb{H}^{n+1}.

We end the introduction by giving two classes of examples of even cornered groups.
Example 1. Let $K_{1}, \ldots, K_{2 k}$ be $2 k$ disjoint n-dimensional spheres in \mathbb{R}^{n+1}, each meeting S^{n} at right angles. For $i=1, \ldots, k$, let g_{i} be the isometry which maps the exterior of K_{i} onto the interior of K_{k+i}. Then the group Γ generated in this is called a Schottky group and satisfies the even corners condition. Viewed as an abstract group, it is the free group on k generators. In this case, L_{Γ} is a Cantor set.
Example 2. Let R be a polyhedron in \mathbb{H}^{n+1} with a finite number of faces and with interior angles all equal to $\pi / k, k \in \mathbb{N}, k \geq 2$. Let Γ be the Kleinian group generated by reflections
in the faces of R. Then Γ satisfies the even corners condition. For instance, let R be a regular tetrahedron in \mathbb{H}^{3} with infinite volume and with dihedral angles $\pi / 4$. In this case, L_{Γ} is a Sierpiński curve [1],[2].

The author would like to thank Sanju Velani for introducing him to this question.

1. Kleinian Groups and Patterson-Sullivan Measure

Let \mathbb{H}^{n+1} denote the real hyperbolic space of dimension $n+1$. A convenient model for \mathbb{H}^{n+1} is the open ball $\left\{x \in \mathbb{R}^{n+1}:\|x\|_{2}<1\right\}$, equipped with the metric

$$
d s^{2}=\frac{4\left(d x_{1}^{2}+\cdots d x_{n+1}^{2}\right)}{\left(1-\|x\|_{2}^{2}\right)^{2}}
$$

(In particular, geodesics passing through 0 are just Euclidean straight lines.) We can then naturally identify the ideal boundary of \mathbb{H}^{n+1} with the n-dimensional unit sphere S^{n}.

A Kleinian group Γ is a discrete group of isometries of \mathbb{H}^{n+1}. (If $n=1$, we say that Γ is a Fuchsian group.) Its action on \mathbb{H}^{n+1} extends to an action on S^{n}. We say that Γ is non-elementary if it does not contain a cyclic subgroup of finite index. In this paper we shall only consider non-elementary groups and all statements implicitly assume that Γ is non-elementary. We say that Γ is geometrically finite if it there is a fundamental domain for its action on \mathbb{H}^{n+1} which is a polyhedron with finitely many faces; this includes the class of convex co-compact groups. (Note that, for $n \geq 4$, there are other, inequivalent, notions of geometrical finiteness.) If Γ is geometrically finite then it is finitely generated.

One of the most important quantities attached to a Kleinian group is its exponent of convergence. This is the abscissa of convergence of the Dirichlet series $\sum_{g \in \Gamma} e^{-s d(p, g q)}$ (for any $p, q \in \mathbb{H}^{n+1}$) and is denoted by $\delta=\delta(\Gamma)$. We have $0<\delta \leq n$. If Γ is geometrically finite then δ is also equal to the Hausdorff dimension of L_{Γ} and, furthermore, if $L_{\Gamma} \neq S^{n}$ then $\delta<n$ (so that, in particular, the n-dimensional Lebesgue measure of L_{Γ} is equal to zero) [16],[17].

The limit set of a Kleinian group supports a natural family of equivalent measures $\mu_{p, q}$ ($p, q \in \mathbb{H}^{n+1}$) called Patterson-Sullivan measures [11], [15]. Roughly speaking, $\mu_{p, q}$ is the weak* limit, as $s \rightarrow \delta+$, of

$$
\frac{\sum_{g \in \Gamma} e^{-s d(p, g q)} D_{g q}}{\sum_{g \in \Gamma} e^{-s d(q, g q)}}
$$

regarded as measures on $\mathbb{H}^{n+1} \cup S^{n}$, where $D_{g q}$ denotes the Dirac measure at $g q$. If Γ is convex co-compact, they are characterized as the unique non-atomic measures supported on L_{Γ} satisfying
(i) for $p_{1}, p_{2} \in \mathbb{H}^{n+1}$,

$$
\frac{d \mu_{p_{2}, q}}{d \mu_{p_{1}, q}}(\xi)=\left(\frac{P\left(p_{2}, \xi\right)}{P\left(p_{1}, \xi\right)}\right)^{\delta}
$$

where $P(x, \xi)=\left(1-\|x\|_{2}^{2}\right) /\left(\|x-\xi\|_{2}^{2}\right)$ is the Poisson kernel;
(ii) $g^{*} \mu_{p, q}=\mu_{g^{-1} p, q}$, for $g \in \Gamma$;
(iii) $g^{*} \mu_{p, q}=\left|g^{\prime}\right|^{\delta} \mu_{p, q}$, for $g \in \Gamma$.

Since p and q are fixed, we shall write $\mu=\mu_{p, q}$. It is a regular Borel measure on S^{n}.
Remark. In the above, we have used a prime to denote differentiation with respect to the metric obtained by radial projection from p. To mke this more precise, let ψ denote a conformal mapping preserving the unit ball such that $\psi(p)=0$. For $\xi, \eta \in S^{n}$, we define $d_{p}(\xi, \eta)=\left|\cos ^{-1} \psi(\xi) \cdot \psi(\eta)\right|$ and $\left|g^{\prime}(\xi)\right|=\lim _{\eta \rightarrow \xi} d_{p}(g \xi, g \eta) / d_{p}(\xi, \eta)$.

2. Symbolic dynamics

We shall be interested in the action of Γ on S^{n}. For groups satisfying the even corners condition, it is possible to replace this action with a single piecewise-analytic expanding map of S^{n} which has the same orbit structure. This, in turn, may be modeled by a symbolic dynamical system, namely a subshift of finite type $\sigma: X_{A} \rightarrow X_{A}$. This is a particular case of the strongly Markov coding introduced by Cannon [4], [5]. However, if Γ satisfies the even corners condition then this construction is more closely related to the action of Γ on \mathbb{H}^{n+1}. In [2] and [14] it was shown how to construct a Hölder continuous function $r: X_{A} \rightarrow \mathbb{R}$ which encoded the distances $d(p, g q)$. This facilitated an analysis of the Poincaré series $\sum_{g \in \Gamma} e^{-s d(p, g q)}$ via a family of linear operators acting on a space of Hölder continuous functions defined on X_{A}.

To begin, we recall the notion of word length: given a (symmetric) generating set \mathcal{S}, the word length $|g|=|g|_{\mathcal{S}}$ of an element $g \in \Gamma \backslash\{e\}$ is defined by

$$
|g|=\left\{k \geq 1: g=g_{1} \cdots g_{k}, g_{i} \in \mathcal{S}, i=1, \ldots, k\right\} .
$$

In particular, $|g|=1$ if and only if $g \in \mathcal{S}$. (By convention, we set $|e|=0$.)
Let R be a polyhedron as specified by the even corners condition. Label the faces of R by $\left\{R_{1}, \ldots, R_{m}\right\}$ and let $g_{i} \in \Gamma$ denote the isometry for which $g_{i} R \cap R=R_{i}$. Write $\mathcal{S}=\left\{g_{1}, \ldots, g_{m}\right\} ;$ then, by the Poincaré Polyhedron Theorem, \mathcal{S} generates Γ. For each $i=1, \ldots, m, R_{i}$ extends to a codimension one hyperbolic hyperplane, which divides $\mathbb{H}^{n+1} \cup S^{n}$ into two half-spaces. Let H_{i} denote the half-space which does not contain R and let $U_{i}=H_{i} \cap S^{n}$. In general, the U_{i} 's will overlap; to obtain a partition we let $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ denote the sets formed by taking the closure of all possible intersections of the interiors of the U_{i} 's. Write $\overline{\mathcal{P}}=\bigcup_{i=1}^{k} P_{i}$; then $\bigcup_{i=1}^{k} P_{k}=S^{n}$ and $\operatorname{int} P_{i} \cap \operatorname{int} P_{j}=\varnothing$ if $i \neq j$.

Choose an arbitrary ordering \prec on \mathcal{S}. Let $g \in \Gamma$. If $g=g_{i_{0}} \cdots g_{i_{n-1}}$ we say that the word $g_{i_{0}} \ldots g_{i_{n-1}}$ is lexically shortest if $|g|=n$ and if, whenever $g=h_{i_{0}} \cdots h_{i_{n-1}}$ with $h_{i_{0}}, \ldots, h_{i_{n-1}} \in \mathcal{S}$, then $g_{i_{j}} \prec h_{i_{j}}$, where j is the smallest index at which the terms disagree. Clearly every group element is presented by a unique lexically shortest word.

Define a map $f: \overline{\mathcal{P}} \rightarrow S^{n}$ by $\left.f\right|_{P_{i}}(x)=a_{i}^{-1} x$, where $\operatorname{int} P_{i}=\operatorname{int} U_{j_{1}} \cap \cdots \cap \operatorname{int} U_{j_{l}}$ and where a_{i} is the \prec-smallest element of $\left\{g_{j_{1}}, \ldots, g_{j_{l}}\right\}$. (Strictly speaking, f is welldefined on the disjoint union $\coprod_{i=1}^{k} P_{i}$.) If necessary refining a finite number of times by considering intersections of sets in $\mathcal{P}, f^{-1} \mathcal{P}, \ldots, f^{-n} \mathcal{P}$, for some $n \geq 0, f$ will satisfy the Markov property: if $f\left(\operatorname{int} P_{i}\right) \cap \operatorname{int} P_{j} \neq \varnothing$ then $f\left(P_{i}\right) \supset P_{j}$. We shall now define a graph $\mathcal{G}=(V, E)$, where the set of vertices $V=\{1, \ldots, k\}$ and the set of edges E is defined by

$$
E=\left\{(i, j) \in V \times V: f\left(P_{i}\right) \supset P_{j}\right\} .
$$

If P_{i} is contained in only one U_{j} then we call i a pure vertex; there are precisely $\# \mathcal{S}$ pure vertices. The map $\left(i_{1}, \ldots, i_{n}\right) \mapsto a_{i_{1}} \cdots a_{i_{n}}$ gives a bijections between the set of paths in \mathcal{G} starting at a pure vertex and Γ. In order that these paths can be written as infinite paths, we shall augment \mathcal{G} by adding an extra vertex 0 and edges $(v, 0)$ for all $v \in V$ to form a new graph \mathcal{G}^{\prime}. Let A and B denote the incidence matrices of \mathcal{G}^{\prime} and \mathcal{G}, respectively.

Define the shift space X_{A} by

$$
X_{A}=\left\{x \in(V \cup\{0\})^{\mathbb{Z}^{+}}: A\left(x_{n}, x_{n+1}\right)=1 \forall n \geq 0\right\}
$$

and define X_{B} in a similar way. On each of these spaces, define the shift map σ by $(\sigma x)_{n}=x_{n+1}$. For notational convenience, we shall use $\dot{0}$ to denote the element of X_{A} consisting of an infinite sequence of 0 's.

For a path $\left(i_{0}, i_{1}, \ldots, i_{n}\right)$ in $\mathcal{G}=(V, E)$, we write

$$
P\left(i_{0}, i_{1}, \ldots, i_{n}\right)=\bigcap_{j=0}^{n} f^{-j} P\left(i_{j}\right) .
$$

We call such a set a geometric n-cylinder. We shall denote the collection of all geometric n-cylinders by \mathcal{P}_{n} and write $\overline{\mathcal{P}}_{n}=\bigcup_{P \in \mathcal{P}_{n}} P$. We have $L_{\Gamma}=\bigcap_{n=1}^{\infty} \overline{\mathcal{P}}_{n}$.

The map f restricts to a map $f: L_{\Gamma} \rightarrow L_{\Gamma}$ which models the action of Γ on L_{Γ}. It is an expanding map in the sense that there exists $n \geq 0$ and $\beta>1$ such that $\left|\left(f^{n}\right)^{\prime}(x)\right| \geq$ β for all $x \in \overline{\mathcal{P}}_{n}$ and it is locally eventually onto. If $\left(i_{0}, i_{1}, \ldots\right)$ is an infinite path in (V, E) then $\operatorname{diam} P\left(i_{0}, \ldots, i_{n}\right)$ and $\mu\left(P\left(i_{0}, \ldots, i_{n}\right)\right)$ both converge to zero as $n \rightarrow \infty$; the latter statement following from the fact that μ is non-atomic and regular. In particular, $\bigcap_{n=0}^{\infty} P\left(i_{0}, \ldots, i_{n}\right)$ consists of a single point $x_{i_{0}, i_{1}, \ldots,}$, say.

There is a natural Hölder continuous semi-conjugacy $\Pi: X_{B} \rightarrow L_{\Gamma}$ between $\sigma: X_{B} \rightarrow$ X_{B} and $f: L_{\Gamma} \rightarrow L_{\Gamma}$, defined by $\Pi\left(i_{0}, i_{1}, \ldots\right)=x_{i_{0}, i_{1}, \ldots}$ which is bounded-to-one and one-to-one on a residual set. A particular consequence is that the matrix B is aperiodic.

For each $i=1, \ldots, k$, define $C(i)=\bigcap_{a \in \mathcal{S}(i)} H_{a}$ and, for $P\left(i_{0}, \ldots, i_{n}\right)$, define

$$
C\left(i_{0}, \ldots, i_{n}\right)=\bigcap_{j=0}^{n} a_{i_{0}} \cdots a_{i_{j-1}} C\left(i_{j}\right) .
$$

We refer to $C\left(i_{0}, \ldots, i_{n}\right)$ as the "cap" of $P\left(i_{0}, \ldots, i_{n}\right)$. We shall also denote the cap of $P \in \mathcal{P}_{n}$ by C_{P}. The following result is immediate from the construction.

Lemma 1. Suppose that $q \in R$. If $g q \in C\left(i_{0}, \ldots, i_{n}\right)$ then $g=a_{i_{0}} \cdots a_{i_{n}}$ and this is the lexically shortest representation of g.

Remark. If $q \notin R$ then the above lemma can be simply amended. However, for simplicity, we shall restrict ourselves to the case $q \in R$.

3. Approximation

For $g \in \Gamma$, write $\xi(g) \in S^{n}$ for the (positive) endpoint of the geodesic from p to $g q$. Then, for any set $F \subset S^{n}$, we have $N_{\Gamma}^{F}(p, q, T)=\#\{g \in \Gamma: d(p, q) \leq T$ and $\xi(g) \in F\}$.

Let $\epsilon>0$ be given. Then, since $\mu(\partial B)=0$, we can find n sufficiently large and collections $\mathcal{Q} \subset \mathcal{Q}^{\prime}$ of geometric n-cylinders such that

$$
\bigcup_{P \in \mathcal{Q}} P \subset B \subset \bigcup_{P \in \mathcal{Q}^{\prime}} P \cup\left(S^{n} \backslash \overline{\mathcal{P}}_{n}\right)
$$

and

$$
\mu(B)-\epsilon \leq \sum_{P \in \mathcal{Q}} \mu(P) \leq \sum_{P \in \mathcal{Q}^{\prime}} \mu(P) \leq \mu(B)+\epsilon
$$

Since we then have

$$
\sum_{P \in \mathcal{Q}} N_{\Gamma}^{P}(p, q, T) \leq N_{\Gamma}^{B}(p, q, T) \leq \sum_{P \in \mathcal{Q}^{\prime}} N_{\Gamma}^{P}(p, q, T)+O(1)
$$

it suffices to show that

$$
\lim _{T \rightarrow \infty} \frac{N_{\Gamma}^{P}(p, q, T)}{N_{\Gamma}(p, q, T)}=\mu(P)
$$

whenever P is a geometric n-cylinder.
To do this we need to make a second approximation. First we introduce some notation. Let \widehat{P} denote the sector formed by geodesic rays emanating from p with endpoints in P and let C denote the cap of P.

Choose $\epsilon>0$ and let $\mathcal{N}_{\epsilon}(\partial P)$ denote the ϵ-neighbourhood of ∂P in S^{n}. Since C and \widehat{P} are tangent at ∂P, provided T_{0} is sufficiently large and $d(p, g q)>T_{0}$, if $g q \in C \triangle \widehat{P}$ then $\xi(g) \in \mathcal{N}_{\epsilon}(\partial P)$. Thus, for $T \geq T_{0}$,

$$
\left|N_{\Gamma}^{P}(p, q, T)-\#\{g \in \Gamma: d(p, g q) \leq T, g q \in C\}\right| \leq N_{\Gamma}^{\mathcal{N}_{\epsilon}(\partial P)}(p, q, T)
$$

Since $\mu\left(\mathcal{N}_{2 \epsilon}(\partial P)\right) \rightarrow 0$, as $\epsilon \rightarrow 0$, the proof of Theorem 1 will be complete once we have shown the following two results. The proof of Proposition 1 will be given in the next section.

Proposition 1.

$$
\lim _{T \rightarrow \infty} \frac{1}{N_{\Gamma}(p, q, T)} \#\{g \in \Gamma: d(p, g q) \leq T, g q \in C\}=\mu(P)
$$

Lemma 2.

$$
\limsup _{T \rightarrow \infty} \frac{N_{\Gamma}^{\mathcal{N}_{\epsilon}(\partial P)}(p, q, T)}{N_{\Gamma}(p, q, T)} \leq C_{2} \mu\left(\mathcal{N}_{2 \epsilon}(\partial P)\right)
$$

Proof. Choose m sufficiently large that if $R \in \mathcal{P}_{m}$ and $R \cap \mathcal{N}_{\epsilon}(\partial P) \neq \varnothing$ then $R \subset \mathcal{N}_{2 \epsilon}(\partial P)$. Set $\mathcal{R}=\left\{R \in \mathcal{P}_{m}: R \cap \mathcal{N}_{\epsilon}(\partial P) \neq \varnothing\right\}$. If $d(p, g q)>T_{0}$ and $\xi(g) \in \mathcal{N}_{\epsilon}(\partial P)$ then $g q \in C_{R}$ for some $R \in \mathcal{R}$. Thus

$$
\begin{aligned}
\limsup _{T \rightarrow \infty} \frac{N_{\Gamma}^{\mathcal{N}_{\epsilon}(\partial P)}(p, q, T)}{N(T)} & \leq \lim _{T \rightarrow \infty} \frac{1}{N(T)} \sum_{R \in \mathcal{R}} \#\left\{g \in \Gamma: T_{0}<d(p, g q) \leq T, g q \in C_{R}\right\} \\
& =\sum_{R \in \mathcal{R}} \mu(R)=\mu\left(\bigcup_{R \in \mathcal{R}} R\right) \leq \mu\left(\mathcal{N}_{2 \epsilon}(\partial P)\right),
\end{aligned}
$$

where we have used Proposition 1.

4. Poincaré Series

In this section we will prove Proposition 1 by considering the analytic domain of a certain function of a complex variable. Before we do this, we need to consider a family of linear operators defined as follows. Note that $X_{A} \backslash X_{B}$ consists of all sequences in X_{A} ending in an infinite string of 0's. Define $r: X_{A} \backslash X_{B} \rightarrow \mathbb{R}$ by

$$
r\left(i_{0}, i_{1}, \ldots, i_{n}, \dot{0}\right)=d\left(p, a_{i_{0}} \cdots a_{i_{n}} q\right)-d\left(p, a_{i_{1}}, \cdots a_{i_{n}} q\right)
$$

so that

$$
\sum_{k=0}^{n} r\left(i_{0}, \ldots, i_{k}, \dot{0}\right)=d\left(p, a_{i_{0}} \cdots a_{i_{n}} q\right)
$$

This extends to a Hölder continuous function $r: X_{A} \rightarrow \mathbb{R}[2],[6]$, [14].
For $s \in \mathbb{C}$, define $\mathcal{L}_{s}: C^{\alpha}\left(X_{A}\right) \rightarrow C^{\alpha}\left(X_{A}\right)$ by

$$
\mathcal{L}_{s} \phi(x)=\sum_{\substack{\sigma y=x \\ y \neq 0}} e^{-s r(y)} \phi(y)
$$

(Note that this agrees with the usual definition of the Ruelle transfer operator for $x \in$ $X_{A} \backslash\{\dot{0}\}$.) The following result is well-known.

Proposition 2.

(i) The restricted operator $\mathcal{L}_{\delta}: C^{\alpha}\left(X_{B}\right) \rightarrow C^{\alpha}\left(X_{B}\right)$ has 1 as a simple maximal eigenvalue with a strictly positive associated eigenfunction ψ. The corresponding eigenmeasure ν for \mathcal{L}_{δ}^{*} satisfies $\Pi_{*} \nu=\mu$, where μ is the Patterson-Sullivan measure.
(ii) For s in a neighbourhood of δ, \mathcal{L}_{s} has a simple eigenvalue $\rho(s)$ which is maximal in modulus such that $s \mapsto \rho(s)$ is analytic and $\rho(\delta)=1$.
(iii) For $\Re s=\delta, s \neq \delta, \mathcal{L}_{s}$ does not have 1 as an eigenvalue.

Proof. Part (i) follows by a standard calculation because $\log \left|f^{\prime}\right|: L_{\Gamma} \rightarrow \mathbb{R}$ pulls back under Π to a function cohomologous to $r: X_{B} \rightarrow \mathbb{R}\left(\right.$ i.e. $\log \left|f^{\prime} \circ \Pi\right|=r+u \circ \sigma-u$ for some $\left.u \in C\left(X_{B}\right)\right)$. To see this note that it suffices to show that $r^{n}(x):=\sum_{k=0}^{n-1} r\left(\sigma^{k} x\right)=$ $\sum_{k=0}^{n-1} \log \left|f^{\prime}\left(\Pi\left(\sigma^{k} x\right)\right)\right|$, whenever $\sigma^{n} x=x$ is a periodic point for $\sigma: X_{B} \rightarrow X_{B}$. To every such periodic point, we can associate a conjugacy class in Γ and hence a closed geodesic on $\Gamma \backslash \mathbb{H}^{n+1}$ with length equal to $r^{n}(x)$. The result now follows as in, for example, Theorem 8 of [6]. Part (ii) is standard. Part (iii) follows from the fact that $N_{\Gamma}(p, q, T) \sim \mathcal{C}(p, q, \Gamma) e^{\delta T}$.

It is easy to see that $\mathcal{L}_{s}: C^{\alpha}\left(X_{A}\right) \rightarrow C^{\alpha}\left(X_{A}\right)$ and $\mathcal{L}_{s}: C^{\alpha}\left(X_{B}\right) \rightarrow C^{\alpha}\left(X_{B}\right)$ have the same isolated eigenvalues of finite multiplicity [14]. In particular, we have $\mathcal{L}_{\delta} \psi=\psi$ for some $\psi \in C^{\alpha}\left(X_{A}\right)$ with $\left.\psi\right|_{X_{B}}>0$.
Lemma 3 [6]. The extension of ψ to X_{A} is strictly positive.
A simple argument then shows that the corresponding eigenmeasure can be identified with ν by setting $\nu\left(X_{A} \backslash X_{B}\right)=0$.

In view of the above we may write, for s close to $\delta, \mathcal{L}_{s}=\rho(s) \pi_{s}+Q_{s}$, where π_{s} is the projection onto the eigenspace associated to $\rho(s)$ and where the spectral radius of Q_{s} is bounded away from 1 from above. In particular, $\pi_{\delta}(\phi)=\left(\int \phi d \nu\right) \psi$.

Let $C=C\left(i_{0}, \ldots, i_{m}\right)$. To prove Proposition 1, we shall consider the "restricted Poincaré series"

$$
\eta_{C}(s)=\sum_{\substack{g \in \Gamma \\ g q \in C}} e^{-s d(p, g q)}
$$

This converges to an analytic function for $\Re s>\delta$.
It is easy to see that we may rewrite $\eta_{C}(s)$ in the form

$$
\eta_{C}(s)=\sum_{n=0}^{\infty} \mathcal{L}_{s}^{n} \chi(\dot{0})
$$

where χ is the characteristic function of $\left[i_{0}, \ldots, i_{m}\right]:=\left\{x \in X_{A}: x_{j}=i_{j}, j=0, \ldots, m\right\}$.
Combining these observations, we see that $\eta_{C}(s)$ has a meromorphic extension to a neighbourhood of $\Re s \geq \delta$, has no poles on $\Re s=\delta$ apart from $s=\delta$, and, for s close to δ, satisfies

$$
\eta_{C}(s)=\frac{\int \chi d \nu \psi(\dot{0})}{\delta \int r d \nu(s-\delta)}+\omega(s)
$$

where $\omega(s)$ is analytic. Noting that $\int \chi d \nu=\mu(C)$ and comparing with the Dirichlet series $\sum_{g \in \Gamma} e^{-s d(p, g q)}=\sum_{n=0}^{\infty} \mathcal{L}_{s} 1(\dot{0})$, allows us to rewrite this last expression as

$$
\eta_{C}(s)=\frac{\mathcal{C}(p, q, \Gamma) \mu(C)}{s-\delta}+\omega(s)
$$

Applying the Ikehara Tauberian Theorem, we obtain that

$$
\#\{g \in \Gamma: d(p, g q) \leq T, g q \in C\} \sim \mathcal{C}(p, q, \Gamma) \mu(C) e^{\delta T}
$$

from which Proposition 1 follows.
Remark. It is straightforward to extend the above analysis to cover the case of a subgroup $\bar{\Gamma} \triangleleft \Gamma$ (of an even cornered Kleinian group Γ) satisfying $\Gamma / \bar{\Gamma} \cong \mathbb{Z}^{k}$, and obtain

$$
\lim _{T \rightarrow \infty} \frac{N_{\bar{\Gamma}}^{B}(p, q, T)}{N_{\bar{\Gamma}}(p, q, T)}=\mu(B) .
$$

(In this case $N_{\bar{\Gamma}}(p, q, T) \sim$ const. $e^{\delta T} / T^{k / 2}$, as $T \rightarrow \infty$.)

References

1. N. Benakli, Polyèdres hyperboliques passage du local au global, Thesis, Orsay (1992).
2. M. Bourdon, Actions quasi-convexes d'un groupe hyperbolique, flot géodésique, Thesis, Orsay (1993).
3. R. Bowen and C. Series, Markov maps associated with Fuchsian groups, Publ. Math. IHES 50 (1979), 153-170.
4. J. Cannon, The combinatorial structure of co-compact discrete hyperbolic groups, Geom. Dedicata 16 (1984), 123-148.
5. E. Ghys and P. de la Harpe, Sur les Groupes Hyperboliques d'après Mikhael Gromov, Birkhauser, Basel, 1990.
6. S. Lalley, Renewal theorems in symbolic dynamics, with applications to geodesic flows, noneuclidean tessellations, and their fractal limits, Acta Math. 163 (1989), 1-55.
7. P. Lax and R. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Func. Anal. 46 (1982), 280-350.
8. M. Melián and S. Velani, Geodesic excursions into cusps in infinite volume hyperbolic manifolds, Mathematica Gottingensis (1993).
9. P. Nicholls, A lattice point problem in hyperbolic space, Michigan Math. J. 30 (1983), 273-287.
10. P. Nicholls, The Ergodic Theory of Discrete Groups, London Mathematical Society Lecture Note Series 143, Cambridge University Press, Cambridge, 1989.
11. S.J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), 241-273.
12. S.J. Patterson, On a lattice point problem in hyperbolic space and related questions in spectral theory, Arkiv Mat. 26 (1988), 167-172.
13. M. Pollicott, A symbolic proof of a theorem of Margulis on geodesic arcs on negatively curved manifolds, Amer. J. Math. 117 (1995), 289-305.
14. M. Pollicott and R. Sharp, Comparison theorems and orbit counting in hyperbolic geometry, Trans. Amer. Math. Soc 350 (1998), 473-499.
15. D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Publ. Math. IHES 50 (1979), 171-202.
16. D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleianian groups, Acta Math. 153 (1984), 259-277.
17. P. Tukia, The Hausdorff dimension of the limit set of a geometrically finite Kleinian group, Acta Math. 152 (1984), 127-140.

Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

