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Abstract. In this paper we study statistical properties of hyperbolic maps. In

particular, we estimate how sums of functions along orbits are distributed relative to

intervals which shrink in size.

0. Introduction

In this article we shall study statistical properties for the orbits of dynamical
systems. Given any measurable map T : X → X and ergodic probabilty measure
m we can consider an integrable function f : X → R such that

∫
fdm = 0. Let

fn(x) := f(x) + f(Tx) + · · · + f(Tn−1x) denote the sum along the first n points
in the orbit of x ∈ X. The Birkhoff Ergodic Theorem implies that fn(x)/n →
0, as n→ +∞, for almost every x ∈ X with respect to m. An important problem
in ergodic theory is to obtain a more detailed understanding of such ergodic sums
fn(x) and, in particular, the fluctuations from their mean behaviour.

To get interesting results, we need to consider a more restricted class of sys-
tems. In particular, we shall study the important class of (mixing) hyperbolic
diffeomorphisms and expanding maps T : X → X, where X is a compact subset
of a Riemannian manifold M . Let m be a Gibbs state (for a Hölder continuous
function g : X → R) and let f : X → R be a Hölder continuous function for which
the variance

σ2(f) := lim
n→+∞

1
n

∫
(fn)2dm

is non-zero. In this case, the sums fn(x) satisfy the stronger Central Limit Theorem
[10],[1], i.e., for any real numbers a < b, we have that

lim
n→+∞

m

{
x ∈ X : a ≤ fn(x)√

n
≤ b

}
=

1√
2πσ

∫ b

a

e−t2/2σ2
dt.

Moreover, the sums also satisfy the weak invariance principle and law of the iterated
logarithm, both of which are consequences of a more general almost sure invariance
principle in [2].
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For non-lattice functions, Lalley showed the following Local Limit Theorem: for
any real numbers a < b, we have that

m {x ∈ X : a ≤ fn(x) ≤ b} ∼ (b− a)√
2πσ

1√
n
, (0.1)

as n → +∞ [5]. (Here we have used the notation A(n) ∼ B(n), as n → +∞, if
limn→+∞A(n)/B(n) = 1). Related results were proved by Guivarc’h and Hardy.

In this paper we strengthen (0.1) to give an asymptotic formula when the interval
[a, b] is allowed to shrink, at a suitably slow rate, as n increases. Towards this end,
we need to impose modest additional restrictions on the function f : X → R.

Definition. We say that the function f : X → R is diophantine if we can find
periodic orbits Tn1(x1) = x1, Tn2(x2) = x2 and Tn3(x3) = x3 such that

α =
fn2(x2)− fn1(x1)
fn3(x3)− fn1(x1)

is a Diophantine number (i.e., there exists C > 0 and γ > 2 such that |α− p/q| ≥
C/qγ , for all p, q ∈ N).

Theorem 1. Let T : X → X be a C1 expanding map and let m be the Gibbs state
for a Hölder continuous function. Suppose that f : X → R is a Hölder continuous
function satisfying the Diophantine condition and such that

∫
fdm = 0. Then there

exists δ > 0 such that for any z ∈ R, a < b and sequence εn > 0 which tends to
zero and satisfies ε−1

n = O(nδ), we have that

m {x ∈ X : z + εna ≤ fn(x) ≤ z + εnb} ∼
(b− a)√

2πσ
εn√
n
,

as n→ +∞.

Remark. It is easy to see that typical functions satisfy the Diophantine condition.
Indeed, the diophantine condition holds for generic functions in various topologies
[7], [4].

Theorem 1 also holds if expanding maps are replaced by one-sided subshifts of
finite type. This will be apparent from the proof. We shall also show analogous
results for Axiom A diffeomorphisms restricted to a basic set (Theorem 2) and
periodic orbits (Theorem 3).

In section 1 we shall recall some preliminary results. In section 2, we present
the proof of Theorem 1. In section 3 we extend these results to Axiom A diffeo-
morphisms. Finally, in section 4 we will present an analogous result for periodic
points.

1. Preliminaries

Let M be a compact connected smooth Riemannian manifold and suppose that
X ⊂ U ⊂M with X compact and U open. Let T : U →M be a C1 map. Suppose
that there exists λ > 1 such that ||DTx(v)|| ≥ λ||v|| for all x ∈ U and all v ∈ TxM
and that X =

⋂
n≥0 T

−nU . We shall then refer to T : X → X as an expanding map.
In the special case where X = U = M , we shall call T an expanding endomorphism
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of M ; in this case T is topologically conjugate to an expanding endomorphism of
an infranilmanifold. In addition, we shall suppose that T : X → X is topologically
mixing.

We recall that two continuous functions f, f ′ : X → R are cohomologous if
f − f ′ = h ◦ T − h, for some continuous function h : X → R. By Livsic’s Theorem,
this is equivalent to the statement that fn(x) = (f ′)n(x) whenever Tnx = x is
a periodic point. In particular, the assumption that σ2 > 0 is equivalent to the
statement that f is not cohomologous to a constant. We say that a function f
has integer periods if {fn(x) : Tnx = x, n ≥ 1} ⊂ Z. We recall that f is called a
non-lattice function if one has the stronger condition that f is not cohomologous
to a function of the form a + bψ, where a, b ∈ R and ψ is a function with integer
periods. If f satisfies the diophantine condition then f is a non-lattice function
and, in particular, f is not cohomologous to a constant.

We shall write M for the space of T -invariant probability measures on X. For
ν ∈ M, we write h(ν) for the entropy of T with repect to ν. Given a continuous
function g : X → R we define its pressure P (g) by

P (g) = sup
{
h(ν) +

∫
gdν : ν ∈M

}
.

If g is Hölder continuous then the above supremum is attained for a unique measure
called the equilibrium state for g. If g − g′ is cohomologous to a constant then g
and g′ have the same equilibrium state.

Given a k × k matrix A with entries 0 or 1, we define a space
Σ+ = {x = (xn)∞n=0 : A(xn, xn+1) = 1 ∀n ∈ Z+}

and a shift map σ : Σ+ → Σ+ given by (σx)n = xn+1. The pair (Σ+, σ) is called
a (one-sided) shift of finite type. There is a metric on Σ+ given by d(x, y) = 2−N ,
where N = sup{n : xi = yi, i ≤ n}. The map σ : Σ+ → Σ+ is mixing if the matrix
A is aperiodic, i.e., there exists N ≥ 1 such that AN (i, j) ≥ 1 for any 1 ≤ i, j ≤ k.

An important feature of expanding maps is that they may be modelled by shifts
of finite type.

Proposition 1.1. Let T : X → X be a (mixing) expanding map. Then there
exists a mixing subshift of finite type σ : Σ+ → Σ+ and a Hölder continuous map
π : Σ+ → X such that

(i) T ◦ π = π ◦ σ
(ii) π is surjective, bounded-to-one and one-to-one almost everywhere with re-

spect to any ergodic measure on Σ+.

Given α > 0, we let Cα(Σ+) be the Banach space of Hölder continuous functions
f : Σ+ → R with norm ||f || = |f |α + |f |∞, where

|f |α = sup
{
|f(x)− f(y)|
d(x, y)α

: x, y ∈ Σ+

}
and |f |∞ is the supremum norm. Let Lg+iuf : Cα(Σ+) → Cα(Σ+) be the transfer
operator defined by

Lg+iufw(x) =
∑

σy=x

eg(y)+iuf(y)w(y).

We will say that g is normalized if Lg1 = 1; by adding a coboundary and a constant
it is always possible to arrange that g is normalized. The following result is standard
(see [7] for parts (1) and (2) and [8] for part (3)).
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Lemma 1.2.
(1) When u = 0 the operator Lg+iuf has a maximal eigenvalue eP (g) and the

rest of the spectrum is contained in a disc of strictly smaller radius. In
particular, if g is normalized then P (g) = 0 and L∗gµ = µ, where µ is the
equilibrium state for g.

(2) There exists a > 0 such that, for |u| < a, Lg+iuf has a simple maxi-
mal eigenvalue eP (g+iuf), satisfying |eP (g+iuf)| ≤ eP (g), and the rest of
the spectrum is contained in {z : |z| ≤ θeP (g)}, for some 0 < θ < 1. In
particular, u 7→ eP (g+iuf) is analytic for |u| < a. Furthermore, we write
d2P (g+iuf)

du2

∣∣∣
u=0

= −σ2.

(3) There exists a change of coordinates v = v(u) such that for |u| < a, we can
expand eP (g+iuf) = eP (g)(1 − v2 + iQ(v)), where Q(v) is real valued and
satisfies Q(v) = O(|v|3). In particular, v′(0) = σ/

√
2.

The following identity will be important in subsequent calculations.

Lemma 1.3. Let µ denote the equilibrium state for g. If g is normalized then∫
eiufn(x)dµ(x) =

∫
Ln

g+iuf1(x)dµ(x).

Proof. This follows from the identity L∗gµ = µ by a simple calculation. �

A key point in our proof will be a bound which involves an estimate on iterates
of Lg+iuf ; estimates of the kind we require were developed in [3] and [9].

Lemma 1.4. Assume that f satisfies the Diophantine condition and that g is nor-
malized. Then there exists γ > 0, D > 0 and C, c > 0 such that, for |u| ≥ a, we
have that

||L2Nm
g+iuf1||∞ ≤ C

(
1− c

|u|γ

)m

, for n ≥ 1, (1.1)

where N = [D log |u|].

Proof. Since we are assuming the Diophantine condition, the hypotheses of Propo-
sition 2 in [9] hold. This gives the inequality (1.1). �

2. Proof of Theorem 1

In the section we will present a proof of the Theorem 1 using properties of the
transfer operator from section 2. Let m be the equilibrium state for a Hölder
continuous function g : X → R and choose g0 : Σ+ → R be a normalized Hölder
continuous function on Σ+ which is cohomologous to g ◦ π. Let µ denote the
equilibrium state for g0. Given a Hölder continuous function f : X → R (with∫
fdm = 0), we define f0 : Σ+ → R by f0 = f ◦π. Since π is Hölder, f0 ∈ Cα(Σ+),

for some α > 0. Then

m {x ∈ X : z + εna ≤ fn(x) ≤ z + εnb}
= µ

{
x ∈ Σ+ : z + εna ≤ fn

0 (x) ≤ z + εnb
}
.

Thus, to prove Theorem 1, it suffices to prove the corresponding asymptotic formula
for µ {x ∈ Σ+ : z + εna ≤ fn

0 (x) ≤ z + εnb}. For the remainder of this section, we
shall abuse notation and write f and g for f0 and g0.
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We shall first prove a modified result, where the interval [z + εna, z + εnb] is
replaced by a sequence of smooth test functions. Let χ : R → R be a compactly
supported Ck function (where k will be chosen later). We shall write χn(x) =
χ(ε−1

n (x−z)) and we note that the Fourier transform satisfies χ̂n(u) = eizuεnχ̂(εnu).
Let us define

ρ(n) :=
∫
χn(fn(x))dµ.

Proposition 2.1. Let γ be as in Lemma 1.4. Then, provided that ε−1
n = O(nδ),

for some δ < 1/γ, we have that

ρ(n) ∼
∫
χ(x)dx√

2πσ
εn√
n
, as n→ +∞.

To prove Proposition 2.1 we first use the inverse Fourier transform and Fubini’s
Theorem to write

ρ(n) =
1
2π

∫ ∞

−∞

(∫
eiufn(x)dµ(x)

)
χ̂n(u)du

=
1
2π

∫ ∞

−∞

(∫
Ln

g+iuf1(x)dµ(x)
)
χ̂n(u)du,

(2.1)

using Lemma 1.3 for the last equality.
Choose a > 0 sufficiently small. Using part (3) of Lemma 1.2, we can change

coordinates on (−a, a) to v = v(u) and write eP (g+iuf) = (1 − v2 + iQ(v)), for
|v| < a, say. If Pg+iuf : Cα(Σ+) → Cα(Σ+) is the associated one dimensional
eigenprojection, then by perturbation theory Pg+iuf (1) = 1 + O(|v|). Using the
formula Ln

g+iuf1 = enP (g+iuf)(1 +O(|v|)) +O(θn), we may write∫ a

−a

(∫
Ln

g+iuf1(x)dµ(x)
)
χ̂n(u)du

=
∫ a

−a

(1− v2 + iQ(v))n (1 +O(|v|)) χ̂n(u(v))
du

dv
dv +O(θn)

=
εnχ̂(0)

√
2

σ

∫ a

−a

(1− v2 + iQ(v))n (1 +O(|v|)) dv +O
(εn
n

)
+O(θn),

(2.2)

where the O(εnn−1) estimate follows from a simple calculation in [8, p.409]. Using
another easy calculation in [8, pp.408-409], we see that the principle term in the last
line of (2.2) is asymptotic to

∫ a

−a
(1 − v2)ndv; by making the substitution w = v2,

we may estimate this as

εnχ̂(0)
√

2
σ

∫ a

−a

(1− v2)ndv = 2
εnχ̂(0)

√
2

σ

∫ a

0

(1− v2)ndv

=
εnχ̂(0)

√
2

σ

∫ a2

0

(1− w)n

w1/2
dw

=
εnχ̂(0)

√
2

σ

∫ 1

0

(1− w)n

w1/2
dw +O((1− a2)n)

∼
√

2π
χ̂(0)
σ

εn√
n
,

(2.3)
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as n → +∞ (cf. [15, p.236]). Moreover, the term rising from the O(|v|) term in
the integrand is of order∫ a

−a

(1− v2)n|v|dv =
∫ a2

0

(1− w)ndw = O

(
1
n

)
.

It remains to estimate the integral in (2.1) over |u| ≥ a. To do this we shall use
the bound on the transfer operators Lg+iuf contained in Lemma 1.4. We shall also
use the following simple lemma.

Lemma 2.2. If χ : R → R is Ck and compactly supported then the Fourier trans-
form χ̂(u) satisfies χ̂(u) = O(|u|−k), as |u| → ∞.

Proof. This is a standard application of integration by parts. �

To complete the proof of Proposition 2.1, we can bound∫
|u|≥a

(∫
Ln

g+iuf1(x)dµ(x)
)
χ̂n(u)du

= εn

∫
|u|≥a

eizu

(∫
Ln

g+iuf1(x)dµ(x)
)
χ̂(εnu)du

= O

(
1

εk−1
n

∫ ∞

a

(
1− c

uγ

)n/2[D log |u|]
u−kdu

)
.

(2.4)

We need to show that this quantity tends to zero more quickly than εnn
−1/2. To

see this we shall split the integral in (2.4) into two parts:∫ ∞

a

(
1− c

uγ

)n/2[D log |u|]
u−kdu

=
∫ nδ′

a

(
1− c

uγ

)n/2[D log |u|]
u−kdu+

∫ ∞

nδ′

(
1− c

uγ

)n/2[D log |u|]
u−kdu,

where we choose δ < δ′ < 1/γ. The first integral may be bounded by

∫ nδ′

a

(
1− c

uγ

)n/2[D log |u|]
u−kdu = O

(
nδ′
(
1− c

nδ′γ

)n/2Dδ′ log n
)

and, since δ′γ < 1, this tends to zero faster than the reciprocal of any polynomial.
The second integral may be bounded by∫ ∞

nδ′

(
1− c

uγ

)n

u−kdu = O(n(1−k)δ′
).

Combining these estimates we see that∫
|u|≥a

(∫
Ln

g+iuf1(x)dµ(x)
)
χ̂n(u)du = O(ε−(k−1)

n n(1−k)δ′
) = O(n(k−1)(δ−δ′)).

We obtain the required bound by choosing k sufficiently large that (k−1)(δ−δ′) <
−δ − 1/2.
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Finally, Theorem 1 may be deduced from Proposition 2.1 by a simple approx-
imation argument. More precisely, given η > 0, we can choose smooth functions
χ− ≤ χ[a,b] ≤ χ+, where χ[a,b] denotes the indicator function of the interval [a, b],
such that b− a− η ≤

∫
χ−(x)dx ≤

∫
χ+(x)dx ≤ b− a+ η. Then

lim sup
n→+∞

n1/2

εn
µ
{
x ∈ Σ+ : z + aεn ≤ fn(x) ≤ z + εnb

}
≤ lim sup

n→+∞

n1/2

εn

∫
χ+

n (fn(x))dµ ≤ b− a+ η√
2πσ

and

lim inf
n→+∞

n1/2

εn
µ
{
x ∈ Σ+ : z + aεn ≤ fn(x) ≤ z + εnb

}
≥ lim inf

n→+∞

n1/2

εn

∫
χ−n (fn(x))dµ ≥ b− a− η√

2πσ
.

Since η > 0 is arbitrary, this gives the result.

3. Axiom A Diffeomorphisms

In this section we shall show how the results of Theorem 1 can be extended to
invertible systems. This requires some technical details which we shall describe in
this section.

Let T : M → M be a C1 diffeomorphism. We call an T -invariant set X a basic
set if:

(i) we have a DT -invariant splitting TXM = Es ⊕ Eu such that ∃C > 0, 0 <
λ < 1, such that ||DTn|Es|| ≤ Cλn and ||DT−n|Eu|| ≤ Cλn;

(ii) ∃ open set U ⊃ X such that X = ∩∞n=−∞T
−nU ;

(iii) T : X → X is transitive; and
(iv) the periodic orbits for T |X are dense in X
We say that T satisfies Axiom A if the the non-wandering set Ω is hyperbolic.

In particular, Ω is a finite union of hyperbolic fixed points and basic sets.
The analogue of Theorem 1 for Axiom A diffeomorphisms is the following.

Theorem 2. Let T : X → X be an Axiom A diffeomorphism restricted to a non-
trivial basic set. Suppose that T : X → X is mixing and let m be the Gibbs state
for a Hölder continuous function. Suppose that f : X → R is a Hölder continuous
function satisfying the Diophantine condition and such that

∫
fdm = 0. Then there

exists δ > 0 such that for any z ∈ R, a < b and sequence εn > 0 which tends to
zero and satisfies ε−1

n = O(nδ), we have that

m {x ∈ Λ : z + εna ≤ fn(x) ≤ z + εnb} ∼
(b− a)√

2πσ
εn√
n
,

as n→ +∞.

We begin by introducing the two sided version of subshifts of finite type.

3.1 Symbolic dynamics. As in section 1, given a k × k matrix A with entries 0
or 1, we define a space

Σ = {x = (xn)∞n=−∞ : A(xn, xn+1) = 1 ∀n ∈ Z}
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and a shift map σ : Σ → Σ given by (σx)n = xn+1. The pair (Σ, σ) is called a
(two-sided) shift of finite type. There is a metric on Σ given by d(x, y) = 2−k,
where k = sup{n : xi = yi, |i| ≤ n}.

The following result reduces this to the study of the subshift σ : Σ → Σ.

Proposition 3.1. Let T : X → X be an Axiom A diffeomorphism restricted to
a non-trivial basic set and suppose that T is mixing. Then there exists a mixing
subshift of finite type σ : Σ → Σ and a Hölder continuous map π : Σ → X such that

(i) T ◦ π = π ◦ σ
(ii) π is surjective, bounded-to-one and one-to-one almost everywhere with re-

spect to any ergodic measure on Σ.

Given α > 0, we let Cα(Σ) be the Banach space of Hölder continuous functions
f : Σ → R with norm ||f || = |f |α + ||f ||∞, where

|f |α = sup
{
|f(x)− f(y)|
d(x, y)α

: x, y ∈ Σ, x 6= y

}
and ||f ||∞ is the supremum norm. Observe that for any 0 < β < α we have that
|f |β ≤ |f |α.

Suppose that m is the Gibbs state for the Hölder continuous function g : X → R
and let µ be the Gibbs state for g ◦ π : Σ → R. As in section 2, we have

m {x ∈ X : z + εna ≤ fn(x) ≤ z + εnb}
= µ {x ∈ Σ : z + εna ≤ (f ◦ π)(x) ≤ z + εnb} ,

so it suffices to consider functions on Σ. We shall suppose that α is chosen so that
f ◦π, g ◦π ∈ Cα(Σ). Once again, we shall abuse notation and write f and g instead
of f ◦ π and g ◦ π.

In order to obtain the asymptotics in Theorem 2, we need to relate f to functions
defined on the corresponding one-sided shift Σ+; then we can apply the analysis of
section 2. It is well-known that it is possible to find a Hölder continuous function de-
fined on Σ+ which is cohomologous to f , however, µ {x : z + εna ≤ f(x) ≤ z + εnb}
is not invariant under this change. It is therefore necessary to employ a slightly
more sophisticated approach involving approximations.

3.2 Introducing functions f̃k on Σ+. The first step in the proof is to approxi-
mate f ∈ Cα(Σ) by functions that only go finitely far into the “past” (i.e., we choose
fk : Σ → R depending only on the co-ordinates x−k, x−k+1, x−k+2, . . . ) sufficiently
close to f , in a suitable sense. In particular, we want to let k = k(n) = η log n,
where η = (1 + γ)(α log 2)−1 > 0, where γ will be specified later. We then choose
fk(x) = inf{f(y) : yi = xi, i ≥ −k}.

The following relates fk to f , and reduces Theorem 2 to proving the correspond-
ing result for fk, for some sufficiently small δ > 0 (independent of k).

Lemma 3.1. Assume that γ > 1 > δ and let ε−1
n = o(nδ). Then

µ
{
x ∈ Σ : z + εna+ n−δ ≤ fn

k (x) ≤ z + εnb− n−δ
}

≤ µ {x ∈ Σ : z + εna ≤ fn(x) ≤ z + εnb}
≤ µ

{
x ∈ Σ : z + εna− n−δ ≤ fn

k (x) ≤ z + εnb+ n−δ
}
,

(3.1)
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for all sufficiently large n.

Proof. This is similar to the approach in [5]. Observe that 2−αk = n−(1+γ) =
o(n−1εn), then ||fn

k − fn||∞ ≤ n|f |α2−αk = o(n−δ), provided that δ < γ. In
particular, we can compare:

µ
{
x ∈ Σ : z + εna− n|f |α2−αk ≤ fn

k (x) ≤ z + εnb+ n|f |α2−αk
}

≤ µ {x ∈ Σ : z + εna ≤ fn(x) ≤ z + εnb}
≤ µ

{
x ∈ Σ : z + εna− n|f |α2−αk ≤ fn

k (x) ≤ z + εnb+ n|f |α2−αk
}
.

(3.2)

This implies the required result. �

Thus we see that establishing asymptotic results for fn suffices to show the
required results for fn

k , where k = k(n) is as defined before. The basic idea is to
show that γ sufficiently large gives rise to a suitable δ for the first and last terms
in (3.2) are asymptotic (with an expression involving constants in terms of f , and
independent of n).

In order to introduce transfer operators, we first want to shift each truncated
function fk into a function depending on the co-ordinates x0, x1, x2, . . . . More
precisely, we shall write f̃k := fk ◦ σk ∈ Cα(Σ+), for k ≥ 0. Since µ is σ-invariant
we can write

µ {x ∈ Σ : z + εna ≤ fn
k (x) ≤ z + εnb}

= µ
{
x ∈ Σ+ : z + εna ≤ f̃n

k (x) ≤ z + εnb
}
,

for each k ≥ 0.
As in section 2, we need to introduce a sufficiently differentiable test function

χ : R → R. By replacing f by f̃k in (2.1) we see that we want to estimate

ρk(n) =
1
2π

∫ ∞

−∞

(∫
Ln

g+iu efk
1(x)dµ(x)

)
χ̂n(u)du. (3.3)

For future reference, we shall write wk := fk + fk ◦ σ + . . . + fk ◦ σk−1. In
particular, we have the trivial relation f̃k = fk +wk ◦σ−wk ∈ Cα(Σ+) ⊂ Cβ(Σ+),
provided β < α.

3.3 Introducing functions fk on Σ+. Although the shifted functions f̃k give the
above expression for ρk(n), we have little a priori control over how the corresponding
transfer operators Lg+iu efk

behave as k → +∞. To address this problem, it is
convenient to introduce a second sequence of better behaved functions fk, such
that fk is cohomologous to fk, for each k ≥ 1.

The properties of these new functions are described in the following simple
lemma.

Lemma 3.2. Let β < α. There exists f, fk ∈ Cα/2(Σ+), for k ≥ 1, and ufk
∈

Cα/2(Σ) and C,C0 > 0 such that f̃k = fk + ufk
◦ σ − ufk

, where

(1) ||f − fk||∞ ≤ C|f |α2−αk, for k ≥ 1;
(2) |f − fk|β ≤ C|f |β2−(α−β)k, for k ≥ 1; and
(3) |uf |β/2 ≤ C0|f |α.
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Proof. Following [14] and [6], we may define a linear operator τ : Cα(Σ) →
Cα/2(Σ+) such that τ : f 7→ f = f + uf ◦ σ − uf . More precisely, one can write
f(x) =

∑∞
n=0 fn(x) where fn(x) = fn(x−n, . . . , x0, . . . , xn) and ||fn||∞ ≤ |f |α2−αn.

Let

uf (x) =
∞∑

n=0

n−1∑
m=0

fn ◦ σm

then one sees this is well-defined in C0(Σ+) and

||uf ||∞ ≤ ||f ||∞
∞∑

n=0

n2−αn ≤ ||f ||∞
(1− 2−α)2

< +∞.

To check the coboundary identity we see that

uf ◦ σ − uf =
∞∑

n=0

fn ◦ σn −
∞∑

n=0

fn = f − f.

Parts (1) and (2) then come from the corresponding properties of f and fk:
(i) ||f − fk||∞ ≤ |f |α2−αk, for k ≥ 1; and
(ii) |f − fk|β ≤ |f |β2−(α−β)k, for k ≥ 1.

These results can be found in [12].
To bound the norm of uf ∈ Cα/2(Σ), assume that xi = yi, i = −N, . . . , N , then

|uf (x)− uf (y)| =
∞∑

n=0

n−1∑
m=0

|fn(x−n+m, . . . , xn+m)− fn(y−n+m, . . . , yn+m)|

≤ 2|f |α
∞∑

n=[(N−1)/2]

n∑
m=N−n

2−α(N−m)

≤ 2|f |α

 ∞∑
n=[(N−1)/2]

2−αn/2

1− 2−α/2


≤

(
2|f |α(

1− 2−α/2
)2
)

2−αN/2.

Thus we deduce that |uf |α/2 ≤ C0|f |α, where C0 = 2(1−2−α/2)−2. Since |uf |β/2 ≤
|uf |α/2, this shows (3). �

Later, we shall want to choose a conveniently small value of β > 0.

3.4 Comparing transfer operators for f̃k and fk. We now have two sequences
of functions fk, f̃k ∈ Cβ/2(Σ+), k ≥ 1, each cohomologous to fk, and we need to
understand the coboundary that relates them. This is the purpose of the next
lemma.

Lemma 3.3. Let us denote vk := wk + ufk
. Then f̃k − fk = vk ◦ σ − vk and

vk ∈ Cβ/2(Σ+).

Proof. Fix k ≥ 1 then, a priori, we only know that vk ∈ Cβ/2(Σ). However, since
fk − f̃k ∈ Cβ/2(Σ+) we can apply Livsic’s theorem for periodic orbits [7, p.45] to
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σ : Σ+ → Σ+ to deduce that vk◦σ−vk = gk◦σ−gk, for some gk ∈ Cβ/2(Σ+). Thus
(vk − gk) ◦ σ = (vk − gk), and by ergodicity (with respect to any Gibbs measure,
say) we see that vk = gk + K ∈ Cβ/2(Σ+), for some constant K. This completes
the proof. �

We have now constructed two sequences of pairwise cohomologous functions f̃k

and fk, k ≥ 1. The former are best suited for studying ρk(n) in (3.3), but the latter
are best suited for taking limits. The following is useful to relating the spectrum
of the associated transfer operators.

Lemma 3.4. The transfer operators Lg+iu efk
and Lg+iufk

, k ≥ 1, are conjugate.
In particular,

Lg+iu efk
= ∆(eiuvk)Lg+iufk

∆(e−iuvk),

where ∆(eiuvk) : Cβ/2(Σ+) → Cβ/2(Σ+) denotes multiplication by the function
eiuvk ∈ Cβ/2(Σ+).

Proof. This follows immediately from the definition of the transfer operator and
the identity f̃k − fk = vk ◦ σ − vk in Lemma 3.3. �

Thus, in order to compare bounds on the (common) spectra of the two transfer
operators we need to understand better the conjugating operator. This is achieved
using the following lemma.

Lemma 3.5. There exists C1 > 0 such that, for any h ∈ Cβ/2(Σ+), we have the
bounds ||∆(eiuvk)h||∞ ≤ ||h||∞ and |∆(eiuvk)h|β/2 ≤ C12kβ/2|u||f |α|h|∞ + |h|β/2.

Proof. The first inequality is obvious.
Using that |h1h2|β/2 ≤ |h1|β/2|h2|∞ + |h2|β/2|h1|∞ we can bound

|eiuvkh|β/2 ≤ |eiuvk |β/2|h|∞ + |eiuvk |∞|h|β/2

= |eiuvk |β/2|h|∞ + |h|β/2.
(3.4)

We therefore need to bound

|eiuvk |β/2 ≤ |eiuufk |β/2 + |eiuwk |β/2 ≤ |u|
(
|ufk

|β/2 + |wk|β/2

)
, (3.5)

say. Observe here that whereas we can interpret vk ∈ Cβ/2(Σ+) (by Lemma 3.3),
we still have to view ufk

, wk ∈ Cβ/2(Σ). However, this does not effect the bound
on vk.

Firstly, we can bound |ufk
|β/2 ≤ C0|f |α using Lemma 3.2. Secondly, from the

definition of | · |β/2 we see that |fk ◦ σi|β/2 = 2iβ/2|fk|β/2, for k ≥ 1. Thus, by the
triangle inequality, we can also bound for each k ≥ 1

|wk|β/2 = |fk + fk ◦ σ + . . .+ fk ◦ σk−1|β/2

≤ |fk|β/2 + |fk ◦ σ|β/2 + . . .+ |fk ◦ σk−1|β/2

≤ |fk|β/2

1 +
k−1∑
j=0

2jβ/2


≤ 2kβ/2

2β/2 − 1
|f |β/2

(3.6)
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and thus by comparing (3.5) and (3.6) we get

|eiuvk |β/2 ≤
(
C0 +

2kβ/2

2β/2 − 1

)
|u||f |β/2

and since |f |β/2 ≤ |f |α the result follows from substituting into (3.4). �

3.5 Perturbation theory for u small. We return to the problem of relating the
spectra of the two families of operators. This is easiest for the maximal eigenvalue.
Since we now know that the functions fk and f̃k differ by a coboundary, it is im-
mediate that the operators Lg+iufk

,Lg+iu efk
: Cβ/2(Σ+) → Cβ/2(Σ+) have exactly

the same maximal eigenvalues eP (g+iufk) = eP (g+iu efk) (provided |u| < a, where a
is sufficiently small to make the “complex presssure” well-defined [7]).

By standard perturbation theory, both the maximal eigenvalue

Cβ/2(Σ+) 3 g1 7→ eP (g1) ∈ R

and the associated eigenprojection

Cβ/2(Σ+) 3 g1 7→ Pg1 ∈ B
(
Cβ/2(Σ+), Cβ/2(Σ+)

)
,

(taking values in the space of bounded linear operators) are analytic [7]. Moreover,
we have the following.

Lemma 3.6. There exist ε > 0 and C > 0 such that, for ||g1||, ||g2|| ≤ ε, we have
that

(i) ||eP (g1) − eP (g2)|| ≤ C||g1 − g2||, and
(ii) ||Pg1 − Pg2 || ≤ C||g1 − g2||,

where || · || = | · |∞ + || · ||∞.

For |u| < a, can apply the bound in Lemma 3.6 for the maximal eigenvalue to
bound

|enP (g+iufk) − enP (g+iuf)| = O
(
n||f − fk||

)
= O

(
n|f |β

(
1
2

)(α−β)k
)

= O
(
n1−(1− β

α )(1+γ)|f |β
)
,

using Lemma 3.2 and the definition of k = k(n). Thus, since the pressure in
unchanged by adding coboundaries, we can estimate

enP (g+iu efk) = enP (g+iuf) +
(
enP (g+iufk) − enP (g+iuf)

)
= enP (g+iuf) +O

(
|f |βn1−(1− β

α )(1+γ)
)

= enP (g+iuf) +O

(
1
n

)
,

(3.7)

provided γ > 1 is chosen sufficiently large and β is chosen sufficiently small. (For
definiteness, if we assume β < α/2 then it would suffice that γ > 3.) As in section
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2, we can use the Morse lemma to change coordinates in a neigbourhood of the
origin to v = v(u), and write eP (g+iuf) = (1 − v2 + iQ(v)). In addition, using
Lemma 3.6 (ii), we can estimate

Pg+iu efk
1 = 1 +O

(
min

{
1, |u||f̃k|β/2

})
= 1 +O

(
min

{
1, |u|n

β
2α (1+γ)

})
,

(3.8)

where we have used |f̃k|β/2 ≤ 2βk/2|fk|β/2 = O(2βk/2) = O(n
β
2α (1+γ)), by definition

of k.
We recall with the following standard result on the spectral gap for the transfer

operators Lg+iufk
.

Lemma 3.7. We can choose 0 < θ < 1 and C > 0 such that
||Ln

g+iufk
− enP (g+iufk)Pn

g+iufk
|| ≤ Cθn, for n ≥ 1,

whenever |u| ≤ a and k ≥ 1.

We can use Lemmas 3.5 and 3.7 to get the slightly weaker bounds for Ln
g+iu efk

:

||(Ln
g+iu efk

− enP (g+iufk)Pg+iu efk
)1||∞

= ||∆(eiuvk)
(
Ln

g+iufk
− enP (g+iufk)Pg+iufk

)
(e−iuvk)||∞

= ||∆(eiuvk)||∞||Ln
g+iufk

− enP (g+iufk)Pg+iufk
||||∆(e−iuvk)||

= O
(
θn2β/2k

)
= O

(
θnn

β
2α (1+γ)

)
where ||∆(e−iuvk)|| = O

(
2βk/2

)
, by Lemma 3.5. Thus we can write

Ln
g+iu efk

1 =
(
enP (g+iuf) +O

(
1
n

))(
1 +O

(
|v|n

β
α (1+γ)

))
+O

(
θnn

β
α (1+γ)

)
.

(3.9)

3.6 The integral for |u| small. Using (3.9) we can now estimate the part of the
integral (3.3) with |u| < a by

1
2π

∫ a

−a

(∫
Ln

g+iu efk
1(x)dµ(x)

)
χ̂n(u)du

=
∫ a

−a

(1− v2 + iQ(v))n
(
1 +O

(
|v|n

β
2α (1+γ)

))
χ̂n(u(v))

du

dv
dv

+O
(
θnn

β
2α (1+γ)

)
=
εnχ̂(0)

√
2

σ

∫ a

−a

(1− v2 + iQ(v))n
(
1 +O

(
|v|n

β
2α (1+γ)

))
dv

+O
(εn
n

)
+O

(
θnn

β
2α (1+γ)

)
.

(3.10)

We can bound the error term coming from the integral by

n
β
α (1+γ)

∫ a

0

v(1− v2)ndv = O
(
n

β
α (1+γ)−1

)
.

In particular, can make all of the error terms of order O
(
n−(δ+ 1

2 )
)

by choosing
β = β(γ) > 0 sufficiently small. As in section 2, we see that the remaining principle
asymptotic is χ̂(0)(

√
2πσ)−1εnn

−1/2.
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3.7 The integral for |u| large. Finally, we want to bound∫
|u|≥a

(∫
Lg+iu efk

1dµ
)
χ̂n(u)du ≤

∫
|u|≥a

||Lg+iu efk
1||∞|χ̂n(u)|du. (3.11)

Observe that for |u| ≥ a we can relate the operators associated to f̃k and fk by

||Ln
g+iu efk

1||∞ ≤ ||∆(eiuvk)||∞||Ln
g+iufk

||||∆(eiuvk)||

≤
(
||Ln

g+iuf
− Ln

g+iufk
||+ ||Ln

g+iuf
||
)
||∆(eiuvk)||.

(3.12)

Assuming χ is Cκ, say, the results in section 2 applied to f , which also satisfies the
Diophantine Condition, show that we can bound∫

|u|≥a

||Lg+iuf1|||χ̂n(u)|du = O
(
n−(1−κ)(δ′−δ)2βk/2

)
= O

(
n−(1−κ)(δ′−δ)n(1+γ)β/(2α)

)
,

(3.13)

where δ < δ′ < 1
γ , say. This contribution is of order O(n−(δ+ 1

2 )) if κ > 0 is
sufficiently large and then β = β(κ, γ) > 0 is chosen sufficiently small.

To bound the difference between (3.11) and (3.13) we shall use the following
trivial identity

Ln
g+iuf

− Ln
g+iufk

=
n−1∑
j=1

Lj

g+iuf

(
Lg+iuf − Lg+iufk

)
L(n−j)

g+iufk

. (3.14)

By Lemma 3.6, we can bound

||Lg+iuf − Lg+iufk
|| ≤ C|u|||f − fk||, (3.15)

provided |u| is sufficiently small. The following bound will also be quite useful.

Lemma 3.8. There exists C > 0 such that

||Lm
g+iuf

|| ≤ C|u| and ||Lm
g+iufk

|| ≤ C|u|, for m ≥ 1.

for all k ≥ 1.

Let ρ > 0 be a valus to be specified later. Using (3.14) we can bound

∫ nρ

a

||Ln
g+iuf

− Ln
g+iufk

||||χ̂n(u)||∞du

≤
∫ nρ

a

n−1∑
j=1

||Lj

g+iuf
||∞||Lg+iuf − Lg+iufk

||||L(n−j)

g+iufk

||||eiuvk ||

 ||χ̂n(u)||∞du.

(3.16)
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Furthermore, we can use Lemmas 3.2, 3.5 and 3.8 to obtain a bound for (3.16) of
order

O

(
2kβ/2

εκ−1
n

(n− 1)
∫ nρ

a

|u|2||f − fk||u−κdu

)

= O

(
2kβ/2n(κ−1)δn1+ρ

(
1
2

)k(α−β/2)
)

= O
(
n(1+γ)β/(2α)n(κ−1)δn1+ρn−(1+γ)(1−β/(2α))

)
.

(3.17)

The remaining contribution to the integral can be bounded as∫ ∞

nρ

||Ln
g+iuf

− Ln
g+iufk

|| |χ̂n(u)|du ≤
∫ ∞

nρ

2C|u| |χ̂n(u)|du

= O

(
1

εκ−1
n

∫ ∞

nρ

1
uκ−1

du

)
= O

(
nδ(κ−1)

nρ(κ−2)

) (3.18)

We can first choose ρ = ρ(κ) sufficiently large that the contribution of (3.18) is
O(n−(δ+ 1

2 )). If we then assume that γ = γ(κ, ρ) is sufficiently large the contribution
from (3.17) is of the same size. (If β < α/2 then γ can be chosen independently of
β. This is necessary, since earlier in the proof we need to choose β = β(γ) small.)
This finally completes the proof of Theorem 2.

4. Periodic orbits

In this final section, we shall sketch the proof of a version of Theorems 1 and
2 for sums over periodic points. In this case the result holds for hyperbolic dif-
feomorphisms, as well as expanding maps. We shall suppose that T : X → X is
either the restriction of an Axiom A diffeomorphism to a non-trivial basic set or an
expanding map. As above, we additionally assume that T is topologically mixing.

Let f be a non-lattice function. Suppose that there exists a Gibbs state m such
that

∫
fdm = 0. Without loss of generality, we may choose the measure m to be

the Gibbs state for a function g = ξf , for some unique ξ ∈ R [8, Lemma 5]. With
this choice, the supremum

β = sup
{
h(ν) : ν ∈M such that

∫
fdν = 0

}
is attained at ν = m, i.e., β = h(m).

We recall the following asymptotic formula proved in [8].

Proposition 4.1. Let f be a non-lattice function. Suppose that there exists a Gibbs
state m such that

∫
fdm = 0. Then, for any real numbers a < b, we have that

# {x ∈ Fix(Tn) : a ≤ fn(x) ≤ b} ∼ 1√
2πσ

(∫ b

a

e−ξtdt

)
eβn

√
n
, (4.1)

as n→ +∞, where ξ is defined as above.

We shall strengthen (4.1) to give an asymptotic formula when the interval [a, b]
is allowed to shrink at a subexponential rate.
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Theorem 3. Suppose that f : X → R is a Hölder continuous function satisfying
the Diophantine condition and that

∫
fdm = 0, where m is the Gibbs state for ξf .

Then there exists δ > 0 such that for any z ∈ R, a < b and sequence εn > 0 which
tends to zero and satisfies ε−1

n = O(nδ), we have that

# {x ∈ Fix(Tn) : z + aεn ≤ fn(x) ≤ z + εnb} ∼
1√
2πσ

(∫ b

a

e−ξtdt

)
εne

βn

√
n
,

as n→ +∞.

The proof follows the same lines as that of Theorem 1. The diffeomorphism
T : X → X is modelled by a two-sided subshift of finite type σ : Σ → Σ, where

Σ = {x = (xn)∞n=−∞ : A(xn, xn+1) = 1 ∀n ∈ Z}.

The correspondence between periodic points for T : X → X and σ : Σ → Σ is not
one-to-one but this discrepancy does not effect the asymptotics.

In order to use the transfer operator analysis from the earlier sections, one may
pass from σ : Σ → Σ to the one-sided subshift σ : Σ+ → Σ+. To do this, we apply
the following standard lemma [14] (cf. Lemma 3.2 ).

Lemma 4.1. Let f : Σ → R be a Hölder continuous function. Then there exists
a Hölder continuous function f ′ : Σ → R which is cohomologous to f and has the
property that f ′(x) = f ′(y) if xn = yn for n ≥ 0. In particular, we may regard f ′

as a function f ′ : Σ+ → R.

For periodic orbits, Lemma 1.3 is replaced by the following result, which can be
easily deduced from results in [13].

Lemma 4.2. There exists 0 < θ < 1 such that, for any x0 ∈ Σ+,∑
σnx=x

e(ξ+iu)fn(x) = (Ln
(ξ+iu)f1)(x0)(1 +O(max{1, |u|}nθn)).

To to proceed we can use the identity

ρ(n) =
1
2π

∫ ∞

−∞

( ∑
σnx=x

eiufn(x)

)
χ̂n(u)du

=
1
2π

∫ ∞

−∞

(
(Ln

(ξ+iu)f1)(x0)(1 +O(max{1, |u|}nθn))
)
χ̂n(u)du.

(4.2)

The proof now follows the same lines as Theorem 1. Using the bounds on the
transfer operators from section 2, the same arguments give the estimate

1
2π

∫ ∞

−∞

(
(Ln

(ξ+iu)f1)(x0)
)
χ̂n(u)du ∼

∫
χ(x)dx√

2πσ
εn√
n
, as n→ +∞.

The contribution of the second term on the Right Hand Side of (4.2) is dominated
by this principal term because of the θn factor.

Finally, the proof of Theorem 3 is completed by an approximation argument, as
at the end of section 2.

Remark. The method of proof of the results in this paper should also lend itself to
proving uniform “local limit theorems” for shrinking intervals (cf. [11]).
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