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Abstract. In this paper we study dynamical properties of linear actions by free
groups via the induced action on projective space. This point of view allows us

to introduce techniques from Thermodynamic Formalism. In particular, we obtain

estimates on the growth of orbits and their limiting distribution on projective space.

0. Introduction

Let SL(d,R) denote the d×d matrices with real entries and determinant one. We
shall consider the case d ≥ 3. There is a natural linear action SL(d,R)×Rd → Rd

given by matrix multiplication. Given a discrete subgroup Γ ⊂ SL(d,R) and a fixed
non-zero vector, it is interesting to consider the orbit O(v) = {Av : A ∈ Γ} ⊂ Rd.

When Γ is a uniform lattice (i.e., SL(d,R)/Γ is compact) Greenberg showed
that for a non-zero vector v ∈ Rd the set O(v) ⊂ Rd is dense [3]. J. Dani showed
that providing v is irrational, the result extends to the case that Γ = SL(d,Z)
[1]. Under either of these hypotheses the set {A ∈ Γ : ||Av|| ≤ T} has infinite
cardinality. (Here, || · || denotes the standard euclidean 2-norm). However, for
groups which are not lattices the orbits need not be dense, and indeed may be
quite sparse. For example, #{A ∈ Γ : ||Av|| ≤ T} may be finite for certain choices
of v. To see that some restriction is necessary, notice that if v is an eigenvector
for A ∈ Γ then the same is also true for the matrices An, n ∈ Z. In consequence,
||Anv|| ≤ T for infinitely many n. (A similar phenomenon occurs whenever the
projectivized vector v lies in the limit set.) Except in these cases, one may ask how
this counting function behaves as T →∞.

In this paper we shall consider the linear actions of a class of free groups
Γ ⊂ SL(d,R). Let Γ be freely generated by the (symmetric) set Γ0 = {A±1

1 , . . . , A±1
k }.

We call a generator A ∈ Γ0 pointed if it has a unique eigenvalue of maximal modulus
and the corresponding eigenspace VA is one-dimensional. Denote by WA the direct
sum of the (generalized) eigenspaces of the other eigenvalues. We say that the
generators are in general position if for each A ∈ Γ0 we have VA 6⊂

⋃
B∈Γ0−{A}WB .

It is useful to make two hypotheses.

Hypothesis I. We shall assume that Γ0 are generators for Γ which are pointed and
in general position.
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Hypothesis II. We shall assume that there are elements A1, A2 ∈ Γ such that the
logarithms of the maximal eigenvalues are not rationally related.

These are generic conditions on the generators. The first hypothesis plays a rôle
in the proof of the beautiful result of Tits that a subgroup G ⊂ SL(d,R) is either
virtually solvable or it contains a free group on two generators as a subgroup (cf.
[12], [4]). In the analogous setting of SL(2,R), the second hypothsis is equivalent
to the non-arithmeticity of the length spectrum of the associated Riemann surface
or mixing for the corresponding geodesic flow.

Before we state our main result, we shall introduce two pieces of notation. Given
l ≥ 1, we shall denote by Γ(l) ⊂ Γ the free subgroup generated by the lth powers,
i.e., the elements {Al : A ∈ Γ0}. We denote by

U = Rd −
⋃

A∈Γ0

WA

the complement of hyperplanes WA, A ∈ Γ0.
Our main result is the following.

Theorem 1. Let Γ ⊂ SL(d,R) be a free group with generators Γ0 satisfying Hy-
potheses I and II. Let v ∈ U . Then there exists l ≥ 1, C = C(v, l) > 0 and
p = p(l) > 0 such that

#{A ∈ Γ(l) : ||Av|| ≤ T} ∼ CT p.

(In fact, the same conclusion is true for all sufficiently large l).

As a consequence we have the following estimate on matrices counted by their
norms.

Corollary. There exist constants C1, C2 > 0 such that

C1T
p ≤ #{A ∈ Γ(l) : ||A|| ≤ T} ≤ C2T

p

Proof. Since ||Av|| ≤ ||A|| ||v|| we can write

#{A ∈ Γ(l) : ||A|| ≤ T} ≤ #{A ∈ Γ(l) : ||Av|| ≤ T ||v||}.

On the other hand, a simple geometric argument shows that for each v ∈ U there
exists D > 0 such that ||A|| ≤ D||Av||, for all A ∈ Γ. Hence,

#{A ∈ Γ(l) : ||A|| ≤ T} ≥ #{A ∈ Γ(l) : D||Av|| ≤ T}.

This completes the proof.

The value p is precisely the abscissa of convergence of the Dirichlet series defined
by η(s) =

∑
A∈Γ(l) ||Av||−s. We can see that p > 0 by the following argument. First

observe that there exists c > 0 such that ||Av|| ≤ ec|A|, where |A| denotes the word
length of A, i.e., the number of generators from Γ0 used to write A. Recalling that
#Γ0 = 2k, we then have the inequality

η(s) ≥
∑
A

e−sc|A| = 1 +
∞∑

n=1

2k(2k − 1)n−1e−scn,
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where the Right Hand Side diverges for s < log(2k − 1)/c. In particular, we see
that p ≥ log(2k − 1)/c > 0.

It is also an easy observation that p is independent of the choice of v. This
follows since given any v, v′ ∈ U there exists E > 0 such that

1
E
≤ ||Av||
||Av′||

≤ E, ∀A ∈ Γ.

Example. For A ∈ Γ(l) write A = (aij)
d
i,j=1 ∈ SL(d,R). For any i = 1, . . . , d we

can take v to be the ith basis vector. If we suppose that v ∈ U then there exists a
constant Ci > 0 such that

#

A ∈ Γ :
d∑

j=1

a2
ij ≤ T

 ∼ CiT
p/2, as T → +∞.

As motivation for the proof of Theorem 1, we should consider the classical in-
terpretation of SL(2,R) as isometries of the Poincaré disc D2. In this case, the
corresponding action on the ideal boundary S1 exhibits hyperbolic-like behaviour.
The natural analogue of this for d ≥ 3 is the projective action on RP d−1. This
action on RP d−1 will have sources corresponding to eigenvectors of eigenvalues of
modulus smaller than unity. There will also be sinks, corresponding to eigenvectors
of eigenvectors with eigenvalues of modulus greater than unity.

We define the limit set Λ ⊂ RP d−1 of Γ(l) to be the closed set which is the
accumulation point of the set {Av : A ∈ Γ(l)}, where we take any point v ∈ [U ] in
the projectivization of U . For each s > p we can define a probability measure ms

on RP d−1 by

ms =
∑

A∈Γ(l) δAv||Av||−s∑
A∈Γ(l) ||Av||−s

.

The next theorem describes the distribution of the orbit Γ(l)v on RP d−1, and
could be viewed as an analogue of the Patterson-Sullivan measure for hyperbolic
manifolds [8], [11].

Theorem 2. Let Γ ⊂ SL(d,R) be a free group with generators Γ0 satisfying Hy-
potheses I and II and let l > 1 be such that the conclusions of Theorem 1 hold. There
exists a probability measure m such that we have the convergence lims→pms = m in
the weak star topology. Furthermore, m is an ergodic non-atomic measure supported
on the limit set of Γ and

d(A∗m)
dm

(x) = ||A−1x||−p

for all A ∈ Γ.

The authors would like to thank the referee for a number of helpful comments.

1. Actions on projective spaces

Assume that A1, . . . , Ak ∈ SL(d,R) generate a free group Γ. Write Γ0 =
{A1, . . . , Ak, Ak+1, . . . , A2k}, where Ak+i = A−1

i , for i = 1, . . . , k.
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If A is a concatenation of n generators then we write |A| = n. Each element

A =

 a11 . . . a1d
...

. . .
...

ad1 . . . add

 ∈ Γ

has the standard linear action A : Rd → Rd given by

A(z1, . . . , zd) = (a11z1 + · · ·+ a1dzd, . . . , ad1z1 + · · ·+ addzd).

Let RP d−1 = (Rd\{0})/ ∼ denote the real projective space, where ∼ is the
equivalence relation (z1, . . . , zd) ∼ (λz1, . . . , λzd) for λ ∈ R\{0}. We define a
metric D on RP d−1 by

D(v, w) = cos−1

(
〈v, w〉
||v||||w||

)
.

An element A ∈ Γ induces a projective action A : RP d−1 → RP d−1 given by

A[z1, . . . , zd] = [a11z1 + · · ·+ a1dzd, . . . , ad1z1 + · · ·+ addzd].

Let us denote by [VA] = (VA − {0})/ ∼ and [WA] = (WA − {0})/ ∼ the points
and hyperplanes in RP d−1 corresponding to the eigenspaces VA and hyperplanes
WA in Rd.

The contraction property. There exists 0 < θ < 1 and a family of closed sets C(A),
A ∈ Γ0, such that

||DzA|| ≤ θ, ∀z ∈
⋃

B∈Γ0−{A−1}

C(B),

where DzA is the derivative of the projective action of A at the point z. Moreover,
for each A ∈ Γ0 and B ∈ Γ0 − {A−1} we have that AC(B) ⊂ C(A).

Example. If we consider the free group generated by the matrices

A1 =

 1000 0 0
0 1

10 0
0 0 1

100

 and A2 =

 500.05 −0.45 499.995
499.95 0.055 499.995
499.95 0.045 500.005


then the contraction property holds. More generally consider for a > 1 the free
group with the two generators

A1 =

 a3 0 0
0 1

a 0
0 0 1

a2

 and A2 =

 1
2 (a3 + 1/a) 1

2 (−1/a+ 1/a2) 1
2 (a3 − 1/a2)

1
2 (a3 − 1/a) 1

2 (1/a+ 1/a2) 1
2 (a3 − 1/a2)

1
2 (a3 − 1/a) 1

2 (1/a− 1/a2) 1
2 (a3 + 1/a2)


where

A2 = CA1C
−1 with C =


1√
3

− 1√
3

− 1√
3

1√
3

1√
3

− 1√
3

1√
3

1√
3

1√
3

 .
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The matrix A1 has the standard bases as eigenvectors, and A2 has the eigenvectors
rotated by the matrix C.

There are natural co-ordinates (θ, φ) on RP 2 associated to spherical co-ordinates
(i.e. we write [x, y, z] = [sinφ cos θ, cosφ cos θ, sin θ]) Observe that the A1 image
(x′, y′, 0) of (x, y, 0), for example, satisfies tan(x/y) = λ4 tan(x′/y′). A simple
calculation shows that the projective action of A1 : RP 2 7→ RP 2 is contracting in
the region corresponding to cos2 θ > a4/(1 + a4). The image of the this region
(which we denote by C(A1)) is then contained in the region with tan θ > a2.

Considering (0, y, z), for example, with tanα = z/y we see that the projective
action of A−1

1 : RP 2 7→ RP 2 is contracting in the region corresponding to cos2 α >
a/(1+a). The image of the this region, denote by C(A−1

1 ) is contained in the region
with tanα >

√
a.

Since A2 is derived from A1 by a change in the orientation of the eigenvectors,
similar estimates hold.

To keep the four regions (A±1
1 ) and (A±1

2 ) disjoint we can ask that θ, α < π/8,
which requires a > 5.82843.... Thus, taking a = 10 suffices.

Figure 1. The regions C(Ai) (i = 1, 2)

The next lemma shows that Γ contains a free subgroup with the above property.

Lemma 1. Let Γ be a free group with generating set Γ0, satisfying Hypothesis I.
We can choose 0 < θ < 1 and l ≥ 1 such that the free group Γ(l) generated by the
elements Al, A ∈ Γ0, satisfies the contraction property.

Proof. For each A ∈ Γ0 we can choose disks C(A) = {x ∈ RP d−1 : D([VA], x) ≤
ε/2}, where ε = min{supB∈Γ0−{A−1}D([VA], [WB ]) : A ∈ Γ0}. Then the union⋃

B∈Γ0−{A−1} C(B) is contained inside the basin of attraction of A : RP d−1 →
RP d−1. In particular, for sufficiently large l ≥ 1 we have that

Al

 ⋃
B∈Γ0−{A−1}

C(B)

 ⊂ C(A).
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Set θ0 = ||D[VA]A|| < 1 and fix choices θ0 < θ1 < θ < 1. Consider the neigh-
bourhood U = {z ∈ RP d−1 : ||DzA|| ≤ θ1} of [VA]. We may choose l0 sufficiently
large that for l ≥ l0 we have that

Al

 ⋃
B∈Γ0−{A−1}

C(B)

 ⊂ U.

Then for z ∈
⋃

B∈Γ0−{A−1} C(B) we have the bound

||DzA
l|| ≤ ||DzA

l0 || ||DAl0zA
l−l0 || ≤ Cθl−l0

1 .

To complete the proof, we need only choose l sufficiently large that Cθl−l0
1 < θ.

We repeat this construction for each A ∈ Γ0, and take θ in the statement of the
lemma to be the maximum of the values above.

We can assume, without loss of generality, that l = 1 in the sequel.
We shall now describe the relation between Jac(A) and ||Av||.

Proposition 1.

(1) Suppose that v ∈ Rd then Jac(A)(v) = ||v||(d−1)/||Av||(d−1).
(2) Suppose that v ∈ U then ||Amv||1/m converges to the maximal eigenvalue

for A, as m→ +∞.

Proof. We begin with the proof of part (1). We can represent a vector v ∈ Rd

in terms of spherical co-ordinates ω = (ω1, . . . , ωd−1) on the sphere Sd−1 and its
length ||v|| = r.

To perform the calculations we shall compare these spherical co-ordinates with
standard euclidean coordinates. Let us denote by ψv : U → V a chart from a
neighbourhood U of the origin in euclidean space to a neighbourhood V of v in
spherical co-ordinates.

Let us denote by Jacsph(A)(v) the Jacobian of A at v in terms of spherical
coordinates, and by Jaceuc(A)(v) the Jacobian of A at v in terms of euclidean
coordinates. It follows by the chain rule that we can write

Jacsph(A)(v) = Jac(ψAv)Jaceuc(A)(v)Jac(ψ−1
v ).

Observe that Jaceuc(A)(v) = 1, since A ∈ SL(d,R). Moreover, by the standard
change of variable from spherical coordinates to euclidean coordinates, we can write
that Jacsph(A)(v) = ||v||d−1. In particular, the above equality reduces to

Jacsph(A)(v) =
||v||d−1

||Av||d−1
.

Part (2) follows from the spectral radius theorem.

Remark. The linear action on projective space by matrices is also familiar from the
work of Birkhoff on the Hilbert metric. An interesting interpretation of the weight
for the projectivized action of positive matrices GL(d,R) on the positive quadrant
(relative to the Hilbert metric) appears in a paper of Wojtkowski [13].
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2. Subshifts of finite type

A sequence (x0, . . . , xn−1) ∈ {1, . . . , 2k}n is called admissible if Axi+1 6= A−1
xi

for
i = 0, . . . , n − 2. Given an admissible sequence x = (x0, . . . , xn−1) we shall write
Ax,n = Ax0Ax1 · · ·Axn−1 .

Let X = {(xn)∞n=0 ∈ {1, . . . , 2k}Z+
: Axn+1 6= A−1

xn
∀n ≥ 0} be the space

of infinite admissible sequences and let σ : X → X be the shift map given by
(σx)n = xn+1, n ≥ 0.

It is convenient to regard finite admissible sequences (x0, . . . , xn−1) as infinite
sequences in the alphabet {1, . . . , 2k}∪{0} by adjoining an infinite string of zeros to
obtain (x0, . . . , xn−1, 0, 0, . . . ). For brevity we shall write this as (x0, . . . , xn−1, 0̇).
We shall denote the set of finite sequences completed in the above way by X0 and
write X̂ = X ∪ X0. Furthermore, we adopt the convention that A0, the group
element associated to the symbol 0, is equal to the identity.

We define a metric on the space X̂ by

d(x, y) =
∞∑

n=0

1− δ(xn, yn)
(1/θ)n

.

With this metric, X0 is a dense subset of X̂.

Lemma 2. Assume that (x0, . . . , xn−1) is an admissible sequence then

Ax,n : C(Axn−1) → C(Ax0)

is a contraction. In particular, there exists C > 0 and 0 < θ < 1 such that
diam(Ax,nC(Axn−1)) ≤ Cθn.

Proof. Let DA denote the derivative of the projective map A : RP d−1 → RP d−1.
By the chain rule we can write

DAx,n(v) = DAx0(Ax1 . . . Axn−1v) · · ·DAxi(Axi+1 . . . Axn−1v) · · ·DAxn−1(v).

However, since Axi+1 . . . Axn−1v ∈ C(Axi), we see that ||DAxi(Axi+1 . . . Axn−1v)|| ≤
θ.

Assume for the result of the section that v ∈ RP d−1 is not on the complemen-
tary planes associated to any of the generators from Γ0. We need the following
quantitative estimates.

Lemma 3. Let x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) be admissible sequences.
There exists C > 0 such that if 0 ≤ m ≤ n and xi = yi, for i = 0, . . . ,m− 1, then
D(Ax,nv,Ay,nv) ≤ Cθm.

Proof. Observe that

Ax,nv,Ay,nv ∈ Ax0 · · ·Axm−2C(Axm−1) = Ay0 · · ·Aym−2C(Aym−1).

Thus, in particular, D(Ax,nv,Ay,nv) ≤ diam(Ax0 · · ·Axm−2C(Axm−1)) ≤ Cθm, as
required.
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Lemma 4. For any x = (xn)∞n=0 ∈ X, the limit vx = limn→+∞Ax,nv exists and
satisfies the estimate D(vx, Ax,mv) ≤ Cθm.

Proof. By Lemma 2, Ax,nv, n ≥ 0, is a Cauchy sequence and so vx = limn→+∞Ax,nv
exists. Letting n→ +∞ in Lemma 2 gives D(vx, Ax,mv) ≤ Cθm.

Using the above lemma, we may define a Hölder continuous surjective map π :
X → Λ from X to the limit set, by π(x) = vx.

We define Fθ =
{
f : X̂ → R : |f |θ < +∞

}
, where

|f |θ = sup
{
|f(x)− f(y)|

d(x, y)
: x 6= y

}
.

This is a Banach space with respect to the norm ||f ||θ = |f |θ + |f |∞. We have the
following two useful technical results.

Lemma 5. There exists C > 0 such that for x, y ∈ X̂, n ≥ 1, we have∣∣∣∣log
(

Jac(Ax,n)(v)
Jac(Aσx,n−1)(v)

)
− log

(
Jac(Ay,n)(v)

Jac(Aσy,n−1)(v)

)∣∣∣∣
≤ Cd(x, y).

(2.1)

Proof. Assume that xi = yi, for i = 0, . . . ,m − 1. If m ≥ n, then the Left Hand
Side of (3.1) vanishes, since x 7→ Jac(Ax0)(v) is locally constant. On the other hand
if n ≥ m then by Lemma 3 we have that

D(Ax,nv,Ay,nv) ≤ Cθm = Cd(x, y).

However, since Jac(Ax0)(·) : RP d−1 → R is obviously Lipschitz, we see that

| log (Jac(Ax0)(v))− log (Jac(Ay0)(v)) | ≤ C ′d(x, y).

Finally, since Ax,n = Ax0Aσx,n−1, we can apply the chain rule to write DAx,n(·) =
DAx0(Aσx,n−1·)DAσx,n−1(·). Taking determinants and logarithms and evaluating
at v gives

log
(

Jac(Ax,n)(v)
Jac(Aσx,n−1)(v)

)
= log

(
Jac(Ax0)(Aσx,n−1v)Jac(Aσx,n−1)(v)

Jac(Aσx,n−1)(v)

)
= log (Jac(Ax0)(Aσx,n−1v)) .

(2.2)

Observe that x0 = y0 and the function log Jac(Ax0)(·) is analytic. Thus it suf-
fices to observe that since (σx)i = (σy)i for i = 0, . . . ,m − 2 then by Lemma 3,
D(Aσx,n−1v,Aσy,n−1v) ≤ Cθm−1

We define a function r : X0 → R by

r(x0, . . . , xn−1, 0̇) = − 1
d− 1

log
(

Jac(Ax,n)(v)
Jac(Aσx,n−1)(v)

)
.

We can extend this to a function on X̂, by the following result.
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Proposition 2. The function r : X → R given by

r(x) = − 1
d− 1

lim
n→+∞

log
(

Jac(Ax,n)(v)
Jac(Aσx,n−1)(v)

)
is both well-defined and an element of Fθ.

Proof. From the identities (2.1) and (2.2) this immediately follows.

The usefulness of the function r : X̂ → R comes from the following identity.

Proposition 3. Assume that x = (x0, x1, . . . , xn−1, 0, 0, . . . ) ∈ X0, where xn−1 6=
0, then we can identify

− 1
d− 1

log Jac(Ax,n)(v) =
n−1∑
i=0

r(σix).

3. Transfer operators

We denote by Fθ(C) =
{
f : X̂ → C : |f |θ < +∞

}
, where

|f |θ = sup
{
|f(x)− f(y)|

d(x, y)
: x 6= y

}
.

This is a Banach space with respect to the norm ||f ||θ = |f |θ + |f |∞.
For f ∈ Fθ(C) we can define Ruelle transfer operators Lf : Fθ(C) → Fθ(C) by

(Lfh)(x) =
∑

σy=x
y 6=0̇

ef(y)h(y).

Remark. This definition of the Ruelle transfer operator differs from the usual def-
inition in that in the summation over pre-images y of x we exclude the possibility
y = 0̇. However, it agrees with the more familiar definition for all x 6= 0̇ and its
only effect on the spectrum is to exclude an eigenvalue ef(0̇) (corresponding to the
eigenvector which is the characteristic function for the set {0̇}).

We can associate to each continuous function f : X̂ → R the pressure P (f) ∈ R
defined by

P (f) = lim sup
n→+∞

1
n

log

( ∑
σnx=x

efn(x)

)
.

The pressure is also given by the equivalent variational identity

P (f) = sup{h(ν) +
∫
fdν : ν is an invariant probability}.

If f : X̂ → R is Hölder continuous, then the above supremum is attained at a
unique probability measure µ called the equilibrium state for f .
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Proposition 4 (Ruelle Operator Theorem [10], [7]).

(1) For s ∈ R, the spectral radius of the operator L−sr is equal to eP (−sr)

and this is a simple eigenvalue of strictly maximal modulus. Furthermore,
associated to this eigenvalue, there is a strictly positive eigenfunction hs, and
an eigenmeasure νs. (We adopt the normalization νs(1) = 1 and ν(hs) = 1.)

(2) For s ∈ C, in a sufficiently small neighbourhood of R, the operator L−sr con-
tinues to have a simple eigenvalue of maximal modulus denoted by eP (−sr).
We shall again denote the associated eigenfunction and eigenfunctional by
hs and νs, respectively, with the corresponding normalization.

Since, by the above proposition, eP (−sr) is an isolated eigenvalue we know that
s 7→ P (−sr) is analytic for s in a neighbourhood of R. It is well known that for
t0 ∈ R, dP (−tr)/dt|t=t0 = −

∫
rdµt0 , where µt0 is the equilibrium state for −t0r.

Thus, in particular, the function s 7→ P (−sr) on R is strictly decreasing from +∞
to −∞.

For a bounded linear operator T : B → B acting on a Banach space B let ρ(T )
denote the spectral radius. We define the essential spectrum ess(T ) to be the subset
of the spectrum spec(T ) ⊂ C of T consisting of those λ ∈ spec(T ) such that at least
one of the following is true

(1) Range(λ− T ) is not closed in B;
(2) λ is a limit point of spec(T );
(3) ∪∞r=1ker(λ− T )r is infinite dimensional.

We define the essential spectral radius to be ρe(T ) = sup{|λ| : λ ∈ ess(T )}. The
operator T : B → B is quasi-compact if the essential spectral radius is strictly
smaller than the spectral radius.

Proposition 5 [7]. For s ∈ C, the spectral radius of L−sr : Fθ(C) → Fθ(C)
satisfies ρ(L−sr) ≤ ρ(LRe(f)) and essential spectral radius satisfies ρe(L−sr) ≤
θρ(L−Re(s)r).

Proposition 5 implies that for any ε > 0 we may write

Ln
−sr =

∑
λ

PλL
n
−sr +QLn

−sr, (3.1)

where the summation is over eigenvalues λ for L−sr satisfying ρe(L−sr) + ε ≤
|λ| ≤ ρ(L−Re(s)r), Pλ is the eigenprojection associated to λ and Q is the projection
associated to the part of the spectrum in {z : |z| ≤ ρe(L−Re(s)r) + ε} so that, in
particular, limn→+∞ ||QLn

−sr||1/n ≤ ρe(L−Re(s)r) + ε.

4. Poincaré series

An important tool that is useful in the proofs of Theorems 1 and 2 is a complex
function analogous to the classical Poincaré series in hyperbolic geometry. We
define a complex function η(s) by

η(s) =
∑
A∈Γ

||Av||−s. (4.1)
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The Dirichlet series (4.1) converges to an analytic function in s ∈ C provided Re(s)
is sufficiently large. We shall denote its abscissa of convergence by p, which we
recall from the introduction, is strictly positive.

We can use Proposition 1(i) and Proposition 3 to rewrite η(s) in terms of the
transfer operator. More precisely,

η(s) = 1 +
∞∑

n=1

∑
σnx=0̇

x6=0̇

e−srn(x)

= 1 +
∞∑

n=1

Ln
−sr1(0̇),

(4.2)

where 1 denotes the constant function taking the value 1.
In order to obtain estimates on πv(T ) we require that η(s) has an extension to

a larger domain than its half-plane of convergence. This is provided by the next
proposition.

Proposition 6. The function η(s) has a meromorphic extension to some strip
Re(s) ≥ p− ε, with a simple pole at s = p.

Proof. Substituting (3.1) into (4.2) gives that

η(s) = 1 +
∑

λ

( ∞∑
n=1

Ln
−srPλ(s)1

)
(0̇) +

( ∞∑
n=1

Ln
−srQ(s)1

)
(0̇)

= 1 +
∑

λ

( ∞∑
n=0

Ln
−srPλ(s)L−sr1

)
(0̇) +

( ∞∑
n=1

Ln
−srQ(s)1

)
(0̇)

= 1 +
∑

λ

(
(I − L

(λ)
−sr)

−1Pλ(s)L−sr1
)

(0̇) +

( ∞∑
n=1

Ln
−srQ(s)1

)
(0̇)

(4.3)

where L(λ)
−sr is the restriction of L−sr to the finite dimensional generalized eigenspace

associated to λ.
The final term in (4.3) converges to an analytic function when ρe(L−Re(s)r) <

1, which will be satisfied provided Re(s) > p − ε, for some choice of ε > 0,
by Proposition 5. Moreover, the other term in in (4.3) is meromorphic since
(I − L−sr)−1 can be written in the form

∑
λ

(I − L
(λ)
−sr)

−1 =
∑

λ

Nλ(s)
det(I − Lλ

−sr)
, (4.4)

where Nλ(s) are analytic operator valued functions and, furthermore, it is well
known that det(I − L

(λ)
−sr) are analytic [5].

Finally, when s = p the operator L−pr has 1 as a simple maximal eigenvalue, by
Proposition 4. In particular, in a neighbourhood of p the expression (4.4) implies
that

η(s) =
φ(s)

1− eP (−sr)
,
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where φ(s) is analytic and φ(0) 6= 0. However,

lim
s→p

s− p

1− eP (−sr)
=

1∫
rdµp

,

which does not vanish since
∫
rdµp = (1/n)

∫
rndµp > 0. From this we deduce that

the pole is simple.

The next proposition gives us more information on the location of poles.

Proposition 7. The pole at s = p is the only pole on Re(s) = p

Proof. If the Poincaré series η(s) has a pole at s = p+ it then L−sr has unity as an
eigenvalue. It then follows by standard arguments based on convexity arguments
for finite sums there there exists M ∈ C0(X, 2πZ) and u ∈ C0(X,R) such that
tr(x) = M(x) + u(σx) − u(x) [7]. Let us assume for a contradiction that such an
identity holds.

For a free group there is a natural bijection between conjugacy classes and pe-
riodic orbits for the shift map σ : X → X. In particular, given a periodic orbit
{x, σx, . . . , σn−1x} we associate the unique conjugacy class 〈A〉 in Γ, where A ∈ Γ
corresponds to the concatenation of the edge labelling around the closed path in
the graph corresponding to x.

It is easy to see that limm→∞ ||Amv||1/m = ern(x). Moreover, by Lemma 4, this
limit is equal to λA, where λA is the maximal eigenvalue of A.

By assumption, etrn(x) = eMn(x) ∈ {e2πk : k ∈ Z}. However, it is clear that
{λt

A : A ∈ Γ} is not contained in such a multiplicative subgroup of R+ by virtue of
Hypothesis II.

5. Proof of Theorem 1

We now explain how to complete the proof of Theorem 1. Let

πv(T ) = #{A ∈ Γ : ||Av|| ≤ T}.
Observe that η(s) can be represented by the Stieltjes integral

η(s) =
∫ ∞

0

T−sdπv(T ). (5.1)

The analytical properties of η(s) described in Proposition 7 imply asymptotic esti-
mates on πv(T ) using the following classical result.

Proposition 8 (Ikehara-Wiener Tauberian Theorem) [2,p.54]. Suppose that
F (s) has the following properties.

(1) In the half-plane Re(s) > δ the function has the representation

F (s) =
∫ ∞

0

T−sdA(T )

where A(T ) is a positive, monotone increasing function and δ > 0.
(2) In the region Re(s) ≥ 1, s 6= 1, the function F has the representation

G(s) = F (s)− C

s− δ

where G(s) is continuous on the half-plane Re(s) ≥ δ and C > 0.
Then A(T ) ∼ CT δ, as T → +∞.

Applying Proposition 8 to the identity (5.1) we see that πv(T ) ∼ CT p, where C
is the residue of the simple pole for η(s) at s = p.
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6. Proof of Theorem 2

In order to prove Theorem 2 we shall modify the analysis in the preceding sec-
tions. We shall consider a Dirichlet series associated to certain cylinder sets, and
then employ an approximation argument. More precisely, let [i] = {x ∈ X̂ : xj =
ij , 0 ≤ j ≤ n − 1} denote a cylinder, where i = (i0, . . . , in−1). For Re(s) > p, we
may write

ηi(s) =
∞∑

n=0

∑
σnx=0̇

x6=0̇

χ[i](x)e−srn(x) =
∞∑

n=0

Ln
−srχ[i](0̇)

Proposition 9. The function ηi(s) is analytic in a neighbourhood of Re(s) ≥ p,
except for a simple pole at s = p with residue νp([i])hp(0̇)/

∫
rdµp. In particular,

lims↘p ηi(s)/η(s) = νp([i]).

Proof. By Proposition 4 there exists a neighbourhood of {s : Re(s) ≥ p} − {p}
in which we have the bound lim supn→+∞ ||Ln

−sr||1/n < 1. In particular, ηi(s)
converges uniformly to an analytic function.

For s in a neighbourhood of p, we can use Proposition 4 to write

Ln
−srw = enP (−sr)νs(w)hs + Un

s w,

where lim supn→+∞ ||Un
s ||1/n < 1. We then observe that

ηi(s) =
∞∑

n=0

Ln
−srχ[i](0̇)

=
∞∑

n=0

enP (−sr)νs(χ[i])hs(0̇) +
∞∑

n=0

Un
s χ[i](0̇)

=
νs(χ[i])hs(0̇)
1− eP (−sr)

+
∞∑

n=0

Un
s χ[i](0̇).

(6.1)

Clearly, the series in the last line converges to an analytic function. The first term
can be written

νs(χ[i])hs(0̇)
1− eP (−sr)

=
1

s− p

νp(χ[i])hp(0̇)∫
rdµp

+ ψ(s),

where ψ(s) is analytic in a neighbourhood of p.

We shall use this result, together with an approximation argument, to prove
the first part of Theorem 2. Given a string i we define an associated geometric
cylinder C(i) = Ai0 · · ·Ain−1C(Ain). For n ≥ 1, we define two functions Fn, Gn :⋃
|i|=n C(i) → R by Fn(x) = inf{f(y) : y ∈ C(i)} and Gn(x) = sup{f(y) : y ∈

C(i)} for x ∈ C(i).
Given ε > 0, we can choose n sufficiently large that ||Fn − Gn||∞ < ε. We

may then choose m0 sufficiently large such that whenever m ≥ m0 we have that
Ai0 · · ·Aimv ∈

⋃
|i|=n C(i). Clearly,∑

|A|≥m

Fn(Av)||Av||−s ≤
∑
|A|≥m

f(Av)||Av||−s ≤
∑
|A|≥m

Gn(Av)||Av||−s.
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Observe that

lim sup
s↘p

∑
A f(Av)||Av||−s

η(s)
= lim sup

s↘p

∑
|A|≥m f(Av)||Av||−s

η(s)

≤ lim sup
s↘p

∑
|A|≥mGn(Av)||Av||−s

η(s)

=
∫
Gnd(π∗νp),

where the last equality follows from Proposition 9 by writing Gn as a linear com-
bination of indicator functions of cylinders.

Similarly

lim inf
s↘p

∑
A f(Av)||Av||−s

η(s)
≥
∫
Fnd(π∗νp).

Also we see that |
∫
Fnd(π∗νp)−

∫
Gnd(π∗νp)| ≤ ||Fn−Gn||∞ ≤ ε and

∫
Fnd(π∗νp) ≤∫

fd(π∗νp) ≤
∫
Gnd(π∗νp). Since ε > 0 was arbitrary, we deduce that

lim
s↘δ

∑
A f(Av)||Av||−s

η(s)
=
∫
fdm,

where we set m = π∗νp.
To complete the proof of Theorem 2 we shall show how m behaves under the

action of A ∈ Γ.

Proposition 10.
d(B∗m)
dm

(x) = ||B−1x||−p

for all B ∈ Γ.

Proof. Give a Hölder continuous function f : RP d−1 → R and B ∈ Γ we can write∫
f(Bx)dm(x) = lim

s↘p

(∑
A∈Γ f(BAv)||Av||−s∑

A∈Γ ||Av||−s

)
= lim

s↘p

(∑
A′∈Γ f(A′v)||B−1A′v||−s∑

A′∈Γ ||A′v||−s

)

= lim
s↘p


∑

A′∈Γ f(A′v)
(
||B−1A′v||
||A′v||

)−s

||A′v||−s∑
A′∈Γ ||A′v||−s


=
∫
f(x)ρ(x)−pdm(x)

where ρ(x) = ||B−1x||/||x||. This completes the proof of the proposition.
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