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0. Introduction

In this paper will consider diffeomorphisms f : M → M of a compact surface
M , isotopic to the identity map, and study the growth of their periodic points.
An important approach to studying such properties of diffeomorphisms is via the
rotation set ρ(f) and the associated rotation vectors. For the particular case of
homeomorphisms of tori Franks has shown that if ρ(f) has non-empty interior then
every rational point in int(ρ(f)) is represented by a periodic orbit [6]. In a recent
paper, Sharp showed that (for diffeomorphisms) under this hypothesis the number
of periodic points with prescribed rational rotation vector has exponential growth
[18].

Subsequently, Hayakawa studied the analogous problem for compact surfaces of
genus at least 2 and obtained a partial generalization of Franks’ result [10]. In this
paper we shall improve on this result. Furthermore, we shall extend Sharp’s result
on the exponential growth of periodic points to this setting.

Before we state our main result we briefly describe the idea of the rotation set
associated to a point, and the rotation vector associated to a periodic point, for a
homeomorphsism f : M →M isotopic to the identity map on a compact surface M .
The rotation set ρx(f) ⊂ H1(M,R) associated to a point x ∈M can be heuristically
interpreted as describing the “asymptotic drift” in homology of the orbit of x. In
the special case that fn(x) = x is a periodic point then ρx(f) is a single vector. A
precise definition is given in the next section.

We now turn to the statement of our main result. In the study of diffeomorphisms
of surfaces of higher genus the natural generalisation is not necessarily true without
additional hypotheses (cf. Matsumoto’s example in section 1). We shall consider
maps satisfying the following condition, introduced by Hayakawa:

Condition (*). Let b denote the first Betti number of M (i.e. the dimension
of the first homology group). There exist b + 1 periodic points fni(xi) = xi,
i = 1, . . . , b+ 1, such that the convex hull co{ρx1(f), . . . , ρxb+1(f)} of the rotation
vectors ρx1(f), . . . , ρxb+1(f) has non-empty interior. There exists an additional
point z which is a fixed point under fm (for some m ≥ 0, where m is a multiple of
n1, . . . , nb+1) with non-zero index and such that ρz(f) ∈ int

(
co{ρx1(f), . . . , ρxb+1(f)}

)
.

For background on the indices of fixed points, we refer the reader to [4, VII.5].
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Our main result is the following.

Theorem 1. Let M be a compact surface (possibly with boundary) of genus at
least 2. Suppose that f : M → M is a diffeomorphism which is isotopic to
the identity map and which satisfies Condition (*). Then for any vector ξ ∈
int

(
co{ρx1(f), . . . , ρxb+1(f)}

)
∩H1(M,Q) there exists d ≥ 1 such that

lim inf
n→+∞

1
dn

log Card{fdn(x) = x : ρx(f) = ξ} > 0.

In particular, there exists a periodic point x with ρx(f) = ξ.

Remarks.
(i) In [10], Hayakawa showed that the existence of a periodic point x with

ρx(f) = ξ holds for ξ in a dense subset of int
(
co

(
ρx1(f), . . . , ρxb+1(f)

))
.

(ii) The proof actually yields the stronger statement that for ξ in a compact
subset of int

(
co{ρx1(f), . . . , ρxb+1(f)}

)
the quantity

lim inf
n→+∞

1
dn

log Card{fdn(x) = x : ρx(f) = ξ}

is uniformly bounded away from zero.

We briefly summarize the contents of the paper. In section one we recall the
definition and basic properties of rotation sets and rotation vectors for periodic
points.

Our method makes use of the Thurston Classification Theorem for isotopy classes
of surface homeomorphisms in an essential way. A similar approach has been been
employed by, for example, Handel [9], Llibre and MacKay [11]. In section two we
present the necessary ideas from Thurston’s work.

Section three presents work contained in Hayakawa’s paper [10]. We consider
an iterate fm : M → M so that the periodic points x1, . . . , xb+1 and z become
fixed. We “blow up” these fixed points to obtain a new surface (with boundary)
N and an associated homeomorphism F : N → N . We next consider the canonical
representative of the isotopy class of F guaranteed by Thurston’s theorem. We
denote this homeomorphism G : N → N and show that it is pseudo-Anosov. (We
shall also denote by g : M → M the map obtained from G : N → N by collapsing
the boundary components of N back to points.)

In section four we use Markov partitions and symbolic dynamics for the pseudo-
Anosov homeomorphsism to give an estimate from below on the number of periodic
points with a given rotation vector. A key ingredient is an earlier result of the
authors estimating periodic points for a subshift of finite type [16].

1. Rotation Vectors

In this section we shall give a precise definition of the set of rotation vectors and
their properties. The treatment we give is taken from [15].
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Let M be a compact surface (possibly with boundary) of genus at least 2 and let
f : M → M be a homeomorphism isotopic to the identity map. We introduce the
associated mapping torus Mf = M × [0, 1]/ ∼ where we identify (x, 1) ∼ (f(x), 0).
Since f is isotopic to the identity, Mf is homeomorphic to M × S1. We define an
associated flow ft : Mf →Mf by ft(x, u) = (x, t+u), subject to the identifications.

We define the integer Bruschlinsky cohomology H1(M,Z) to be the isotopy
classes of continuous maps k : M → K, where K denotes the unit circle. We
can then introduce the real Bruschlinsky cohomology H1(M,R) by H1(M,R) =
H1(M,R)⊗Z R. (This is well known to be isomorphic to the usual simplicial coho-
mology for M [2], [17].)

Given a point v ∈ M and T > 0 we can define a linear functional Λv,T :
C0(Mf ,K) → R by

Λv,T (k) =
1
T

∫ T

0

d

dt
arg(k(ftv))dt

when k ∈ C0(Mf ,K) is continuously differentible along the orbits (and we write
k(v) = eitarg(k(v))) and this definition extends to all functions in C0(Mf ,K) by
uniform continuity.

The following result is due to Schwartzmann [17].

Lemma 1. For any v ∈ Mf the set of functionals Λv,T is equicontinuous in the
weak star topology. Moreover, the limit points are constant on isotopy classes and
so correspond to linear functionals on H1(Mf ,Z), i.e., elements of H1(Mf ,R).

Since M has genus at least 2 then there is a canonical identification H1(Mf ,R) =
H1(M,R) ⊕ R. This is because, by a result of Hamstrom [8] the identification
(via homeomorphism) of Mf with M × S1 is unique up to homotopy. Under this
identification, all of the element of H1(Mf ,R) which occur as limit points are of
the form Λv = (Λ(1)

v ,Λ(2)
v ), where Λ(1)

v ∈ H1(M,R) and Λ(2)
v ∈ R. Moreover, by

construction we always have that Λ(2)
v = 1. We also have that any element v ∈Mf

is of the form v = (x, u) where x ∈ M and u ∈ [0, 1]. The functional Λ(1)
v depends

only on x and, for clarity, we shall denote it by Λx. Let Fx denote the set of all
functionals Λx which arise from functionals Λ(x,u),T in this way.

Definition. We define the set of rotation vectors ρx(f) ⊂ H1(M,R) associated to a
point x ∈ M to be the set of all functionals Λx ∈ Fx, where Λx is interpreted as
an element of homology. If ρx(f) has a single element then we call this element the
rotation vector and also denote it by ρx(f).

The following is an easy consequence of the definitions.

Lemma 2.

(i) If n ≥ 1 then ρx(fn) = nρx(f); and
(ii) If fn(x) = x is a periodic point then ρx(f) is a single rational vector. In

fact, if n is the least period of x then

ρx(f) =
1
n

[{ftx : 0 ≤ t ≤ n}]1

where [γ]1 is the first component of [γ] ∈ H1(Mf ,Z) = H1(M,Z)⊕ Z
3



The construction can be carried out in the case where M is equal to the two
dimensional torus T2. However, ρx(f) is then only defined up to translation by an
integer vector. The more usual definition in this case is to choose a lift f̃ of f to
the Universal Cover R2 and to set ρx(f) to be the set of limit points of (f̃nx̃− x̃)/n
(where x̃ is any lift of x to R2). The ambiguity in ρx(f) is due to the freedom of
choice of lift.

In the context of tori it is perhaps more natural to consider the (global) rotation
set ρ(f) for f , introduced by Misiurewicz and Ziemian [14]. This is defined to be
the set of limit points of the sequences

f̃nixi − xi

ni
, xi ∈ R2, ni → +∞

and is convex and compact. For surfaces of higher genus one might define a global
rotation set by ρ(f) = ∪x∈Mρx(f), but it is far from clear that it has any par-
ticularly desirable properties (cf.[15]). For this reason, we content ourselves with
working with the rotation vectors.

Remark. For surfaces of arbitrary genus there is an equivalent definition of rota-
tion vectors due to Franks [7]. Fix a base point x0 and associate to every point x
a measurable family of curves γx from x0 to x. Since f is isotopic to the identity
we can choose a continuous family of homeomorphisms ht : M → M (0 ≤ t ≤ 1)
with h0(x) = x and h1(x) = h(x) and write αx(t) = ht(x). One then associates
to x the closed curve based at x0 given by γ−1

f(x) ◦ αx ◦ γx and denote its homol-
ogy class by Rx(f) = [γ−1

f(x) ◦ αx ◦ γx]. We then let ρx(f) be the limit points of
1
n

(
Rx(f) +Rfx(f) + . . .+Rfn−1x(f)

)
.

Example. The following simple example due to Matsumoto [13] shows that we may
not weaken the hypotheses of Theorem 1 by removing the condition requiring the
existence of an additional periodic point z with non-zero index and with ρz(f) ∈
int

(
co{ρx1(f), . . . , ρxb+1(f)}

)
. Let M be a compact surface of genus 2 and let α

be a simple closed curve which cuts M into two copies of a punctured torus M1

and M2. On each Mi, choose simple closed curves γi and δi such that γ1, γ2, δ1, δ2
generate H1(M,Z) and such that each pair γi, δi has a unique poin of intersection
xi. Let Ci, Di be annular neighbourhoods of γi, δi, respectively, chosen so that they
do not intersect α. Define diffeomorphisms φi : M → M to be the identity map
on M − Ci and on Ci to be the isotopy linking the identity on ∂Ci to a rotation
through 2π on γi. Similarly, define ψi : M → M with Di replacing Ci. Finally,
define a diffeomorphism f : M →M by f = φ1 ◦ φ2 ◦ ψ1 ◦ ψ2.

It is easy to see that f has fixed points with rotation vectors (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1) ∈ H1(M,R) ∼= R4. Furthermore, x1 and x2 are fixed points
with rotation vectors (1, 1, 0, 0), (0, 0, 1, 1), respectively. In particular, it is possible
to find five periodic points such that the convex hull of their rotation vectors has
non-empty interior. On the other hand, every periodic orbit lies wholly in M1 or
in M2 and so the associated rotation vectors must lie in the union of codimension
two subspaces H1(M1,R) ∪ H1(M2,R). Thus, the conclusion of Theorem 1 does
not hold.
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2. Isotopy classes of surface homeomorphims

One of the most important ingredients in our proof is Thurston’s theorem on the
classification of surface homeomorphisms up to isotopy. We begin by recalling the
statement of this result. There are two special types of homeomorphism of surfaces
which serve as building blocks for the theory.

A homeomorphism F : N → N on a compact surface N is called periodic if there
exists n ≥ 1 such that Fn = id. A homeomorphism F : N → N is called pseudo
Anosov if there exists two measurable foliations F+ and F− with one dimensional
leaves (possibly with prongs) with transverse measures m+ and m− and a constant
λ > 1 such that F∗m+ = λm+ and F∗m− = λ−1m− (cf. [3], [5]). We shall use the
following important result of Thurston [19].

Proposition 1 (Thurston’s Classification Theorem). Let N be a compact
connected oriented surface (possibly with boundary) with Euler characterisitic χ(N) <
0. Any surface homeomorphism F : N → N can be isotopied to a unique homeo-
morphism G : N → N such that exactly one of the following holds:

(i) G : N → N is periodic;
(ii) G : N → N is pseudo-Anosov;
(iii) G : N → N is reducible: G leaves invariant a finite family of simple closed

curves {γ1, . . . , γn} such that no pair of curves are homotopic and no curve
is homotopic to a point or to a boundary component of N . Each γi has an
open annular neighbourhood Ui (which are pairwise disjoint) such that G
leaves U = ∪n

i=1Ui invariant. For each component Nj of N − U there is
some (least) nj > 0 such that Gnj (Nj) = Nj and Gnj |Nj is either of finite
order or pseudo-Anosov. Each Ui is left invariant by some power of G and
the induced mapping on Ui is a generalized twist.

We call G : N → N the Thurston Canonical Form of F : N → N and if G is
reducible we call Gj = Gnj : Nj → Nj the components of the canonical form.

Pseudo-Anosov homeomorphisms minimize the topological entropy within their
isotopy class.

Proposition 2. Suppose that G : N → N is pseudo-Anosov and that F : N → N
is isotopic to G. Then h(F ) ≥ h(G) = log λ > 0, where λ > 1 is the constant
occuring in the definition of pseudo-Anosov homeomorphisms.

Remark. The value h(G) can also be characterized as the rate of growth of the
induced action of G (or F ) on π1N .

Another important property of pseudo-Anosov homeomorpisms is that their pe-
riodic points persist under isotopy in a precise sense. Let Ñ denote the Universal
Cover cover of N and let G̃ : Ñ → Ñ be a lift of G : N → N . Suppose that
F : N → N is isotopic to G. Then there is a unique lift of F to Ñ , determined by
the isotopy from F to G, which is isotopic to G̃. If x and y are fixed points of Gn

and Fn, respectively, then (Gn, x) and (Fn, y) are said to be Nielsen equivalent if
there are lifts x̃, ỹ of x, y and a deck translation γ ∈ π1N such that G̃nx̃ = γx̃ and
F̃nỹ = γỹ.
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Proposition 3 (Thurston). Suppose that G : N → N is pseudo-Anosov and that
F : N → N is isotopic to G. If Gn(x) = x then there exists y ∈ N with Fn(y) = y
such that (Gn, x) is Nielsen equivlent to (Fn, y).

A feature of pseudo-Anosov homeomorphisms that will be crucial to our analysis
is that they admit Markov partitions and hence can be modelled by subshifts of
finite type. We recall the definitions. Let G : N → N be a pseudo-Anosov map
with associated foliations F+ and F−. A closed set R ⊂ M is called a rectangle
if for any pair of points x, y ∈ R the leaf from F+ containing x and the leaf
from F− containing y intersect in a single point. A rectangles is called proper if
R = clos(intR)). A Markov partition for G : N → N consists of a finite family of
rectangles {Ri}k

i=1 in N such that

(a) int(Ri) ∩ int(Rj) 6= ∅ for i 6= j;
(b) N = ∪N

i=1Ri; and
(c) If x = (xn)+∞n=−∞ ∈

∏
n∈Z{1, . . . , k} satisfies ∩∞n=0G

−nint(Rxn
) 6= ∅ and

∩0
n=−∞G

−nint(Rxn
) 6= ∅ then ∩∞n=−∞G

−nint(Rxn
) 6= ∅ and consists of a

single point denoted π(x).

Proposition 4 ([3], [5]). A pseudo-Anosov homeomorphism admits Markov par-
titions of arbitrarily small size.

Remark. The construction of the rectangles in the Markov partition is such that
the prongs for the foliations occur in the boundaries.

Define a k × k zero-one matrix A by

A(i, j) =
{

1 if G(intRi) ∩ intRj 6= ∅
0 otherwise.

We may suppose that A is aperiodic, i.e., that there exists N ≥ 1 such that all of
the entries of AN are positive. If we denote

XA = {x = (xn)+∞n=−∞ ∈
∞∏

n=−∞
{1, . . . , k} : A(xn, xn+1) = 1,∀n ∈ Z}

then the subshift of finite type σ : XA → XA is defined by (σx)n = xn+1. Property
(c) above can be used to define a map π : XA → N .

Proposition 5. If G : N → N is a pseudo-Anosov homeomorphism then π : XA →
N is continuous, surjective and satisfies G ◦ π = π ◦ σ. Moreover,

(i) h(G) = h(σ)
(ii) π is a bijection on periodic points, with at most finitely many exceptions

(lying on the boundaries of the rectangles).
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3. Application of Thurston’s Theory

In this section we return to the consideration of a diffeomorphism f : M → M
satisfying Condition (*). We shall obtain a new surface N by “blowing up” the
points x1, . . . , xb+1 and a homeomorphism F : N → N which is identical to fm

away from the blown up points, for some m > 0. We shall apply the Thurston
Classification Theorem to F and show that its Thurston Canonical Form is pseudo-
Anosov.

Recall that we can choose m > 0 so that z is a fixed point of fm with non-
zero index, where m is a mutiple of n1, . . . , nb+1. Thus the points x1, . . . , xb+1

are all fixed points of fm. A new surface N is defined by removing x1, . . . , xb+1

and replacing them with (small) boundary circles C1. . . . , Cb+1. A homeomorphism
F : N → N is defined to be fm on N − ∪b+1

i=1Ci and by the projective action of
the derivative of fm on the boundary circles Ci. (This is the only point at which
we use that f is a diffeomorphism.) Let τ : N →M denote the map from N to M
which collapses the boundary circles Ci to points.

Lemma 3. The map τ : N → M satisfies τ ◦ F = fm ◦ τ and is a bijection from
N − ∪b+1

i=1Ci to M − {x1, . . . , xb+1} such that
(i) τ semi-conjugates fm and h;
(ii) collapses each boundary component Ci to the point xi (i = 0, . . . , b+ 1);
(iii) is a bijection except on the boundary components Ci (i = 1, . . . , b+ 1).

We want to apply Proposition 2 to the map F : N → N . The following result
showing that the Thurston canonical form is pseudo-Anosov is based on ideas from
[10] and [15].

Proposition 6 (Hayakawa). If f : M → M satisfies Condition (*) then the
Thurston canonical form G : N → N for F : N → N is pseudo-Anosov.

Proof. Observe that if f satisfies Condition (*) then the same is true of fm : M →
M . We begin by showing that the canonical form G : N → N for F : N → N has
a single component. Assume for a contradiction that the canonical form has more
than one component and let γ be one of the reducing curves.

We first remark that τ(γ) is not contractible as a curve on the original surface
M . As observed in [15, p.890] if this were not the case and τ(γ) were contractible on
M then it must contain at least two of the fixed points for fm from {x1, . . . , xb+1},
since one of the restraints on a reducing curve γ is that is should not be homotopic
to a boundary curve on N . However, if τ(γ) contains two fixed points then this
would imply that their rotation vectors were the same. To see this we may assume
(taking an iterative if necessary) that τ(γ) is fm-invariant. This implies that the
associated periodic orbits for ft in Mf are homotopic. In particular, they must
have the same rotation vector. This gives a contradiction to Condition (*).

We next claim that τ(γ) must be separating curve, i.e., M − τ(γ) has two con-
nected components M1,M2, say. As in [15, 890-91] we observe that if we were to
assume for a contraction that τ(γ) were not separating (and we already know it
cannot be contractible in M , by the argument above) then we can assume without
loss of generality that it is a a meridian curve of a handle of M . (Otherwise, by a
suitable homeomorphism of the surface we can map τ(γ) to a meridian curve of a
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handle of M . This simply induces a change in the basis in homology.) The isotopy
of F : N → N to G : N → N induces an isotopy of fm : M → M to g : M → M
relative to the fixed poits {x1, . . . , xb+1}, say, and where, in particular, g ◦ τ = F .
Moreover, taking an iterate if necessary, we may assume that g preserves the curve
τ(γ). In particular, we can deduce that the rotation set ρ(g) for g : M → M is
constrained to lie in a co-dimension one hyperplane (not containing the other ho-
mology basis element corresponding to the handle ). However, the periodic points
x1, . . . , xb+1 for f are fixed points for g and ρxi

(g) = mρxi
(f). In particular, since

f satisfies Condition (*) the same is true of g which gives a contradiction.
Having now established that τ(γ) is a separating curve we may write

ρ(g) = ρ(g|M1) ∪ ρ(g|M2)

In particular, for any point x ∈ Mi (i = 1, 2) the orbits gn(x), n ≥ 1 are con-
strained to that component Mi and never enter the complementary component. If
we assume, without loss of generality that M has a homology basis of closed curves
disjoint from γ, then it is easy to see that H1(M,R) = H1(M1,R) ⊕ H1(M1,R)
with ρ(g|Mi) ⊂ H1(Mi,R) (i = 1, 2).

To complete the proof, we consider the additional periodic point z for f . Since
this has non-zero index as a fixed point of fm, there is a corresponding Nielsen
equivalent fixed point y for g : M → M [1]. Clearly, the rotation vector will
satisfy ρy(g) = ρz(g) = mρz(f). Since ρz(f) ∈ int (co({ρx1(f)), . . . , ρxb+1(f))})),
it follows that

ρy(g) ∈ int(co(mρx1(f), . . . ,mρxb+1(f)))

= int(co(ρx1(g), . . . , ρxb+1(g))),

contradicting the fact that ρy(g) ∈ H1(M1,R) ∪H1(M2,R).

Now that we have establised that the Thurston Canonical Form of F is pseudo-
Anosov, we may use Proposition 3 to obtain a lower bound which turns the counting
problem of Theorem 1 into one concerning periodic points of pseudo-Anosov maps.
More specifically, given a periodic point of G then there exists a Nielsen equivalent
periodic point x of F . Projecting to M , these give periodic points τy for g and τx
for fm, respectively, satisfying

ρτy(g) = ρτx(fm) = mρτx(f).

Thus we obtain the lower bound

Card{gny = y : ρτy(g) = η} ≤ Card{fnmx = x : ρτx(f) = ξ} (3.1)

where η = mξ.

4. Estimates on periodic points

In this section we shall use a method applied by Sharp in [18]. We shall use
a Markov partition and symbolic dynamics to reduce this to a symbolic problem.
We shall then apply a result of the authors on periodic orbits of Zq extensions of
subshifts of finite type [16].
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By Propostion 4 the Thurston Canonical Form G : N → N of F : N → N
is pseudo-Anosov. We let {Ri}k

i=1 denote a Markov partition for G and let XA

denote the associated subshift of finite type. We need to encode information about
rotation vectors in terms of a function on XA. To do this, we first fix a base point
y ∈ M and, for i = 1, . . . , k, choose curves ci joining y to τ(Ri). For pairs (i, j)
with A(i, j) = 1, we also choose a point yij ∈ τ(Ri) which is mapped to τ(Rj) by g,
and use the fact that g is homotopic to the identity map to obtain a curve cij from
yij to g(yij). If necessary, adjust the curves slightly so that the endpoints match
up.

Whenever A(i, j) = 1 we can associate the loop Ci,j = c−1
i ◦ cij ◦ cj ⊂M based

at y. This defines an element of homology [Ci,j ] ∈ H1(M,R). Providing that the
rectangles in the Markov Partition are all chosen sufficiently small, this can be done
in a well-defined way.

By Proposition 5 we can deduce that if σnx = x is a periodic point for σ then

ρτπx(g) =
1
n

(
[Cx0,x1 ] + [Cx1,x2 ] + . . .+ [Cxn−1,x0 ]

)
∈ H1(M,R)

(and mρτπx(f) = ρτπx(g)).
We can define a function r : XA → H1(M,R) by r(x) = [Cx0,x1 ]. If σnx = x

then ρπx(g) = 1
nr

n(x), where rn(x) = r(x) + r(σx) + . . . + r(σn−1x). Thus for
ξ ∈ int

(
co{ρx1(f))), . . . , ρxb+1(f)}

)
∩ H1(M,Q), we have, by Proposition 5 (ii),

that for all sufficiently large n our counting function Card{gny = y : ρy(f) = η}
satisfies

Card{gny = y : ρy(f) = η} = Card{σnx = x :
1
n
rn(x) = η}, (4.1)

where η = mξ.
We want to apply the results from [16]. To conform with the notation of that

paper, we introduce a function ψ := qr− p, where η = p/q (with p = (p1, . . . , pb) ∈
Zb, q ∈ N and where p1, . . . , pb, q are coprime) and recall the following conditions.

(A1) The group Γ generated by the set {ψn(x) : σnx = x, n ≥ 1} is a finite index
subgroup of Zb.

(A2) There exists a fully supported σ-invariant probability measure µ on XA

with
∫
ψdµ = 0 (or, equivalently,

∫
rdµ = η).

Lemma 4. Conditions (A1) and (A2) hold.

Proof. Clearly, (A1) is equivalent to the statement that the set {rn(x) : σnx =
x, n ≥ 1} generates a finite index subgroup of Zb. By Condition (*) the fam-
ily {ρx1(g), . . . , ρxb+1(g)} = {mρx1(f), . . . ,mρxb+1(f)} must contain a basis for
H1(M,R) = Rb. The periodic points x1, . . . , xb+1 correspond to the boundary
components of N . Each boundary component contains a periodic point for the
pseudo-Anosiv map G : N → N (as can be seen by considering the foliations [5])
and consequently gives rise to a periodic point for σ : XA → XA. Moreover, if
σkizi = zi is the periodic point associted to the vector ρxi

(g) (i = 1, . . . , b+1) then
ρxi(g) = 1

ki
rki(zi). Condition (A1) now follows directly.
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To establish condition (A2) we shall use the weight-per-symbol set WPSr intro-
duced in [12]. This is defined to be

WPSr =
{

1
n
rn(z) : σnz = z, n ≥ 1

}
and, by our observations above, ρxi

(g) ∈ WPSr. If η ∈ int
(
co{ρx1(g), . . . , ρxb+1(g)}

)
then η ∈ int (coWPSr) It follows from [12] that there exists a (fully supported)
Markov measure µ such that

∫
rdµ = η.

The validity of conditions (A1) and (A2) established in the above Lemma is
important because it allows us to apply the following result of the authors. (We
shall use the notation that given two functions A,B : R → R we write A(t) ∼ B(t)
if limt→+∞A(t)/B(t).)

Proposition 7 ([16]). If σ : XA → XA and r : XA → Z satisfy (A1) and (A2)
then there exists d ≥ 1, 0 < δ ≤ h(σ) and C > 0 such that

Card
{
x : σdnx = x, ψdn(x) = 0

}
∼ Ceδdn

nb/2
,

for n ≥ 0. Furthermore, the set
{
x : σkx = x, ψk(x) = 0

}
= ∅ if d does not divide

k.

Corollary 7.1. Then the exists d ≥ 1 and 0 < δ ≤ h(σ) such that

lim inf
n→+∞

1
dn

log Card{σdn(x) = x : ψdn(x) = 0} = δ.

In view of the inequalities (3.1) and (4.1) we have now completed the proof of
Theorem 1.

Remark. From [16], the growth rate δ = δ(η) may be characterized by

δ(η) = sup
{
hµ(σ) : µ is a σ-invariant probability measure with

∫
rdµ = η

}
where hµ(σ) denotes the measure theoretic entropy. If ξ varies over a compact
subset ∆ ⊂ int

(
co(ρx1(f), . . . , ρxb+1(f))

)
then η varies over the compact set m∆ ⊂

int(WPSr). To achieve a uniform positive lower bound for δ(η) on m∆ it suffices
to observe that this quantity is bounded below by a similar expression where the
supremum is taken over the subset of Markov measures. This reduces the problem to
a finite dimensional situation where the dependence of the entropy on the measure
leads to the result.
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