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0. Introduction

Poincaré series have always played a central rôle in the theory of automorphic functions
and harmonic analysis on manifolds of constant negative curvature. The trace formulae
approach was introduced by Selberg [20] in 1956 and has become the key to their analysis.
However, with the advent of a more geometrical viewpoint (through the work of Patterson
[15, 16], Sullivan [21, 22] and others) it becomes natural to broaden the scope to Poincaré
series for manifolds of variable negative curvature. The purpose of this note is to describe
an ergodic theoretic method for analyzing Poincaré series in this greater generality.

Let M be a compact Riemannian manifold (possibly with totally geodesic boundary)
with strictly negative variable curvatures. Let π1(M) denote its fundamental group. For
any point p ∈ M we can associate to each homotopy class γ ∈ π1(M)−{e} the length l(γ)
of the shortest geodesic arc in γ from p to itself. We define the associated Poincaré series
by

η(s) =
∑

γ∈π1(M)−{e}

e−sl(γ)

for a complex variable s ∈ C.
This function converges for Re(s) sufficiently large, and we denote its abscissa of con-

vergence by δ. (Since M has negative curvature it is clear that δ > 0.) Our main result
on Poincaré series is the following.

Theorem. The function η(s) has an extension as a meromorphic function to the half-
plane Re(s) > δ − ε, for some ε > 0.

A second application of our ideas can be described as follows. In [18] we presented certain
comparison theorems for compact manifolds of constant negative curvature, inspired by
the results of Milnor. In particular, we showed that certain averages of the ratio of the
geometric length to word length converged to a constant. In this note we develop analogues
of these results in the broader context of compact manifolds of variable negative curvature.
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Although there exist analogues of the Selberg trace formulae for manifolds of variable
negative curvature (notably by Duistermaat-Guillemin [7, 10] and Colin de Verdiere [5])
they are not appropriate for describing the meromorphic domain of the Poincaré series.
The approach we shall develop rests on two main ingredients. The first is the use of
geometric group theory to associate to the fundamental group of the manifold a (labelled)
directed graph describing the group. This allows us to construct a suitable subshift of
finite type in this case where the use of Markov partitions for the associated geodesic flow
would not be adequate. The second is the thermodynamical theory of subshifts of finite
type, in particular, the theory of the Ruelle transfer operator.

Some elements of this analysis we have already developed in the context of manifolds
of constant negative curvature in [18], to which we shall refer as appropriate.

Notation. For two functions a, b : R+ → R with b(t) > 0 we write a(t) ∼ b(t) if limt→+∞
a(t)
b(t)

= 1, a(t) = O(b(t)) if lim supt→+∞
|a(t)|
b(t) < +∞ and a(t) = o(b(t)) if lim supt→+∞

|a(t)|
b(t) = 0.

1. Some Preliminaries

Let Γ be an (infinite) finitely presented group with identity element e ∈ Γ. Let S ⊂ Γ be
a finite symmetric set of generators for Γ (i.e. S generates Γ and if γ ∈ S then γ−1 ∈ S).
We can define the word length of an element γ ∈ Γ to be the least number of elements from
S whose concatenation equals γ. We denote this value by |γ|.

We let ( , ) denote the Lyndon-Chiswell-Gromov product in Γ (with respect to S)
defined by (γ, γ′) := 1

2

(
|γ|+ |γ′| − |γ−1γ′|

)
[4], [11]. Gromov introduced an analogous

definition adapted to (hyperbolic) metric spaces X [9]. For a given base point x ∈ X this
is defined by (y, w)x := (d(x, y) + d(x,w)− d(y, w)) /2. Given l > 0, there exists a > 0
depending only on X and l such that for any point z ∈ X with d(x, z) ≤ l we have the
estimate

d([xz], [yw])− a ≤ (y, w)x ≤ d([xz], [yw]) + a, (1.1)

where [xz] and [yw] denote the geodesic arcs joining x to z and y to w, respectively. (This
follows, after an elementary calculation, from Lemme 17 in Chapitre 2 of [9].)

If Γ = π1(M) is the fundamental group of a compact manifold M (possibly with totally
geodesic boundary) with universal cover X then there exists constants C1, C2,K > 0 such
that for all γ, γ′ ∈ Γ we have that

C1(γx, γ′x)x −K ≤ (γ, γ′) ≤ C2(γx, γ′x)x + K. (1.2)

An important ingredient in our analysis will be the following lemma for the universal
cover X of the manifold M .

Lemma 1. There exists β > 0, K > 0 and C > 0 with the following property. Given four
points x, y, w, z ∈ X with minimum distance 2r > C between the geodesic arcs [xz] and
[yw] then

|d(x, w) + d(y, z)− d(x, y)− d(z, w)| ≤ Ke−βr
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Proof. It suffices to show that under the hypotheses of the lemma we can choose points q1 ∈
[xy], q2 ∈ [yz], q3 ∈ [xw] and q4 ∈ [zw], p ∈ X and β, A > 0 such that supi=1,... ,4 d(p, qi) ≤
Ae−βr. This is enough to prove the result since we can write

|d(x, w) + d(y, z)− d(x, y)− d(z, w)|
= |(d(x, q3) + d(q3, w)) + (d(y, q2) + d(q2, z))− (d(x, q1) + d(q1, y))− (d(z, q4) + d(q4, w))|
≤ |d(x, q3)− d(x, q1)|+ |d(q3, w)− d(q4, w)|+ |d(z, q2)− d(z, q4)|+ |d(q2, y)− d(q1, y)|
≤ d(q3, q1) + d(q3, q4) + d(q2, q4) + d(q2, q1)

≤ 4 sup
i 6=j

d(qi, qj)

≤ 8 sup
i=1,... ,4

d(p, qi)

≤ 8Ae−βr

where the first equality is a consequence of the fact that the points qi (i = 1, . . . , 4) lie on
appropriate geodesic arcs. The conclusion of the lemma would then follow with K = 8A.

To proceed we make two simple observations in the context of trigonometry on manifolds
of negative curvature which will be useful in the sequel.

(i) There exists C0 > 0 such that for any geodesic triangle 4(abc) with vertices a, b, c
satisfying ∠abc ≥ π

2 and d(a, b) ≥ C0 then
(a) d(a, c) ≥ d(a, b)
(b) ∠bac ≤ π

4 .
(ii) There exists β > 0 such that for any α > 0 we can find a constant A > 0 with the

following property. For any geodesic triangle 4(def) with ∠def ≥ α and points
p ∈ [de] and q ∈ [df ] with S := d(d, p) = d(d, q) ≤ min(d(d, e), d(d, f)) we have
that d(p, q) ≤ A

2 e−βR, where R = d(d, e)− S.

(Each of these observations are elementary for constant curvature spaces using hyperbolic
sine and cosine formulae and carry over to variable curvature using, for example, Théorèmes
9 and 12 from Chapitre 3 of [9].)

We can join [xz] and [yw] by a geodesic arc [uv] of shortest length (with endpoints
u ∈ [xz], v ∈ [yw]). Let p ∈ [uv] be the midpoint of the geodesic arc [uv] then by definition
d(u, p) = r.

We shall omit the simpler “degenerate” cases by assuming that neither u nor v is an
endpoint of the arcs [zx] or [wy], respectively. The proof in the general case can be easily
modified to deal with these cases.

We begin by observing that, since ∠uvy = π
2 , we can bound the angle ∠vuy ≤ π

2 by
considering 4(uvy). By applying observation (ii) with 4(vuy) = 4(edf) and r = R we
see that the point q ∈ [uy] with d(u, q) = r satisfies d(p, q) ≤ A

2 e−βr.
We next introduce the value s by s + r = d(u, y) i.e. s = d(q, y). Since ∠(uvy) = π

2 we
can apply observation (i) with 4(abc) = 4(uvy) to see that:

(a) r + s = d(u, y) ≥ 2r i.e. s ≥ r; and
(b) ∠(vuy) ≤ π

4 .
From (b) we get that ∠(xuy) ≥ ∠(xuv)− ∠(vuy) ≥ π

2 −
π
4 = π

4 .
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To complete the construction of q1 ∈ [xy] we need the following observation.
(iii) There exists C1 > 0 such that for all geodesic triangles 4(ghk) with ∠ghk = π

2
and ∠hgk ≥ π

4 the following holds. Let d(g, k) = R+S (R,S ≥ 0) and d(h, k) = T
then if R ≥ C1 we have that T ≥ S.

The constant C in the statement of the Lemma will be taken to be the maximum of C0

and C1.
We let h denote the point on [ux] (or its extension) such that the distance d(h, y) is

minimized. Note that the geodesic [hy] meets [ux] (or its extension) at right angles. We
now apply (iii) to the right angled triangle 4(uhy) to conclude that d(h, y) ≥ s and so
d(x, y) ≥ s.

We now define q1 ∈ [xy] to be the point with d(q1, y) = s. Applying (ii) to 4(yux) we
obtain d(q, q1) ≤ A

2 e−βr.
Finally, by the triangle inequality we see that

d(p, q1) ≤ d(p, q) + d(q, q1) ≤
A

2
e−βr +

A

2
e−βr = Ae−βr.

We can repeat the above argument (from after the construction of the point p) three
more times with the pair (x, y) replaced by each of the pairs (y, z), (x,w) and (z, w) to find
corresponding points q2, q3, q4 with d(p, q1), d(p, q2), d(p, q3) ≤ Ae−βr. This completes the
proof.

2. Strongly Markov Groups and Thermodynamic Formalism

In this section we show how to describe π1(M) in terms of a subshift of finite type.
We introduce a (Hölder continuous) function defined on this subshift which carries the
geometric information required to relate the Poincaré series to this construction.

Definition. We call Γ strongly Markov if for any finite symmetric set of generators S there
exists a finite directed graph G with:

(i) a vertex set V ;
(ii) an edge set E ⊂ V × V ;
(iii) a distinguished vertex ∗ ∈ V such that no edge in E terminates at ∗;
(iv) a labelling of the edges λ : E → S,

such that there is a bijection between:
(a) finite paths ω in the graph starting with the distinguished state ∗; and
(b) elements γ ∈ Γ

which associates to the path ω along concurrent edges (∗, v1), (v1, v2), . . . , (vn−1, vn) the
group element γ = λ(∗, v1)λ(v1, v2) . . . λ(vn−1, vn) given by group multiplication of the
labelling of the associated edges. Moreover, the word length of γ exactly equals the number
of edges in the path (i.e. |γ| = n). (We always assume that the graph G is minimal in the
sense that no subgraph (with the same labelling) satisfies (a) and (b).)
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Proposition 2 (Cannon). For a compact manifold (possibly with totally geodesic bound-
ary) with strictly negative sectional curvatures the fundamental group π1(M) is strongly
Markov.

Given the vertex set V and the edge set E for the directed graph G we want to add
an extra state 0 to form a larger vertex set V ′ = V ∪ {0}. We form a new edge set E′

by adding to E an edge from i to 0 for each i ∈ V − {∗} and an edge from 0 to itself.
We adopt the convention that λ(i, 0) = e (the identity element in S) ∀i ∈ V ′ − {∗}. We
associate a square matrix A with zero-one entries whose columns and rows are indexed by
V ′ and whose entries are determined by:

(1) A(i, j) = 1 if (i, j) ∈ E′;
(2) A(i, j) = 0 otherwise.

It is important to note that the matrix A is not irreducible and, moreover, the subma-
trix derived from A by deleting the entries coming from ∗ and 0 will, in general, not be
irreducible.

Let
XA = {x = (xn) ∈

∏
n≥0

V ′ : A(xn, xn+1) = 1 ∀n ≥ 0}

and let σ : XA → XA be the shift defined by (σx)n = xn+1. Note that there is a natural
bijection between π1(M) and those elements x ∈ XA which end in an infinite string of
zeros, i.e., those for which there exists n0 ≥ 0 such that xn = 0 for all n ≥ n0.

We define a metric on XA by

d(x, y) =
+∞∑
n=0

1− δxn,yn

2n

where δij is the standard Kronecker delta. This makes XA into a compact metric space
and σ : XA → XA into a continuous transformation.

Proposition 3. There exists a Hölder continuous function r : XA → R such that for
x = (∗, x1, x2, . . . , xn, 0, 0, . . . ) we have that

rn(x) := r(x) + r(σx) + . . . + r(σn−1x) = l(γ), (2.1)

where γ ∈ π1(M) is given by γ = λ(∗, x1)λ(x1, x2) . . . λ(xn−1, xn).

Proof. We define r on the space X0
A of sequences ending in an infinite string of zeros by

r(x0, x1, x2, . . . , xn, 0, 0, . . . ) = l (λ(x0, x1)λ(x1, x2) . . . λ(xn−1, xn))

− l (λ(x1, x2) . . . λ(xn−1, xn)) .

With this definition it is clear that r satisfies (2.1). We shall show that r : X0
A → R is

Hölder continuous. Since X0
A is a dense subset of X0

A, it will then follow that r has a
unique Hölder continuous extension r : XA → R.

5



In order to show that r : X0
A → R is Hölder continuous, consider sequences x =

(x0, x1, . . . , xn, 0, 0, . . . ), y = (y0, y1, . . . , ym, 0, 0, . . . ), where n, m ≥ 1 and suppose that
xi = yi for i = 0, . . . , k ≤ min(n, m) but xk+1 6= yk+1. Writing γ = λ(x0, x1)λ(x1, x2) . . .
λ(xn−1, xn) and γ′ = λ(y0, y1)λ(y1, y2) . . . λ(ym−1, ym) and setting a = λ(x0, x1)−1 =
λ(y0, y1)−1 we see that

|r(x)− r(y)| = |l(γ)− l(aγ)− l(γ′) + l(aγ′)|.

Thus, noting that k = (γ, γ′), it is enough to show that there exists B > 0 and 0 < θ < 1
such that

|l(γ)− l(aγ)− l(γ′) + l(aγ′)| ≤ Bθ(γ,γ′).

To prove this we apply Lemma 1 with x = p̃, y = γ′p̃, w = γp̃ and z = a−1p̃, where p̃ is
any lift of p ∈ M to the universal cover X and observe that

l(γ)− l(aγ)− l(γ′) + l(aγ′)

= d(γp̃, p̃)− d(aγp̃, p̃)− d(γ′p̃, p̃) + d(γ′p̃, ap̃)

= d(γp̃, p̃)− d(γp̃, a−1p̃)− d(γ′p̃, p̃) + d(γ′p̃, a−1p̃),

where d(aγp̃, p̃) = d(γp̃, a−1p̃) and d(aγ′p̃, p̃) = d(γ′p̃, a−1p̃) since a ∈ S acts as an isometry.
In view of (1.1), (1.2) and the fact that d(p̃, ap̃) ≤ maxb∈Sd(p̃, bp̃), there exist constants
B1, B2 > 0 such that the minimum distance 2r between the geodesic arcs [p̃, a−1p̃] and the
geodesic arcs [γp̃, γ′p̃] is bounded below by B1(γ, γ′) − B2. Thus, provided k = (γ, γ′) is
sufficiently large, we can apply Lemma 1 and so

|l(γ)− l(aγ)− l(γ′) + l(aγ′)| ≤ Ke−βr ≤ (KeβB2)e−(B1β)(γ,γ′)

The estimate follows by taking B = KeβB2 and θ = e−(B1β).

Remark. Although r is not necessarily positive on XA−{(0, 0, . . . )}, it is eventually positive
in the sense that there exists n > 0 such that rn(x) > 0 for all x ∈ XA − {(0, 0, . . . )}.

3. Transfer Operators and Poincaré Series

In this section we introduce a certain class of operators and relate them to Poincaré
series. We shall then be in a position to deduce our main result on the meromorphic
domain of η(s) from the spectral properties enjoyed by these operators.

If f ∈ Cα(XA, C), the Banach space of α-Hölder continuous functions, we can define
Ruelle transfer operators Lf : Cα(XA, C) → Cα(XA, C) by

(Lfh)(x) =
∑

σy=x

y 6=0̇

ef(y)h(y),

where 0̇ = (0, 0, 0, . . . ).
6



Remark. This definition of the Ruelle tranfer operator differs from the usual definition in
that in the summation over pre-images y of x we exclude the possibility y = 0̇. However, it
agrees with the more familiar definition for all x 6= 0̇ and its only effect on the spectrum is
to exclude an eigenvalue ef(0̇) (corresponding to the eigenvector which is the characteristic
function for the set {0̇}). The reason we make this change is so that the spectral radius
of Lf only depends on the restriction of f to XA − {0̇}, which is necessary for the final
statement of Lemma 2, and to avoid overcounting in Lemma 3.

For a bounded linear operator T : B → B acting on a Banach space B let ρ(T ) denote
the spectral radius. We define the essential spectrum ess(T ) to be the subset of the
spectrum spec(T ) ⊂ C of T consisting of those λ ∈ spec(T ) such that at least one of the
following is true

(1) Range(λ− T ) is not closed in B;
(2) λ is a limit point of spec(T );
(3) ∪∞r=1ker(λ− T )r is infinite dimensional.

We define the essential spectral radius to be ρe(T ) = sup{|λ| : λ ∈ ess(T )}. The operator
T : B → B is quasi-compact if the essential spectral radius is strictly smaller than the
spectral radius.

Lemma 2. The operator Lf : Cα(XA, C) → Cα(XA, C) is quasi-compact. Further-
more, the spectral radius satisfies ρ(Lf ) ≤ ρ(LRe(f)) and essential spectral radius sat-
isfies ρe(Lf ) ≤ 1

2α ρ(LRe(f)). In addition, if f, g ∈ Cα(XA, R) and, for some n > 0,
fn(x) < gn(x), for all x ∈ XA − {0̇}, then ρ(Lf ) < ρ(Lg).

If A is irreducible then the first assertion was proved in [17]. In the general case the
proof is given in Lemma 2 of [18]. The other assertions are not difficult.

To take advantage of our embedding of π1(M) into the subshift of finite type XA, we
observe that η(s) may also be written in the following way

η(s) =
∞∑

n=1

∑
z∈Sn

e−srn(z0̇) (3.1)

where Sn denotes the set of all allowed finite paths z = z0 . . . zn of (edge) length n with
z0 = ∗ and zi 6= 0, i = 1, . . . , n, and where z0̇ = (z0, . . . , zn, 0, 0, . . . ).

It is possible to write the Right Hand Side of (3.1) in terms of the transfer operator by
means of the next lemma. This will allow us to apply the results of the preceding section.
We shall use the following simple identity.

Lemma 3. Define χ : XA → R by χ(x) = 1 if x0 = ∗, and 0 otherwise. For any
k ∈ C(XA) we have the following simple identity∑

z∈Sn

ekn(z0̇) = (Ln
kχ)(0̇), for n ≥ 1.
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Proof. This is by direct computation. For any x ∈ XA and k ∈ C(XA) we can write∑
σny=x:y0=∗

yi 6=0, i=1,... ,n

ekn(y) =
∑

σny=x

σn−1y 6=0̇

ekn(y)χ(y) = Ln
kχ(x).

The identity follows upon setting x = 0̇.

Comparing (3.1) and Lemma 3, we can now write

η(s) =
+∞∑
n=1

(Ln
−srχ)(0̇) (3.2)

for Re(s) > δ.
Since rn > 0 on XA − {0̇}, for some n > 0, Lemma 2 shows that, for t ∈ R, the map

t → ρ(L−tr) is strictly decreasing, it is clear that δ = inf{s ∈ R : ρ(L−sr) < 1} and so δ
is the unique real number such that ρ(L−δr) = 1.

An important consequence of the spectral theory of the transfer operators described in
Lemma 2 and Proposition 3 is the following.

Theorem 1. Let M be a compact manifold (possibly with totally geodesic boundary) with
strictly negative sectional curvatures. Then the function η(s) has an extension as a mero-
morphic function to the half-plane Re(s) > δ − ε, for some ε > 0.

Proof. The proof follows the same general lines as in [18]. Note that for any β > ρe(L−sr)
the operator L−sr has only finitely many isolated eigenvalues of finite multiplicity in the
region ρ(L−Re(s)r) ≥ |z| ≥ β. We can assume without loss of generality that the circle
β = |z| is disjoint from the spectrum. For each eigenvalue λ lying in this annulus we
denote by Pλ(s) : Cα(XA, C) → Cα(XA, C) the projection onto the generalized eigenspace
associated to λ and we denote by Q(s) : Cα(XA, C) → Cα(XA, C) the projection associated
to the part of the spectrum in |z| < β. The maps s → Pλ(s), s → Q(s) are analytic and
commute with the operator L−sr.

We then have the following spectral decomposition

Ln
−sr =

∑
λ

PλLn
−sr + QLn

−sr (3.3)

Substituting (3.3) into (3.2) gives that

η(s) =
∑

λ

( ∞∑
n=0

Ln
−srPλ(s)L−srχ

)
(0̇) +

( ∞∑
n=1

Ln
−srQ(s)χ

)
(0̇)

=
∑

λ

(
(I − L

(λ)
−sr)

−1Pλ(s)L−srχ
)

(0̇) +

( ∞∑
n=1

Ln
−srQ(s)χ

)
(0̇)

(3.4)
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where L
(λ)
−sr is the restriction of L−sr to the finite dimensional generalized eigenspace

associated to λ.
The second term in (3.4) converges to an analytic function when β < 1. Since we know

by Lemma 2 that the essential spectral radius ρe(L−sr) is bounded above by
(

1
2

)α
ρ(L−Re(s)r)

and since t → ρ(L−tr) is decreasing there exists δ′ < δ such that if Re(s) > δ′ then the
condition β < 1 is satisfied.

We next observe that the first term in (3.4) is meromorphic since (I − L−sr)−1 can be
written in the form ∑

λ

(I − L
(λ)
−sr)

−1 =
∑

λ

Nλ(s)
det(I − Lλ

−sr)
,

where Nλ(s) are analytic operator valued functions and, furthermore, it is well known that
det(I − L

(λ)
−sr) are analytic [19].

Remark. In fact, it is possible to show that there is a simple pole at s = δ. One can see
this either from general considerations about transfer operators, or from the fact that the
counting function N(T ) = #{γ ∈ π1(M) : l(γ) ≤ T} satisfies the inequalities C−1eδT ≤
N(T ) ≤ CeδT , for some C > 1 [6].

4. A Result of Margulis

In this section we shall use a result of Margulis [12] to show that for compact manifolds
without boundary there are no poles on the line Re(s) = δ except for a simple pole at
s = 1. We remark that in this case the abscissa of convergence δ is equal to the exponential
growth rate of volume in the universal cover X of M , i.e., δ = limT→∞

1
T log V ol({y ∈ X :

d(x, y) ≤ T}), for any x ∈ X.

Proposition 4 (Margulis). Let M be a compact manifold without boundary with strictly
negative sectional curvatures. If N(T ) = #{γ ∈ π1(M) : l(γ) ≤ T} then there exists a
constant C > 0 such that N(T ) ∼ CeδT , as T → +∞.

To make use of Proposition 4, we observe that we can write

η(s) =
∫ ∞

0

e−stdN(t) = s

∫ ∞

0

e−stN(t)dt

for Re(s) > δ. We can define α(T ) := N(T ) − CeδT then by Proposition 4 we see that
α(T ) = o(eδT ). Suppose that η(s) has a pole at s = δ + iτ with τ 6= 0. It is then clear that

ᾱ(s) =
∫ ∞

0

e−stα(t)dt = η(s)− C

s− δ
9



also has a pole at s = δ+ iτ . However, |ᾱ(σ+ iτ)| ≤
∫∞
0

e−σt|α(t)|dt. Since |α(t)| = o(eδT )
we have that for any ε > 0 we can choose T > 0 such that |α(t)| ≤ ε for t ≥ T and so

|ᾱ(σ + iτ)| ≤
∫ ∞

0

e−σt|α(t)|dt

≤
∫ T

0

e−σt|α(t)|dt +
∫ ∞

T

e−σt|α(t)|dt

≤ Const.T + ε
1

σ − δ
.

In particular, lim supσ→δ+ |(σ − δ)ᾱ(σ + iτ)| ≤ ε, and since ε can be chosen arbitrarily
small this contradicts the existence of a pole at s = δ + iτ . This shows that the following
result is a corollary to Proposition 4 and Theorem 1.

Proposition 5. Let M be a compact manifold without boundary with strictly negative
sectional curvatures. Then function η(s) has no pole on the line Re(s) = δ, apart from a
simple pole at s = δ.

5. Comparison Theorems

In this section we shall apply the analytical theory of Poincaré series to prove cer-
tain comparison theorems in the case where M is a compact manifold without boundary.
Recall the classical result of Milnor [13] that the ratio |γ|

l(γ) is bounded away from zero
and infinity as γ runs through π1(M) − {e}. In particular, this shows that the averages

1
N(T )

∑
l(γ)≤T

|γ|
l(γ) are similarly bounded. In the following theorem we show that in fact

the averages converge to a limit as T → +∞.

Theorem 2. Let M be a compact manifold without boundary and with strictly negative
sectional curvatures. Choose a finite symmetric generating set S for π1(M). Let w :
π1(M) → R+ be a function satisfying

(i) there exist constants A1, A2 > 0 such that A1l(γ) ≤ w(γ) ≤ A2l(γ); and
(ii) there exist constants A > 0 and 0 < θ < 1 such that for all generators a ∈ S and

all γ, γ′ ∈ π1(M) we have

|w(γ)− w(aγ)− w(γ′) + w(aγ′)| ≤ Aθ(γ,γ′).

Then the averages
1

N(T )

∑
γ∈π1(M)−{e}

l(γ)≤T

w(γ)
l(γ)

converge to a positive limit as T → +∞. In particular, with the special choices
(a) w(γ) = |γ|;
(b) w(γ) is the length of the shortest geodesic arc in γ from p to itself with respect to

a second Riemannian metric (with negative sectional curvatures) on M
10



the above conclusion holds.

Given Proposition 5, the proof of Theorem 2 follows from the arguments in sections 8
and 9 of [18]. We briefly sketch the main steps.

We begin by defining a weighted Poincaré series

η(s, z) =
∑

γ∈π1(M)−{e}

e−sl(γ)+zw(γ).

This summation converges to an bi-analytic function provided that Res(s) > δ and |z|
is sufficiently small (how small depending on s). Clearly, η(s, 0) = η(s).

Since w : π1(M) → R+ satisfies condition (ii) we can, as in Lemma 1, define a Hölder
contionuous function f : XA → R with the property that if x = (∗, x1, . . . , xn, 0, 0, . . . )
then fn(x) = w(γ), where γ = λ(∗, x1)λ(x1, x2) . . . λ(xn−1, xn).

As in (3.2) we may write

η(s, z) =
∞∑

n=1

(Ln
−sr+zfχ)(0̇)

for Re(s) > δ and |z| small. This enables us to study the analytic properties of η(s, z) via
the spectral properties of L−sr+zf . In particular, given the information on η(s) contained
in Proposition 5, the arguments of Section 8 of [18] (based on eigenvalue perturbation
theory applied to L−sr+zf ) go through and we can conclude the following result.

Proposition 6. Define a function ξ(s) by

ξ(s) :=
∂

∂z
η(s, 0).

This function is analytic in a neighbourhood of {s ∈ C : Re(s) ≥ δ} − {δ}. Furthermore,
in a neighbourhood of s = δ, we may write

ξ(s) =
A

(s− δ)2
+

B

s− δ
+ U(s),

with A > 0 and U(s) analytic.

Proof. This is Corollary 6.1 of [18]. That we have A > 0 is a consequence of condition (i)
of Theorem 2 and the fact that Ress=δη(s) > 0. Specifically, we compare ξ(s) with −η′(s)
for s ∈ R.

To complete the proof of Theorem 2, observe that we can write ξ(s) as a Stieltjes
integral:

ξ(s) =
∫ ∞

0

e−sT dM(T ),

where M(T ) =
∑

l(γ)≤T w(γ). It is an immediate consequence of Proposition 6 and stan-
dard Tauberian results [1] that

M(T ) ∼ A

6
TeδT , as T → +∞.

11



It is then an elementary deduction that∑
l(γ)≤T

w(γ)
l(γ)

∼ A

6
eδT .

Combining this with Proposition 4, that N(T ) ∼ CeδT , gives the desired result.

Remark. Consider a surfaces of constant curvature κ = −1 with a fixed reference metric
g1. If we use another metric g2 to give the weighting w(γ) = lg2 , as in Theorem 2 (a), then
a simple argument shows that the limit

L(g2) := lim
T→+∞

1
N(T )

∑
γ∈π1(M)−{e}

lg1 (γ)≤T

lg2(γ)
lg1(γ)

is proportional to the intersection i(g1, g2) for the two metrics [2, 8].
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