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Abstract. In this note, we discuss an analogue of the Weil-Petersson metric for spaces of metric graphs and
some of its properties.

0. Introduction

Given a compact topological surface V with negative Euler characteristic, the Teichmüller space
Teich(V ) describes the marked Riemann metrics (with constant curvature κ = −1) which it supports.
The moduli space Mod(V ) describes the unmarked Riemann metrics on V and is obtained by quotienting
Teich(V ) by the Mapping Class Group of V .

There are several different metrics which can naturally be defined on Teich(V ), for example, the
Teichmüller metric and the Weil-Petersson metric, both of which are invariant under the Mapping Class
Group and descend to Mod(V ). There is a particularly illuminating formulation of the Weil-Petersson
metric, due to Thurston and Wolpert, in terms of the second derivative of the length of a typical geodesic
on V [Wo]. This was extended from Fuchsian to quasi-Fuchsian groups by Bridgeman and Taylor [BT].
A more dynamical characterization of this was proposed by Curt McMullen, who thereby extended the
notion of the Weil-Petersson metric to a variety of settings (e.g., Fuchsian and quasi-Fuchsian groups,
Blaschke products) in a unified way [Mc]. In this note we will introduce an analogue of the Weil-Petersson
metric for families of metric graphs, and explore its properties through some simple examples.

To formulate an analogous definition for families of metric graphs we can replace the surface V by a
finite (undirected) graph G with edge set E . We can replace the Riemann metrics by edge weightings
l : E → R+.

Definition. Let MG denote the space of all edge weightings l : E → R+ on G.

Of course, the constant curvature −1 condition gives a natural normalization to metrics in Teich(V )
or Mod(V ) and it is natural to introduce a constraint on edge weightings on G. One normalization
(corresponding to curvature −1 metrics giving constant area −2πχ(V )) would be that the sum of the
edge lengths is equal to one, i.e.,

∑

e∈E
l(e) = 1. However, the more dynamical approach described below

is useful.
To motivate this approach, let us first consider a (not necessarily constant) negative curvature Rie-

mannian metric g on on the surface V . Then, with respect to this metric, there are a countable infinity
of closed geodesics γ with least period l(γ). We can use these to define the entropy h(g) of the metric
(i.e. the topological entropy of the associated geodesic flow) by

h(g) = lim
t→+∞

1

t
log Card{γ : l(γ) ≤ t}. (0.1)

Of course, for Riemann surfaces of constant curvature κ < 0, we have that h(g) =
√

|κ| and therefore,
if we normalize the surfaces to have κ = −1, then we have that h = 1. By analogy with (0.1), we may
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normalize edge weightings on a graph G by their entropy characterized as, say, the rate of growth of closed
loops, i.e.

h(l) = lim
t→+∞

1

t
log Card{γ : l(γ) ≤ t}, (0.2)

where γ = (e0, e1, · · · , en = e0) is a closed cycle of edges in G (without backtracking) and l(γ) =
∑n−1

i=0 l(ei).

Remark. Equivalently, h(l) can be interpreted as the asymptotic volume growth of the graph, and thus
depends only on edge lengths of the metric tree T which is the universal cover of the graph G, i.e., if
Γ ∼= π1(G) is the covering group and v ∈ T is any vertex then

h(l) = lim
t→+∞

1

t
log Card{g ∈ Γ : d(gv, v) ≤ t}.

We shall only consider connected graphs which are non-trivial (i.e. which contain at least two distinct
closed paths) and strictly positive length functions. In this case, we always have h(l) > 0.

The entropy can be used to define to the following dynamical normalization of edge weightings on
graphs.

Definition. For fixed h > 0, let
Mh

G = {l : E → R
+ : h(l) = h},

denote the space of all edge weightings with entropy h(l) = h. We shall concentrate attention on the
space M1

G .

Since we do not fix a marking on G (i.e. a homotopy equivalence to the graph with one vertex and
r = rank(π1(G)) edges), M1

G is an analogue of Mod(V ), rather than Teich(V ). (A more precise analogue

of Mod(V ) is the complex obtained by attaching spaces M1
G for graphs G with a given fundamental

group.) The boundary M1
G corresponds to the situation where one or more of the edge lengths becomes

equal to zero.
In §1 we recall the definition of Wolpert and McMullen of the Weil-Petersson metric. In §2 we give

a definition of an analogue of the Weil-Petersson metric for graphs. In §3 we describe a number of the
metric’s properties, which help to illustrate the usefulness of the definition. In §4 and §5 we illustrate the
definition for a variety of examples of graphs whose fundamental group is the free group on 2 generators.
This makes an interesting connection with the Culler-Vogtmann space [CV, Vo], also known as the outer
space, in rank 2.

1. The Weil-Petersson Metric on Moduli Space

We begin by reviewing some of the results of Wolpert, Bridgeman and Taylor, and McMullen for
Riemann surfaces which are relevant to our analysis.

Let Mod(V ) be the moduli space of Riemann metrics for a compact surface. We can consider a C1

family of metrics gλ ∈ Mod(V ), 0 ≤ λ ≤ 1. Let SV be the unit tangent bundle of V with respect to the

metric gλ0
, say. Let µλ0

be the corresponding Haar measure on SV . We denote by φ
(λ0)
t : SV → SV the

geodesic flow. Since the geodesic flow for gλ is volume preserving we have
∫

ġλ0
(v, v) dµλ0

(v) = 0, (1.1)

(cf. [Be]), where ġλ0
is defined via the expansion

gλ = gλ0
+ ġλ0

(λ− λ0) +O((λ − λ0)
2).

Definition. If we write F (v) := ġλ0
(v, v) we can define the variance by the following equivalent formulae

σ2 = σ2(F ) := lim
t→+∞

1

t

∫ (∫ t

0

F (φuv) du

)2

dµ(v) =

∫ +∞

−∞

(∫

SV

F (φtv)F (v) dµ(v)

)

dt

(cf. [KS]).

We are now able to formulate the characterization of the Weil-Petersson metric by McMullen [Mc].
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Proposition 1.1 (McMullen). The Weil-Petersson metric is proportional to σ2(·). More precisely,

σ2(F ) =
4

3

‖gλ‖2
WP

area(V, gλ)
.

Proposition 1.1 comes from a reinterpretation of Wolpert’s formula for the Weil-Petersson metric in
terms of the second derivative of lengths of generic geodesics. A simple interpretation for σ2 is via the
Central Limit Theorem, which we can express in terms of closed orbits. Let γ be a free homotopy class
and let lg(γ) denote its length with respect to the metric gλ.

Proposition 1.2 (Central Limit Theorem for surfaces). For a < b we have

lim
t→+∞

te−tCard

{

γ : lgλ0
(γ) ≤ t and

1√
t

∂ log lgλ
(γ)

∂λ

∣

∣

∣

∣

λ=λ0

∈ [a, b]

}

=
1√
2πσ

∫ b

a

e−y2/(2σ2) dy.

Proof. This follows from standard results (cf. [La] and [Ra]) once we also observe that

∂ log lgλ
(γ)

∂λ

∣

∣

∣

∣

λ=λ0

=
1

lgλ0
(γ)

∂lgλ
(γ)

∂λ

∣

∣

∣

∣

λ=λ0

=
1

lgλ0
(γ)

∫ lgλ0
(γ)

0

ġλ0
(φ

(λ0)
t vγ) dt,

where vγ ∈ TγV . �

Remark. There are several alternative equivalent definitions of σ2. It can be interpreted as the value
at zero of the spectral density. It can also be written in terms of an asymptotic quantity for lengths of
weighted closed geodesics, and thus in terms of variants of zeta functions.

2. The Weil-Petersson Type Metric on Spaces of Metric Graphs.

We can associate to the graph G a subshift of finite type whose states are oriented edges of G. This
is constructed as follows. Each edge e ∈ E corresponds to two oriented edges which, abusing notation,
we shall denote by e and e. We shall write Eo for the set of oriented edges. We say that e′ ∈ Eo follows
e ∈ Eo if e′ begins at the terminal endpoint of e. We then define a |Eo| × |Eo| matrix A, with rows and
columns indexed by Eo, by

A(e, e′) =

{

1 if e′ follows e and e′ 6= e

0 otherwise.

The shift space
ΣA = {e = (en)n∈Z ∈ (Eo)Z : A(en, en+1) = 1 ∀n ∈ Z}

can be naturally identified with the space of all (two-sided) infinite paths (with a distinguished zeroth
edge) in the graph G. Then ΣA is a compact zero dimensional space with respect to the Tychonoff
product topology. We define the shift map T : ΣA → ΣA by (Te)n = en+1, n ∈ Z. Clearly, this is a
homeomorphism.

Given any continuous function f : ΣA → R we can define the pressure function P : C(ΣA,R) → R by

P (f) = lim sup
n→+∞

1

n
log

(

∑

T nx=x

ef(x)+f(Tx)+···+f(T n−1x)

)

.

We can associate to the oriented edges the weightings of the corresponding (unoriented) edges in the
original graph. This leads to a locally constant function l : ΣA → ΣA defined by l((en)∞n=−∞) = l(e0).
This function satisfies l ◦ i = l under the involution i : ΣA → ΣA given by i((en)∞n=−∞) = (e−n)∞n=−∞,
where e corresponds to e with the orientation reversed.

The following results on the function l are easily seen.
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Lemma 2.1.

(1) The pressure function is analytic on locally constant functions.
(2) The entropy h is characterized by P (−h(l)l) = 0.
(3) The entropy MG ∋ l 7→ h(l) ∈ R+ varies analytically for l > 0.

Proof. For part (1), the analyticity of the pressure is well known [PP].
To prove part (2), the entropy h(l) can be interpreted as the entropy of the suspended flow over ΣA

with roof function l. Hence, using Abramov’s theorem [Ab], it may be rewritten as

h(l) = sup

{

h(m)
∫

f dm
: m is a T -invariant probability measure

}

,

where h(m) denotes the entropy of T : ΣA → ΣA with respect to m (cf. [PP]). The first result now
follows from the variational principle for pressure:

P (−tl) = sup

{

h(m) − t

∫

l dm : m is a T -invariant probability measure

}

,

for t ∈ R [Wa].
Finally, for part (3) the result follows by the analyticity of the pressure function in part (1) and the

implicit function theorem. �

We can define an analogue of the tangent space (at l ∈ MG) to be a subspace of the locally
constant functions (depending only on the zeroth coordinate e0). By definition, the matrix Ah(l)l

given by Ah(l)l(e, e
′) = A(e, e′)e−h(l)l(e) has spectral radius 1 and, by the Perron-Frobenius Theo-

rem, has a strictly positive right eigenvector v such that Ah(l)lv = v. Then the matrix Q defined by
Q(e, e′) = Ah(l)l(e, e

′)ve′/ve is stochastic. Let the probability vector p be a left eigenvector for Q and let
µ be the associated Markov measure.

Definition. We define the tangent space to Mh
G at l ∈ MG by

TlMh
G =

{

f(e) = f(e0) : f(e) = f(e) and
∑

e∈Eo

f(e)pe = 0

}

,

i.e., the signed edge weightings (depending only on the unoriented edges) whose appropriately weighted
sum is zero. This is a finite dimensional space (indeed the dimension is precisely |E| − 1).

Alternatively, we can associate to l the measure µ = µl on Σ corresponding to the equilibrium state
for −h(l)l, i.e., the unique T -invariant probability measure µ on ΣA such that

P (−h(l)l) = h(µ) − h(l)

∫

l dµ.

Then we can write TlMh
G = {f : ΣA → R : f(e) = f(e0), f ◦ i = f, and µ(f) = 0} .

Definition. Given f ∈ TlMh
G we define the variance by

σ2(f) = lim
n→+∞

1

n

∫

(fn(e))2 dµ(e).

(This is strictly positive on non-zero functions since the condition f ◦ i = f forces any coboundary in
TlMh

G to be zero.)

There are several different ways to rewrite the variance. To begin with, it can be written in terms of
the second derivative of the pressure (cf. [PP]).
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Lemma 2.2. Given f ∈ TlMh
G, we can write

σ2(f) =
d2

dt2
P (−(l + tf))

∣

∣

∣

∣

t=0

.

Since we are dealing with functions that depend only on one coordinate the formula for the variance
is particularly simple.

Lemma 2.3. Given f ∈ TlMh
G we can write

σ2(f) =
∑

e∈Eo

pef(e)2.

Proof. We can write

1

n

∫

(

n−1
∑

i=0

f(ei)

)2

dµ(e) =
1

n

n−1
∑

i=0

n−1
∑

j=0

∫

f(ei)f(ej) dµ(e)

=
1

n

n−1
∑

i=0

(n− i)

∫

f(e0)f(ei) dµ(e)

=

∫

|f(e0)|2 dµ(e) +
1

n

n
∑

k=1

(n− k)
∑

e0

∑

i1···ik−1

∑

ek

µ[e0, i1, · · · , ik−1, ek]f(e0)f(ek)

=

∫

|f(e0)|2 dµ(e) +
1

n

∑

e0

pe0
f(e0)

n
∑

k=1

(n− k)
∑

i1···ik−1

∑

ek

P (e0, i1) · · ·P (ik−1, ek)f(ek)

=

∫

|f(e0)|2 dµ(e) +
1

n

∑

e0

pe0
f(e0)

n
∑

k=1

(n− k)
∑

ek

Pn(e0, ek)f(ek)

=

∫

|f(e0)|2 dµ(e) +
1

n

(

∑

e0

pe0
f(e0)

)

n
∑

k=1

(n− k)

(

∑

ek∈Eo

pek
f(ek) +O(θn)

)

,

for some 0 < θ < 1, since
∑

e∈Eo p(e)f(e) = 0. Taking the limit as n → +∞ gives the required
formula. �

Finally, we are in a position to define the analogue of the Weil-Petersson metric in the context of
weighted graphs.

Definition (Weil-Petersson metric for graphs). We can define a norm on the tangent space TlMh
G by

‖f‖2
WP = σ2(f),

where f ∈ T1Mh
G . We can then define the length of any continuously differentiable curve γ : [0, 1] → Mh

G

by

L(γ) =

∫ 1

0

‖γ̇‖WP dt

and thus define a path space metric on Mh
G by d(l1, l2) = infγ{L(γ)}, where the infimum is taken over

all continuously differentiable curves with γ(0) = l1 and γ(1) = l2.
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Remark. We can also express the Weil-Petersson metric for graphs in terms of the zeta function for
weighted graphs. More precisely, we can associate to the graph G and a family of length functions
lλ : G → R+, λ0 − ǫ < λ < λ0 + ǫ, the zeta functions

ζλ(s) =
∏

γ

(

1 − e−slλ0,λ(γ)
)−1

(s ∈ C),

where: the product is over prime closed non-backtracking loops γ on the graph G; lλ0,λ = lλ0
+(λ−λ0)l̇λ0

is a linearized length function for lλ; and lλ0,λ(γ) is the weight on γ. This can be viewed as an extension
of the Ihara zeta function for graphs. The zeta function has a simple pole at h(lλ0,λ) and is analytic for
Re(s) > h(lλ0,λ). Then the Weil-Petersson metric is given by the residue at s = h = h(lλ0

) of the second
logarithmic derivative of the zeta function, i.e.

∥

∥

∥

∥

∥

∂lλ
∂λ

∣

∣

∣

∣

λ=λ0

∥

∥

∥

∥

∥

2

WP

= − lim
s→h

(s− h)
∂2 log ζλ(s)

∂λ2

∣

∣

∣

∣

λ=λ0

.

3. Properties of the Weil-Petersson Metric for Graphs

In this section we want to establish some of the basic properties of the Weil-Petersson metric for
graphs. We begin with the following analyticity result.

Theorem 1 (Analyticity of metric). The metric ‖ · ‖WP is real analytic on MG.

Proof. This follows from the definition of the metric in terms of σ2(·), the interpretation of σ2(·) in terms
of the second derivative of pressure by Lemma 2.2, and the analyticity of the pressure function in Lemma
2.1 (1).

It is known that the Weil-Petersson metric on Teichmüller space is incomplete, but has strictly negative
curvature. It is natural to ask if there are analogous results in the case of spaces of graphs. In this context
we have the following:

Theorem 2 (Properties of the metric).

(i) There exist examples of graphs for which the metric ‖ · ‖WP is not complete.
(ii) There exist examples of graphs for which the curvature of the metric ‖ · ‖WP takes both positive

and negative values.
(iii) There exist examples of graphs for which the metric is incomplete.

We present explicit examples of the properties in (i) and (ii) in later sections.
By the metric being incomplete, we mean that we can find a geodesic path in M1

G which reaches the

boundary ∂M1
G in a finite distance with respect to ‖ · ‖WP . There is a simple principle for establishing

Theorem 2 (i) in many examples. Consider a graph G and fix an edge e0. Moreover, let us consider
those G for which there is a subgraph G′ = G − {e0} ⊂ G, after deleting an edge e0, say, corresponding
to a subshift of finite type with non-zero topological entropy. We can consider a family lλ ∈ M1

G , for
λ ∈ (0, 1), which associates to e0 (and e0) the length lλ(e0) = λ, and to all other edges a common length
to ensure h(lλ) = 1. Then the associated probability vector pλ converges to a non-zero vector p0 as λ
tends to zero. In particular, using Lemma 2.3 we can see that along this path ‖ · ‖WP is equivalent to
Euclidean distance and the path meets the boundary of ∂M1

G in a finite distance.1

A geodesic corresponds to a piecewise smooth curve, possibly with points, or even more generally
segments, in the boundary. Let us consider a graph G for which deleting any edge still gives a subgraph
corresponding to a subshift of finite type with non-zero topological entropy. We see using Lemma 2.3
that for any geodesic approaching the boundary ‖·‖WP is equivalent to Euclidean distance. Assume for a

1The same basic argument shows that for a positive measure set of points and directions, geodesics can reach the
boundary in finite time. This confirms the fact that the geodesic flow cannot be ergodic.
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contradiction that a geodesic γ contains a point in the boundary then γ would have to meet the boundary
non-tangentially. However, it is then easy to see we could then cut the corner(s) to get a shorter curve,
giving a contradiction. Finally, once we have established that γ is in the interior of the simplex (except
possibly for endpoints on different points) geodesic convexity follows.

The following can be compared with Wolpert’s Theorem [Wo] and gives, perhaps, the most intuitive
definition of the Weil-Petersson metric in the present setting. Consider a family of closed paths {γn} which

become evenly distributed with respect to µλ0
(i.e. γ corresponds to T ne = e with lλ(γ) =

∑n−1
j=0 lλ(ej)

and the measure 1
n

∑n−1
j=0 δT je converges in the weak∗ topology to µλ0

on ΣA).

Theorem 3 (Random Geodesic Theorem). Let lλ ∈ MG be a family of length functions for 0 ≤
λ ≤ 1. Then for 0 < λ0 < 1,

lim
n→+∞

− d2

dλ2
log (lλ(γn))

∣

∣

∣

∣

λ=λ0

= ‖v‖2
WP

where v = l̇λ0
∈ Tlλ0

MG is the tangent vector at λ = λ0.

Proof. At the symbolic level we can characterize h(l) and µ in terms of the pressure P (·). In particular,

differentiating the expression P (−lλ) = 0 on MG we see that
∫

l̇λ0
dµlλ = 0. Differentiating again we see

that var(l̇λ0
) +

∫

l̈λ0
dµlλ0

= 0. We can write that

d2

dλ2
log (lλ(γ))

∣

∣

∣

∣

λ=λ0

=
d

dλ

(

l̇λ(γ)

lλ(γ)

)∣

∣

∣

∣

∣

λ=λ0

=
l̈λ0

(γ)

lλ0
(γ)

−
(

l̇λ0
(γ)

lλ0
(γ)

)2

.

For typical geodesics
l̇λ0

(γn)

lλ0
(γn) → 0 and

l̈λ0
(γn)

lλ0
(γn) →

∫

l̈λ0
dµlλ0

. �

4. Some Examples

In this section we will consider some simple examples. In particular, we consider the graphs whose
fundamental group in F2, the free group of rank 2. In subsequent sections we will use them to illustrate
properties of the metric.

l

l

l

1

3

2 1

2

3

l

l

l
l3l 1

l 2

Figure 1. The three examples: (I) A rose (with n = 2); (II) A belt
buckle; and (III) A dumbell

4.1. Example I (A rose). A particularly simple example of an undirected graph is the rose with
n-petals (n ≥ 2), cf. Figure 1 (I).

Lemma 4.1. The entropy h of the rose example is characterized by det(I −Ah(l)l) = 0 where

A−h(l) =
(

(2 − δij)e
−h(l)li

)n

ij=1
with δij =

{

1 if i = j

0 if i 6= j
.

Proof. The graph is regular with valency 2n. Furthermore, since there is no doubling back allowed, a
path arriving at any vertex has (2n − 1) allowed choices for the subsequent edges with all associated
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lengths appearing twice, except for that corresponding to the edge last traversed, which appears only
once. The entropy h(l) is then characterised as the value for which the associated matrix A−h(l) has 1 as
a maximal eigenvalue (the remark after Lemma 2.1). �

In particular, for the figure eight graph (corresponding to n = 2) with edge lengths l1, l2 > 0 the
entropy h = h(l) has to satisfy 1 = e−hl1 + e−hl2 + 3e−h(l1+l2).

4.2. Example II (Belt buckles). We can consider a graph with two vertices, each connected by three
edges, cf. Figure 1 (II). By shrinking any of the edges to a point we get the homotopy equivalent figure
eight graph (i.e., a 2-rose, as above).

In the associated tree the valency is three and the three edges meeting at a vertex and have the three
lengths l1, l2, l3 > 0.

Lemma 4.2. The entropy h = h(l) > 0 is characterised by

eh(l1+l2+l3) = 2 + ehl1 + ehl2 + ehl3

In particular, when h = 1 we see that for l = (l1, l2, l3) ∈ M1
G we require that l3 > 0 satisfies

e−l3 =
el1+l2 − 1

2 + el1 + el2
. (4.1)

Proof. The graph is regular with valency 3. Since, as before, there is no doubling back allowed at vertices,
the allowed paths have two choices of subsequent edges at each vertex. The associated matrix (whose
rows and columns correspond to the three undirected edges) takes the form

Ahl =





0 e−hl1 e−hl1

e−hl2 0 e−hl2

e−hl3 e−hl3 0



 . (4.2)

Then the entropy h = h(l) > 0 is characterised as the value for which the maximal eigenvalue λl of Mhl

is equal to 1, as in the proof of Lemma 4.1. By solving for

0 = det(I −Ahl) = −1 + e−h(l1+l2) + e−h(l2+l3) + e−h(l3+l1) + 2e−h(l1+l2+l+3)

and multiplying through by eh(l1+l2+l3) the identity in the statement follows. �

4.3. Example III (Dumbbells). We can consider a graph with two vertices, each being the start and
end of an edge, and joined by a third edge, cf. Figure 1 (III).

Lemma 4.3. The entropy h = h(l) of the dumbbell example is characterised by

4 = e2hl2(ehl1 − 1)(ehl3 − 1)

In particular, when h = 1 we see that for l = (l1, l2, l3) ∈ M1
G we require that l3 > 0 satisfies

e−l3 =
1

2

√

(ehl1 − 1)(ehl3 − 1). (4.1)

Proof. The graph is regular with three edges and valency 3. Let us associate the matrix

Ahl =















e−hl1 0 e−hl1 0 0 0
0 e−hl1 e−hl1 0 0 0
0 0 0 0 e−hl2 e−hl2

e−hl2 e−hl2 0 0 0 0
0 0 0 e−hl3 e−hl2 0
0 0 0 e−hl3 0 e−hl3















. (4.3)
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whose rows and columns are indexed by the 6 directed edges. The entropy h = h(l) > 0 is characterised
as the value for which the maximal eigenvalue λl of Mhl is equal to 1. In particular, we can solve

0 = det(I −Ahl) = −(1 − e−hl1)(1 − e−hl3)(−1 + e−hl1 + e−hl3 − e−h(l1+l3) + 4e−h(l1+2l2+l3)).

The last term must vanish, and by multiplying this by eh(l1+2l2+l3) completes the proof of the lemma. �

By shrinking the edge joining the two vertices, we get the homotopy equivalent figure eight graph (i.e.,
a 2-rose, as in Example I above).

Remark. The three examples above occur very naturally in the context of the study of outer automor-
phisms of graphs. We recall that the Culler-Vogtmann space (or outer space) CV (F2) corresponds to
metrics (i.e. length functions) on the three types of graph above in the same free homotopy class [CV,
Vo].

The graphs in Examples II and III are parameterized by the three lengths l1, l2, l3 > 0 of the edges and
so, subject to the normalization that h(l1, l2, l3) = 1, the corresponding moduli space is a two dimensional
simplex. However, these are joined by one dimensional curves corresponding to the graphs in Example
I (for n = 2). More precisely, simplicies corresponding to Example II are joined to other such simplices
along all three edges, while simplices corresponding to Example III have one side joined to an Example I
curve with the other two sides not joined (since these degenerations have a different fundamental group).

Figure 2. The three types of examples of graphs corresponding to
CV (F2)

5. Incompleteness and curvature

We can use the examples introduced in the previous section to provide those explicit examples needed
for Theorem 2.

5.1. Incompleteness of the metric. To show that the metric can be incomplete we consider the
particular case of Example I with n = 2 (i.e., where there are two undirected loops) and when h(l) = 1.
The associated directed graph has a transition matrix and an associated weighted matrix given by

A =







1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1






and Ahl =







e−hl1 e−hl1 0 e−hl1

e−hl2 e−hl2 e−hl2 0
0 e−hl1 e−hl1 e−hl1

e−hl2 0 e−hl2 e−hl2






.



10 MARK POLLICOTT AND RICHARD SHARP

Since we restrict to the case h = 1, we can write l1 in terms of l2 as

l1(l2) = − log

(

1 − e−l2

1 + 3e−l2

)

. (5.1)

The normalized left and right eigenvectors p and q of Al associated to the eigenvalue 1 can be shown to
be

p = (p1, p2, p3, p4) =

(

1 + 3el2

6 + 6el2
,

1

3 + 3el2
,
1 + 3el2

6 + 6el2
,

1

3 + 3el2

)

and

q = (q1, q2, q3, q4)
T =

(

el2 − 1

2 + e−l2
,

2

2 + e−l2
,
el2 − 1

2 + e−l2
,

2

2 + e−l2

)T

.

Using (5.1) we can consider the curve c : (0, 1] → M defined by c(l2) = (l1(l2), l2), parameterized by l2.
In particular, the derivative is

c′(l2) :=

(

4el2

(el2 − 1)(3 + el2)
, 1

)

∼
(

1

l2
, 1

)

as l2 → 0.

Moreover, one easily sees that

p1 = p3 ∼ 1 + 3el2

6 + 6el2
∼ 1

3
and q1 = q3 ∼ el2 − 1

2 + e−l2
∼ l2

3
, as l2 → 0.

Thus, we see that the µ-measure of the loop of length l1 = l1(l2) is comparable with l2. In particular, as
l2 → 0 we see from Lemma 2.3 that the corresponding WP-length of the vector can be estimated by

√

∫

‖c′‖2dµ ≍
√

p1q1/l22 ≍ l
−1/2
2 .

Finally, since
∫ 1

0 x
−1/2dx is convergent we see that the metric is incomplete, i.e., the curve arrives at

l2 = 0 in finite time with respect to the metric.

5.2. Curvature of the metric. We now consider formulae for the Gaussian curvature of the metric
for Example II, i.e., the belt buckle with two vertices and 3 edges, with lengths l1, l2, l3 > 0.

We first associate to the matrix Al a stochastic matrix Pl defined by Pl(i, j) = A(i, j)pj/pi, where
Ahp = p is the right eigenvector. In particular, we find that

p1

p2
=

1 + e−l3

el1 − e−l3
,
p2

p3
=

1 + e−l1

el2 − e−l1
and

p3

p1
=

1 + e−l2

el3 − e−l2

and then the associated stochastic matrix becomes

Pl =







0 1+e−l1

1+el2

−e−l1+el2

1+el2

1+e−l2

1+el1
0 −e−l2+el1

1+el1

1+el2

2+el1+el2

1+el1

2+el1+el2
0






.

The normalized right eigenvector for Pl is

q =





q1
q2
q3



 where

q1 =
el1(1 + el2)2

2(3el1+l2 + e2l1+l2 + el1+2l2 − 1)

q2 =
el2(1 + el1)2

2(3el1+l2 + e2l1+l2 + el1+2l2 − 1)

q3 =
(2 + el1 + el2)(el1+l2 − 1)

2(3el1+l2 + e2l1+l2 + el1+2l2 − 1)
.
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In order to give a formula for the Weil-Petersson metric for this graph we want to define an inner product
on the tangent space to M1

G . We can consider the parameterization ψ : (l1, l2) 7→ (l1, l2, l3) ∈ M1
G , where

l3 = ψ3(l1, l2) is given by (4.1). The derivatives with respect to l1 and l2 are

D1ψ(l1, l2, l3) :=

(

1, 0,
∂ψ3

∂l1

)

and D2ψ(l1, l2, l3) :=

(

0, 1,
∂ψ3

∂l2

)

,

respectively, where these triples represent the values of the functions D1ψ and D2ψ corresponding to the
three edges of the graph. We can then write the metric (in terms of its first fundamental form)

ds2 = E(l1, l2)dl
2
1 + F (l1, l2)dl1dl2 +G(l1, l2)dl

2
2,

where

E(l1, l2) = σ2(D1ψ,D1ψ) = q1(l1, l2) + q3(l1, l2)

(

∂ψ3

∂l1

)2

,

F (l1, l2) = σ2(D1ψ,D2ψ) = q3(l1, l2)

(

∂ψ3

∂l1

)(

∂ψ3

∂l2

)

,

G(l1, l2) = σ2(D2ψ,D2ψ) = q2(l1, l2) + q3(l1, l2)

(

∂ψ3

∂l2

)2

.

Explicit computations gives

E(l1, l2) =
el1(1 + el2)2(−el2 + 4el1+l2 + e2l1+l2 + 2el1+2l2 − 2)

2(2 + el1 + el2)(el1+l2 − 1)(3el1+l2 + e2l1+l2 + el1+2l2 − 1)
,

F (l1, l2) =
el1+l2(1 + el1)2(1 + el2)2

2(2 + el1 + el2)(el1+l2 − 1)(3el1+l2 + e2l1+l2 + el1+2l2 − 1)
,

G(l1, l2) =
el2(1 + el1)2(−el1 + 4el1+l2 + el1+2l2 + 2e2l1+l2 − 2)

2(2 + el1 + el2)(el1+l2 − 1)(3el1+l2 + e2l1+l2 + el1+2l2 − 1)
.

We can compute the Gaussian curvature of M1
G at a point (l1, l2, l3) using the following standard formula

[Gr].

Lemma 5.1 (Brioschi formula). If a metric has local coordinates

ds2 = E(u, v)du2 + F (u, v)dudv +G(u, v)dv2

then the curvature is given by

κ(u, v) =
1

(EG− F 2)2

×





∣

∣

∣

∣

∣

∣

− 1
2Evv + Fuv − 1

2Guu
1
2Eu Fu − 1

2Ev

Fv − 1
2Gu E F

1
2Gv F G

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

0 1
2Ev

1
2Gu

1
2Ev E F
1
2Gu F G

∣

∣

∣

∣

∣

∣



 .

We can explicitly compute

κ(l1, l2) =
9

4

(el1+l2 − 1)(3el1+l2 + 2e2l1+l2 + 2el1+2l2 + 1)

(3el1+l2 + e2l1+l2 + el1+2l2 + 1)

The plot of the curvature for 0 < l1, l2 < 3 is presented in the Figure 3, where it is seen to be negative
with a minimum at l1 = l2 = log 2.
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1

2 1

2

-0.4

-0.3

-0.2

Figure 3. The curvature of a portion of M1
G for the belt buckle.

Remark. We can expand the curvature at l1 = l2 = 0 as

κ(l1, l2) = −9

8
l1 −

9

8
l2 +

99

64
l21 +

99

32
l1l2 +

99

64
l22 + · · · .

We finally consider formulae for the Gaussian curvature of the metric for Example III, i.e., the dumbbell
with two vertices and 3 edges, with lengths l1, l2, l3 > 0. If Al is the weighted matrix in (4.3) then the
associated stochastic matrix takes the form

Pl =

















e−l1 0 1 − e−l1 0 0 0
0 e−l1 1 − e−l1 0 0 0
0 0 0 0 1

2
1
2

1
2

1
2 0 0 0 0

0 0 0 1 − e−l3 e−l3 0
0 0 0 1 − e−l3 0 e−l3

















.

The normalized right eigenvector for Pl is

q =















q1
q2
q3
q4
q5
q6















where

q1 =
el1(el3 − 1)

4 − 6el1 − 6el3 + 8el1+l3

q2 =
el1(el3 − 1)

4 − 6el1 − 6el3 + 8el1+l3

q3 =
(el1 − 1)(el3 − 1)

4 − 6el1 − 6el3 + 8el1+l3

q4 =
(el1 − 1)(el3 − 1)

4 − 6el1 − 6el3 + 8el1+l3

q5 =
el3(el1 − 1)

4 − 6el1 − 6el3 + 8el1+l3

q6 =
el3(el1 − 1)

4 − 6el1 − 6el3 + 8el1+l3
.



A WEIL-PETERSSON TYPE METRIC ON SPACES OF METRIC GRAPHS 13

We can again compute the coefficients in the first fundamental form which in this case are

E =
el1(3el1 − 2)(el3 − 1)

2(el1 − 1)(2 − 3el1 − 3el3 + 4el1+l3)
,

F =
el1+l3

2(el1 − 1)(2 − 3el1 − 3el3 + 4el1+l3)
,

G =
el3(3el3 − 2)(el1 − 1)

2(el1 − 1)(2 − 3el1 − 3el3 + 4el1+l3)
.

We can then again use the Brioschi formula in Lemma 5.1 to write

κ(l1, l3) =
12 − 16(el1 + el3) + 12(e2l1 + e2l3) − 9(e3l1 + e3l3) + 73(e2l1+l3 − el1+2l3) − 15(e3l1+l3 + el1+3l3)

2(el1 − 1)(el3 − 1)(2 − 3el1 − 3el3 + 4el1+l3)2

+
24(e3l1+2l3 + e2l1+3l3) − 40el1+l3 − 110e2(l1+l3)

2(el1 − 1)(el3 − 1)(2 − 3el1 − 3el3 + 4el1+l3)2

The plot of the curvature is given in Figure 4, where it is seen to be both positive (when l1, l3 are small)
and negative (when l1, l3 are large).

1

2

1

2

0

1

2

3

4

Figure 4. The curvature of a portion of M1
G for the dumbbell.
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