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1.Equilibrium Statistical Mechanics 

•  e.g. Frenkel-Kontorova chains: 
balls nεZ at positions xnε R 
connected by springs in a 
periodic potential 

•  Energy H(x) = Σn h(xn,xn+1)  
 with h(x+1,x’+1)=h(x,x’), ∂1∂2h<0, 
 e.g. h(x,x’)=½(x’-x-a)2+k cos 2πx  

•  Minimise energy, or compute 
properties of canonical ensemble 
exp{–βH(x)} Πdxn or quantum 
version  



Minimum energy aggregation 
•  Eliminate ball n by aggregating its two bonds into one new type of bond: 

 ĥ(xn-1,xn+1) = min(h(xn-1,xn)+h(xn,xn+1)) over xn. 
•  If interested in structures with mean spacing near ω, elimination of balls 

with nω ε [α,α+ω) mod 1 produces a chain with two types of bond: h 
and ĥ; one type occurs in singletons, say h (ω>½). 

•  Can iterate, aggregating every h with right neighbour ĥ and leaving one 
type in singletons.  

•  If also rescale x,h,ĥ (renormalisation), discover asymptotic self-
similarity, e.g. ω=(√5-1)/2 has a fixed point of renormalisation with two 
unstable directions, hence many scaling exponents: MacKay, Physica 
D 50 (1991) 71 

•  Classical SM: MacKay, J Stat Phys 80 (1995) 45 
•  Quantum SM: Catarino & M, J Stat Phys 121 (2005) 995 
•  Much other literature on real space renormalisation in statistical 

mechanics, e.g. van Enter 



2.Markov processes 
•  Continuous-time regular jump homogeneous Markov 

chain, state space S, mean waiting times Ts, 
transition probabilities Pst (wlog Pss = 0); equivalently, 
transition rate matrix qst = Pst/Ts, qss = -Σt≠s qst.  

•  Wish to aggregate states to get a smaller Markov 
chain, with equivalent stationary probability and mean 
first passage time (MFPT); cf H Simon, 1961, and 
many others, but most I’ve seen involve non-local 
computation. 

•  Two local schemes: Wales, 2006; MacKay 
•  They work for semi-Markov too (arbitrary waiting time 

distributions); best to think of as steady flows  



Wales, Int Rev Phys Chem 25 (2006) 237 

•  Eliminate node x, and put 
 T’s= (Ts+PsxTx)/(1-PsxPxs) 
 P’st = (Pst+PsxPxt)/(1-PsxPxs), t≠s 

•  Then for any initial s≠x and subset B (not containing x nor s) 
with probability 1 of eventual hitting B from s, the new Markov 
chain computes correct MFPT TsB. 

•  e.g. can eliminate all but s and B, then TsB = T’s; or reduce to B 
and a small A containing s and find vector TAB = (I-P’AA)-1T’A. 

•  Also version allowing Pss≠0 which also conserves TsB for B 
containing s: J Chem Phys 130 (2009) 204111 

•  Uses to estimate chemical reaction rates for systems with many 
local minima: connect minima in a tree at energy where their 
basins merge and compute a transition rate from saddle.  



Wales: GB1 (16 amino-acids) 

Can get stationary probability from Wales 2009 version, by 
 πs = Ts/Ts{s} (0 if P{return}<1) 

and  Ts{s} = T’s + P’s$(I-P’$$)-1 T’$, 
where $ = set of nodes remaining after aggregation minus s  



Aggregation of Markov flows 
•  Alternatively, can aggregate nodes aεA to a super-node A, at the 

expense of possible multiple edges sA, At and making mean 
waiting time Te in A and transition probabilities Pef depend on entry 
edge e. 

•  Can aggregate super-nodes just the same (and allow waiting time 
on edges too): 
 T’e = Te + PeA (I-PAA)-1 TA for e entering A 
 P’ef = Pef + PeA (I-PAA)-1 PAf for e entering A, f leaving A     

•  Get a Markov flow on space of remaining edges, hence e.g. MFPT 
TeB = Te+ Σf PefTfB. 

•  If desired, can aggregate its nodes etc.   
•  Want useful choices which decrease the complexity. 



3.Traffic Flow 
•  Suppose each driver knows 

cost of each route under 
current conditions, and 
chooses route to minimise cost 

•  If cost of a route is just a sum 
of edge costs, each depending 
on flow on that edge, and know 
set of desired flow rates from 
origins to destinations, there is 
good theory to predict the 
resulting traffic (Nash flow), 
e.g. Roughgarden’s 2005 book 



Aggregation 
•  But might want to treat some 

subgraphs as single nodes, e.g. 
to simplify representation or for 
hierarchical computation: given 
entryexit flow rates fee’ and 
those for internal origins/
destinations, compute Nash flow 
inside and call resulting costs 
cee’(f), coe’(f), ced(f) 

•  Introduces junction costs in 
addition to edge costs 



Edge & Junction Costs 
•  In any case, real junctions incur costs too 
•  So work in class of models with edge and 

junction costs 
•  Further aggregation results in a model of 

the same type 
•  So can construct a hierarchy of aggregated 

models 
•  Can view as just edge costs on graph with 

edges as nodes but with dependence on 
other flows; allows extension of standard 
theory, and aggregation of edges. 

•  Looks useful for computation & planning 
•  Should start with simpler problem of 

aggregation methods for shortest route 
planning, on which there is a large 
literature. 



4.Interacting Agents 
•  Standard view in economics is that we are expected-

utility maximisers; this can be derived from assuming 
preferences form a complete pre-order: 
 x≥y, y≥z ⇒ x≥z; x≥x; x≥y or y≥x 

•  Suppose the utilities of a group of agents are closely 
aligned or include cooperative trades, then might 
expect to be able to replace them by one super-agent 
with some effective utility function 

•  Sometimes; but in general the super-agent’s 
preferences form just a partial order (incomplete pre-
order): 
 x≥y, y≥z ⇒ x≥z; x≥x 



Aggregation of Partial-order Agents  

•  In any case, experiments show individual’s 
preferences don’t form a complete pre-order, so 
why not start from partial-order agents 
(incomplete preferences)? 

•  Aggregation of partial-order agents remains in 
same class 

•  Could be useful to understand behaviour of 
social and economic systems, e.g. conditions for 
“asabiya”: capacity of a group for collective 
action. 



5.Oscillator Networks 

 e.g. Breathing is controlled by two groups of about 300 
neurons each, generating robust, synchronised bursting 
 2 oscillators phase-lock if coupling exceeds frequency 
difference (Huygens): then could replace by a single oscillator 



Normal Hyperbolicity 

•  In a network, oscillators have inputs, so consider an oscillator as an input-
output device: for each set of (not too large) input functions of time there is 
an attracting invariant cylinder in state space x time, depending smoothly on 
the input functions (normal hyperbolicity), so a circle of output functions. 

•  With PhD student Stephen Gin we’re developing theory for aggregation of 
oscillators as input-output systems 

•  2 oscillators with input functions gives an attracting 2-torus x time; if 
dynamics on it contains an attracting cylinder then can replace the pair by 
one effective oscillator 

•  Special case of one-way coupling when attracting cylinder for forced 
oscillator may contain an attracting trajectory (phase-locked loop) 

•  If consider strong forcing, can also get quenching, but intermediate regime is 
complicated because normal hyperbolicity lost. 

•  Exploring conditions to aggregate into a large phase-locked cluster 



Conclusion 
•  Aggregation of complex systems is a powerful 

procedure with a wide range of applications 
•  Some others: electricity networks, financial 

networks, shortest route planning 
•  Hierarchical aggregation produces multi-level 

dynamics 
•  But need good principles/heuristics to choose 

which bits to aggregate, e.g. community 
detection, highway hierarchies. 

•  There are lots of research opportunities here. 
•  I wrote a short paper for FET-Proactive 


