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1 Discrete-time

Suppose f : M — M is a C' diffeomorphism of a manifold M with a norm on its
tangent bundle. We can allow f to be time-dependent with small notational change, but
the extension will be clear once the autonomous case is understood.

Define F' : M% — M?% by F(x); = f(x¢_1) and use supremum norm for sequences of
tangent vectors. Orbits of f correspond to fixed points of F'. Uniformly hyperbolic orbits
of f correspond to non-degenerate fixed points of F' (I — DF invertible with bounded
inverse).

More generally, suppose A : M — L(V,V) is a continuous matrix function on M,
acting on a normed vector space V (really we should make it a vector bundle over M).
We suppose A is Lipschitz, with Lipschitz constant ¢ (though any module of continuity
would suffice). An example is the derivative f’, with V being the tangent bundle T'M.

We study the linear dynamics on V' generated by

§t41 = A(%)ﬁt,

for orbits or pseudo-orbits z = (x4)4cz of f. Its matrix solutions (i.e. taking & € L(V, V)
instead of just V are called a cocycle for f.

We say that the cocycle is uniformly hyperbolic for a sequence x = (x7)ez on M (or
a set of such sequences and matrix functions A) if there exists K > 0 such that for the
operator B, on sequences { = (&;)iez in V defined by

B[€ls = A(zi-1)&1
then I — B, is invertible with ||(I — B;)~!| < K.
For x € M%,let L, = I — B,. So
L8]t =& — Ar—16i1

where A;_; is short for A(z;—1).
By preceding theory, if |[L7!|| < K~ then L™tn]; = 3 oy Gesns for some matrix
function Gys called the Green function, satisfying

|Gis| < Cplt=! (1)



for some C' > 0 and p < 1, related to K.
From LL~! = I we obtain

Gis = At—1G—1,5 + Ots, (2)
where 0., is the identity matrix for t = s, zero otherwise. From L™!'L = I we obtain
Gts = Gt,s+1As + 5ts- (3)

Suppose z is a pseudo-orbit, i.e. d(F(z),z) < § small, with each x; € A, some
uniformly hyperbolic set for A invariant under f (could allow x; close to A later). We
wish to prove that z is uniformly hyperbolic for A with only slightly smaller K.

The strategy (cf. [Pa]) is to make an approximate right inverse R for L, in the sense
that ||I — LR|| < er < 1, and an approximate left inverse @, || — QL|| <eg < 1. Then
LR is invertible with ||(LR)7!|| < (1 —eg)~! and QL is invertible with |[(QL)™!| <
(1—eg)~!. So R(LR)™!is a true right inverse to L and (QL)™'Q is a true left inverse
to L. Then L is invertible and ||L7Y| < ||R||/(1 — egr) and ||Q|/(1 — eg) (assuming R
or @ is bounded).

We take

Ris =G5, Qs =Gl fort —T <s<t+T, (4)

for some T to be determined (could allow different 7't ), zero otherwise, where for any
u € Z, G" is the Green function for the true orbit of x,.
Then

LRWt = Z Gfsﬁs — A Z Gf—l,sns'

t—T<s<t+T t—1-T<s<t—1+4T

Substitute (2) in the first sum, but using the label A® to indicate that A is evaluated
along the orbit of x;. Then, shifting ¢ to ¢ + 1 to simplify the expression,

(I = LR)[n]e41 = S (A= A)GI s | + AG e — ATTTG e
t+1-T<s<t+T
(5)
To bound A; — A we use that A is Lipschitz with Lipschitz constant ¢ and that
v = = fleen) + 1 — flat)
where x® denotes the orbit of z; and |6;—1| < . So
we — x| < Aoy — @74+,

where A is an upper bound for |f’|. For ¢t > s this implies |z; — xf| < 6>‘t;1_1. For

simplicity we will choose A > 1 and use the bound |z; — z}| < ¢ i{t:ls So for t > s we
have
At—s
A — A7 < 4o .
’ t t‘ — A—1



For ¢t < s we use instead

zp— ) = f (@1 — &) — F (@)

to obtain
|zt — 25| < A(|zt41 — 2i44| +9),

where we have chosen A to also be an upper bound on | f_1/| (could use a separate

constant). Thus for ¢t < s we obtain |z; — zj| < 0 % Again we will bound this by

just (S%EI1 . So for t < s we have
)\s—t—i—l
A—1"

Ay — A3 < 05

Thus the part of the sum in (5) with s < ¢ is bounded by

05Cn| ()" = A
A—1 -1 "7

where the second ratio is interpreted as T'— 1 if Ay = 1. Similarly we obtain A times this
as a bound on the forward part of the sum. The term with s =t is zero. So we obtain

o A+ 1)6C8 () — A
> _ <
‘ (At At)Gt,snS‘ — A—1 )\,LL -1

t+1-T<s<t+T

n].

The boundary terms in (5) are each bounded by ACu”|n|. Thus

A+1 M) = A
I —-LR| <
|1 = LR < 30003 =

+22CuT.

We choose T roughly to minimise the RHS by making the two terms comparable. The
solution depends on the size of Au relative to 1. We could always take a big over-
estimate of A\ to achieve Ay > 1 but for the purposes of not throwing away too much in
our estimates, we’ll consider the three cases.

If Ap is significantly larger than 1 then we take A7d ~ 1, so T ~ 1?5;45. This is also

the largest we can take 1" to be sure that z; remains in a local chart around z7. Then
log1/p
|1 — LR|| has size of order u ~ § loex | which goes to zero as § — 0.

If Ay is significantly less than 1 then we take 0 ~ u’, so T ~ llggi. Then ||I — LR||
has size of order §, which goes to zero faster.
If Ay is near 1 then we solve 76 ~ u! which makes T a little larger than

I — LR| of order 511852 which still goes to zero with 4.

Next we bound R. The easiest is just to use the bounds (1) on the Green function.
So IRl < 32 pesatrr Cut=s < %C. One could do much better by comparing G*
with G* and using | Y., Gins| < K~ 'n| and the Green function estimates to bound
the tails, but the comparison of G* with G* requires some more work, and we can instead

use Q) to obtain a tight bound on the final result.

log &

Tog 1 and




For the left inverse, first we bound Q. Recall Q[n]; = 32, 7 ,oyyr Gisns. If we took
the sum over all s € Z then we would have (L!)~![n];, which is bounded by K~!|5|,

where L is the operator corresponding to the orbit of z;. The sum of the added tails is
bounded by C}ir—’ljuT|n|. Thus

_ 1+
lQI < &'+ 03—
—p
Next we bound I — QL.

QL = Y Gh(& — Asaés).

t—T<s<t+T

Substituting (3) for the GL.&; term (but using A'), we obtain (I — QL)[¢]: =

t t t t
E Gt s+1(As - As)fs + Gt,thAt—T—lft—T—l - Gt,t+TAt+T—1ft+T—1-
t—T<s<t+T-2

Reversing the roles of s and ¢ in the analysis for A; — A§ above, we bound |z; — x| <
5 7 A*7 for s > t and by )\5 N5+ for s < t. So

1+1
IT—QL| < - /Acww) “ M aoaT
A— Ap—1

The same choice of T' as before makes these two terms comparable and so ||[I — QL] is
logl/
of order § logr again if Ay > 1 (and the corresponding expressions for the other two
cases).
Thus L is invertible for § small enough, and
log1/
|QIl _ K1 +0( =) 1
_ — log 1/ - log1l/
€Q 1— 0(5%) K — 0(5%)

L—l
Iz <

as desired, where we’ve taken the case Ay > 1 (else change the error term to O(J) or

051282,
og

There are other possible choices of R and @, e.g. using the projections for the true
orbits multiplied by the product of derivatives for the pseudo-orbit. This simplifies some

of the analysis, but produces worse approximations.
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