Uniform hyperbolicity of cocycles for pseudo-orbits in discrete time

R.S.MacKay

November 1, 2011

1 Discrete-time

Suppose $f: M \rightarrow M$ is a C^{1} diffeomorphism of a manifold M with a norm on its tangent bundle. We can allow f to be time-dependent with small notational change, but the extension will be clear once the autonomous case is understood.

Define $F: M^{\mathbb{Z}} \rightarrow M^{\mathbb{Z}}$ by $F(x)_{t}=f\left(x_{t-1}\right)$ and use supremum norm for sequences of tangent vectors. Orbits of f correspond to fixed points of F. Uniformly hyperbolic orbits of f correspond to non-degenerate fixed points of $F(I-D F$ invertible with bounded inverse).

More generally, suppose $A: M \rightarrow L(V, V)$ is a continuous matrix function on M, acting on a normed vector space V (really we should make it a vector bundle over M). We suppose A is Lipschitz, with Lipschitz constant ℓ (though any module of continuity would suffice). An example is the derivative f^{\prime}, with V being the tangent bundle $T M$.

We study the linear dynamics on V generated by

$$
\xi_{t+1}=A\left(x_{t}\right) \xi_{t},
$$

for orbits or pseudo-orbits $x=\left(x_{t}\right)_{t \in \mathbb{Z}}$ of f. Its matrix solutions (i.e. taking $\xi_{t} \in L(V, V)$ instead of just V are called a cocycle for f.

We say that the cocycle is uniformly hyperbolic for a sequence $x=\left(x_{T}\right)_{t \in \mathbb{Z}}$ on M (or a set of such sequences and matrix functions A) if there exists $K>0$ such that for the operator B_{x} on sequences $\xi=\left(\xi_{t}\right)_{t \in \mathbb{Z}}$ in V defined by

$$
B_{x}[\xi]_{t}=A\left(x_{t-1}\right) \xi_{t-1}
$$

then $I-B_{x}$ is invertible with $\left\|\left(I-B_{x}\right)^{-1}\right\| \leq K^{-1}$.
For $x \in M^{\mathbb{Z}}$, let $L_{x}=I-B_{x}$. So

$$
L_{x}[\xi]_{t}=\xi_{t}-A_{t-1} \xi_{t-1}
$$

where A_{t-1} is short for $A\left(x_{t-1}\right)$.
By preceding theory, if $\left\|L^{-1}\right\| \leq K^{-1}$ then $L^{-1}[\eta]_{t}=\sum_{s \in \mathbb{Z}} G_{t s} \eta_{s}$ for some matrix function $G_{t s}$ called the Green function, satisfying

$$
\begin{equation*}
\left|G_{t s}\right| \leq C \mu^{|t-s|} \tag{1}
\end{equation*}
$$

for some $C>0$ and $\mu<1$, related to K.
From $L L^{-1}=I$ we obtain

$$
\begin{equation*}
G_{t s}=A_{t-1} G_{t-1, s}+\delta_{t s} \tag{2}
\end{equation*}
$$

where $\delta_{t s}$ is the identity matrix for $t=s$, zero otherwise. From $L^{-1} L=I$ we obtain

$$
\begin{equation*}
G_{t s}=G_{t, s+1} A_{s}+\delta_{t s} \tag{3}
\end{equation*}
$$

Suppose x is a pseudo-orbit, i.e. $d(F(x), x) \leq \delta$ small, with each $x_{t} \in \Lambda$, some uniformly hyperbolic set for A invariant under f (could allow x_{t} close to Λ later). We wish to prove that x is uniformly hyperbolic for A with only slightly smaller K.

The strategy (cf. [Pa]) is to make an approximate right inverse R for L, in the sense that $\|I-L R\| \leq \varepsilon_{R}<1$, and an approximate left inverse $Q,\|I-Q L\| \leq \varepsilon_{Q}<1$. Then $L R$ is invertible with $\left\|(L R)^{-1}\right\| \leq\left(1-\varepsilon_{R}\right)^{-1}$ and $Q L$ is invertible with $\left\|(Q L)^{-1}\right\| \leq$ $\left(1-\varepsilon_{Q}\right)^{-1}$. So $R(L R)^{-1}$ is a true right inverse to L and $(Q L)^{-1} Q$ is a true left inverse to L. Then L is invertible and $\left\|L^{-1}\right\| \leq\|R\| /\left(1-\varepsilon_{R}\right)$ and $\|Q\| /\left(1-\varepsilon_{Q}\right)$ (assuming R or Q is bounded).

We take

$$
\begin{equation*}
R_{t s}=G_{t s}^{s}, Q_{t s}=G_{t s}^{t} \text { for } t-T \leq s<t+T \tag{4}
\end{equation*}
$$

for some T to be determined (could allow different $T_{ \pm}$), zero otherwise, where for any $u \in \mathbb{Z}, G^{u}$ is the Green function for the true orbit of x_{u}.

Then

$$
L R[\eta]_{t}=\sum_{t-T \leq s<t+T} G_{t s}^{s} \eta_{s}-A_{t-1} \sum_{t-1-T \leq s<t-1+T} G_{t-1, s}^{s} \eta_{s}
$$

Substitute (2) in the first sum, but using the label A^{s} to indicate that A is evaluated along the orbit of x_{s}. Then, shifting t to $t+1$ to simplify the expression,

$$
\begin{equation*}
(I-L R)[\eta]_{t+1}=\left(\sum_{t+1-T \leq s<t+T}\left(A_{t}-A_{t}^{s}\right) G_{t, s}^{s} \eta_{s}\right)+A_{t} G_{t, t-T}^{t-T} \eta_{t-T}-A_{t}^{t+T} G_{t, t+T}^{t+T} \eta_{t+T} \tag{5}
\end{equation*}
$$

To bound $A_{t}-A_{t}^{s}$ we use that A is Lipschitz with Lipschitz constant ℓ and that

$$
x_{t}-x_{t}^{s}=f\left(x_{t-1}\right)+\delta_{t-1}-f\left(x_{t-1}^{s}\right)
$$

where x^{s} denotes the orbit of x_{s} and $\left|\delta_{t-1}\right| \leq \delta$. So

$$
\left|x_{t}-x_{t}^{s}\right| \leq \lambda\left|x_{t-1}-x_{t-1}^{s}\right|+\delta
$$

where λ is an upper bound for $\left|f^{\prime}\right|$. For $t>s$ this implies $\left|x_{t}-x_{t}^{s}\right| \leq \delta \frac{\lambda^{t-s}-1}{\lambda-1}$. For simplicity we will choose $\lambda>1$ and use the bound $\left|x_{t}-x_{t}^{s}\right| \leq \delta \frac{\lambda^{t-s}}{\lambda-1}$. So for $t>s$ we have

$$
\left|A_{t}-A_{t}^{s}\right| \leq \ell \delta \frac{\lambda^{t-s}}{\lambda-1}
$$

For $t<s$ we use instead

$$
x_{t}-x_{t}^{s}=f^{-1}\left(x_{t+1}-\delta_{t}\right)-f^{-1}\left(x_{t+1}^{s}\right)
$$

to obtain

$$
\left|x_{t}-x_{t}^{s}\right| \leq \lambda\left(\left|x_{t+1}-x_{t+1}^{s}\right|+\delta\right)
$$

where we have chosen λ to also be an upper bound on $\left|f^{-1^{\prime}}\right|$ (could use a separate constant). Thus for $t<s$ we obtain $\left|x_{t}-x_{t}^{s}\right| \leq \delta \frac{\lambda^{s-t+1}-\lambda}{\lambda-1}$. Again we will bound this by just $\delta \frac{\lambda^{s-t+1}}{\lambda-1}$. So for $t<s$ we have

$$
\left|A_{t}-A_{t}^{s}\right| \leq \ell \delta \frac{\lambda^{s-t+1}}{\lambda-1}
$$

Thus the part of the sum in (5) with $s<t$ is bounded by

$$
\frac{\ell \delta C|\eta|}{\lambda-1} \frac{(\lambda \mu)^{T}-\lambda \mu}{\lambda \mu-1}
$$

where the second ratio is interpreted as $T-1$ if $\lambda \mu=1$. Similarly we obtain λ times this as a bound on the forward part of the sum. The term with $s=t$ is zero. So we obtain

$$
\left|\sum_{t+1-T \leq s<t+T}\left(A_{t}-A_{t}^{s}\right) G_{t, s}^{s} \eta_{s}\right| \leq \frac{(\lambda+1) \ell C \delta}{\lambda-1} \frac{(\lambda \mu)^{T}-\lambda \mu}{\lambda \mu-1}|\eta|
$$

The boundary terms in (5) are each bounded by $\lambda C \mu^{T}|\eta|$. Thus

$$
\|I-L R\| \leq \frac{\lambda+1}{\lambda-1} \ell C \delta \frac{(\lambda \mu)^{T}-\lambda \mu}{\lambda \mu-1}+2 \lambda C \mu^{T}
$$

We choose T roughly to minimise the RHS by making the two terms comparable. The solution depends on the size of $\lambda \mu$ relative to 1 . We could always take a big overestimate of λ to achieve $\lambda \mu>1$ but for the purposes of not throwing away too much in our estimates, we'll consider the three cases.

If $\lambda \mu$ is significantly larger than 1 then we take $\lambda^{T} \delta \approx 1$, so $T \approx \frac{\log 1 / \delta}{\log \lambda}$. This is also the largest we can take T to be sure that x_{t} remains in a local chart around x_{t}^{s}. Then $\|I-L R\|$ has size of order $\mu^{T} \approx \delta^{\frac{\log 1 / \mu}{\log \lambda}}$, which goes to zero as $\delta \rightarrow 0$.

If $\lambda \mu$ is significantly less than 1 then we take $\delta \approx \mu^{T}$, so $T \approx \frac{\log \delta}{\log \mu}$. Then $\|I-L R\|$ has size of order δ, which goes to zero faster.

If $\lambda \mu$ is near 1 then we solve $T \delta \approx \mu^{T}$ which makes T a little larger than $\frac{\log \delta}{\log \mu}$ and $\|I-L R\|$ of order $\delta \frac{\log \delta}{\log \mu}$ which still goes to zero with δ.

Next we bound R. The easiest is just to use the bounds (1) on the Green function. So $\|R\| \leq \sum_{t-T \leq s<t+T} C \mu^{t-s} \leq \frac{1+\mu}{1-\mu} C$. One could do much better by comparing G^{s} with G^{t} and using $\left|\sum_{s \in \mathbb{Z}} G_{t s}^{t} \eta_{s}\right| \leq K^{-1}|\eta|$ and the Green function estimates to bound the tails, but the comparison of G^{s} with G^{t} requires some more work, and we can instead use Q to obtain a tight bound on the final result.

For the left inverse, first we bound Q. Recall $Q[\eta]_{t}=\sum_{t-T \leq s<t+T} G_{t s}^{t} \eta_{s}$. If we took the sum over all $s \in \mathbb{Z}$ then we would have $\left(L^{t}\right)^{-1}[\eta]_{t}$, which is bounded by $K^{-1}|\eta|$, where L^{t} is the operator corresponding to the orbit of x_{t}. The sum of the added tails is bounded by $C \frac{1+\mu}{1-\mu} \mu^{T}|\eta|$. Thus

$$
\|Q\| \leq K^{-1}+C \frac{1+\mu}{1-\mu} \mu^{T}
$$

Next we bound $I-Q L$.

$$
Q L[\xi]_{t}=\sum_{t-T \leq s<t+T} G_{t s}^{t}\left(\xi_{s}-A_{s-1} \xi_{s-1}\right)
$$

Substituting (3) for the $G_{t s}^{t} \xi_{s}$ term (but using A^{t}), we obtain $(I-Q L)[\xi]_{t}=$

$$
\sum_{t-T \leq s \leq t+T-2} G_{t, s+1}^{t}\left(A_{s}-A_{s}^{t}\right) \xi_{s}+G_{t, t-T}^{t} A_{t-T-1} \xi_{t-T-1}-G_{t, t+T}^{t} A_{t+T-1}^{t} \xi_{t+T-1}
$$

Reversing the roles of s and t in the analysis for $A_{t}-A_{t}^{s}$ above, we bound $\left|x_{s}-x_{s}^{t}\right| \leq$ $\frac{\delta}{\lambda-1} \lambda^{s-t}$ for $s>t$ and by $\frac{\delta}{\lambda-1} \lambda^{t-s+1}$ for $s<t$. So

$$
\|I-Q L\| \leq \frac{1+1 / \lambda}{\lambda-1} C \ell \delta \frac{(\lambda \mu)^{T}-\lambda \mu}{\lambda \mu-1}+2 C \lambda \mu^{T}
$$

The same choice of T as before makes these two terms comparable and so $\|I-Q L\|$ is of order $\delta^{\frac{\log 1 / \mu}{\log \lambda}}$ again if $\lambda \mu>1$ (and the corresponding expressions for the other two cases).

Thus L is invertible for δ small enough, and

$$
\left\|L^{-1}\right\| \leq \frac{\|Q\|}{1-\varepsilon_{Q}} \leq \frac{K^{-1}+O\left(\delta^{\frac{\log 1 / \mu}{\log \lambda}}\right)}{1-O\left(\delta^{\frac{\log 1 / \mu}{\log \lambda}}\right)}=\frac{1}{K-O\left(\delta^{\frac{\log 1 / \mu}{\log \lambda}}\right)}
$$

as desired, where we've taken the case $\lambda \mu>1$ (else change the error term to $O(\delta)$ or $O\left(\delta \frac{\log \delta}{\log \mu}\right)$.

There are other possible choices of R and Q, e.g. using the projections for the true orbits multiplied by the product of derivatives for the pseudo-orbit. This simplifies some of the analysis, but produces worse approximations.

References

[Pa] Palmer K, Shadowing in dynamical systems (Kluwer, 2000)

