Beilinson at weight -1

Rob Rockwood

BSD

Let E be an elliptic curve over number field \mathbb{Q} of rank r

- BSD conjecture (Beilinson style):
(1) $\operatorname{ord}_{s=1} L(E, s)=r$
(2. $L^{(r)}(E, 1) \equiv \Omega_{E} R_{E} \bmod \mathbb{Q}^{\times}$
- Ω_{E} is the real period.
- If $\left\{P_{i}\right\}$ is a basis for $E(\mathbb{Q})$, then $R_{E}=\operatorname{det}\left\langle P_{i}, P_{j}\right\rangle_{E}$ where $\langle-,-\rangle_{E}$ is the Néron-Tate height pairing.

Néron-Tate height pairing

- $\langle-,-\rangle_{E}: E(\mathbb{Q})^{2} \rightarrow \mathbb{R}$ non-singular on $E(\mathbb{Q})^{2} \otimes \mathbb{Q}$.
- $h(P)=\langle P, P\rangle_{E}$ is canonical height function, a quadratic form.
- h can be constructed as a sum of 'almost quadratic' local terms $h_{v}: E\left(\mathbb{Q}_{v}\right) \backslash\{\mathcal{O}\} \rightarrow \mathbb{R}$ for each place $v:$

$$
h(P)=\sum_{v} h_{v}(P)
$$

for $P \neq\{\mathcal{O}\}$.

- Since $E(\mathbb{Q})=\mathrm{CH}^{1}(E)^{0}$ (homologically trivial subspace) get a perfect pairing

$$
\mathrm{CH}^{1}(E)_{\mathbb{Q}}^{0} \otimes \mathrm{CH}_{\mathbb{Q}}^{1}(E)^{0} \rightarrow \mathbb{R} .
$$

Relation to Beilinson's conjectures

- Let $M=h^{1}(E)(1) . M$ is a pure motive of weight $\omega=-1$ and

$$
L(E, 1)=L(M, 0)
$$

- What does Beilinson's conjecture say in this case?
- Problems at $\omega=-1$:
(1) For $\omega=-2,-1, s=0$ is not in the convergence region.
(2) Deligne conjectures that zeroes can only occur at $\omega=-1$.
(3) Deligne's conjecture: Pure motives are always critical when $\omega=-1$. But conjecture becomes vacuous in the presence of zeroes.
- BSD shows us that the order of zeroes can carry important arithmetic information.

Relation to Beilinson's conjectures

- Let X be a smooth projective variety over \mathbb{Q} equidimensional of dimension N and let $M=h^{2 a-1}(X)(a)$.
- For $a+b=N+1$, Beilinson has, under some assumptions, constructed a 'geometric' height pairing

$$
\langle-,-\rangle_{x}: \mathrm{CH}^{a}(X)_{\mathbb{Q}}^{0} \otimes \mathrm{CH}^{b}(X)_{\mathbb{Q}}^{0} \rightarrow \mathbb{R}
$$

- Beilinson conjectures:
(1) $\langle-,-\rangle_{X}$ is non-degenerate.
(2) $\operatorname{ord}_{s=0} L(M, 0)=\operatorname{dim}_{\mathbb{Q}} \mathrm{CH}^{n}(X)_{\mathbb{Q}}^{0}$
(3) $L^{*}(M, 0)=c_{+}(M) \operatorname{det}\langle-,-\rangle_{X} \cdot \mathbb{Q}^{*}$, where L^{*} denotes the leading term and $c_{+}(M)$ is Deligne's period.

Outline

- A discussion of mixed motives and their ext groups
- Beilinson's construction of geometric height pairings
- Scholl's construction of motivic height pairings
- Relation to L-values: Scholl's unification.

Mixed motives

- Let $\mathcal{M M}_{\mathbb{Q}}$ denote the conjectural category of mixed motives over \mathbb{Q}.
- $\mathcal{M} \mathcal{M}_{\mathbb{Q}}$ should be abelian and generated by the full subcategory of pure motives $\mathcal{M}_{\mathbb{Q}}$ under homological equivalence.
- $E \in \mathcal{M} \mathcal{M}_{\mathbb{Q}}$ has realisations $\left(E_{B}, E_{d R},\left\{E_{\ell}\right\}_{\ell}\right)$. $E_{d R}$ is mixed Hodge structure: Additional increasing weight filtration: $W_{\bullet} E_{d R}$ such that $\mathrm{Gr}_{i}^{W} E_{d R}$ are pure of weight i. Corresponding filtration on E.
- Scholl defines 'mixed motives over \mathbb{Z} ' to be the subcategory of $\mathcal{M} \mathcal{M}_{\mathbb{Q}}$ whose weight filtration splits over the inertia subgroup I_{v} for all v, ℓ with $v \nmid \ell$. For $E \in \mathcal{M M}_{\mathbb{Z}}$

$$
L(E, s)=\prod_{i} L\left(\operatorname{Gr}_{i}^{W} E, s\right)
$$

Ext groups in $\mathcal{M} \mathcal{M}_{K}$

- We write $\operatorname{Ext}_{\mathbb{Q}}^{i}, \operatorname{Ext}_{\mathbb{Z}}^{i}$ for ext in $\mathcal{M} \mathcal{M}_{\mathbb{Q}}, \mathcal{M} \mathcal{M}_{\mathbb{Z}}$. We expect these groups to vanish for $i \notin[0,1]$. If X is a smooth proper variety over \mathbb{Q}, $M=h^{i}(X)(m)$ we expect:

$$
\begin{aligned}
& \operatorname{Ext}_{\mathbb{Z}}^{0}(M, \mathbb{Q}(1))= \begin{cases}0 & \text { if } i \neq 2 n \\
\operatorname{CH}^{n}(X) / \mathrm{CH}^{n}(X)^{0} \otimes \mathbb{Q} & \text { if } i=2 n\end{cases} \\
& \operatorname{Ext}_{\mathcal{O}}^{1}(M, \mathbb{Q}(1))= \begin{cases}H_{\mathcal{M}}^{i+1}(X, \mathbb{Q}(n))_{\mathbb{Z}} & i \neq 2 n+1 \\
\operatorname{CH}^{n}(X)^{0} \otimes \mathbb{Q} & i=2 n+1\end{cases}
\end{aligned}
$$

where $n=I+1-m$.

- $N=M^{\vee}(1)=h^{i}(X)(n)$ then equality for $\operatorname{Ext}_{\mathcal{O}}^{i}(\mathbb{Q}(0), N) \cong \operatorname{Ext}_{\mathcal{O}}^{i}(M, \mathbb{Q}(1))$.

Beilinson's height pairing

- Let X be as before.
- Suppose X admits a regular model \mathcal{X} over \mathbb{Z}. For $a+b=N+1$, we have an intersection pairing

$$
\mathrm{CH}^{a}(\mathcal{X})_{\mathbb{Q}}^{0} \times \mathrm{CH}^{b}(\mathcal{X})_{\mathbb{Q}}^{0} \rightarrow \mathbb{R}
$$

defined as a sum of local terms.

- Define $\mathrm{CH}^{n}(X)_{\mathbb{Q}}^{00}$ to be the image of

$$
\cap_{v, \ell, \downarrow \nmid} \operatorname{Ker}\left(\mathscr{Z}^{n}(\mathcal{X})_{\mathbb{Q}} \rightarrow H^{2 n}\left(\mathcal{X} \otimes \overline{k(v)}, \mathbb{Q}_{\ell}(n)\right) .\right.
$$

in $\mathrm{CH}^{n}(X)_{\mathbb{Q}}^{0}$. Cycles ξ, δ lying in this subspace can be lifted to $\xi^{\prime}, \delta^{\prime}$ on \mathcal{X} and we define

$$
\langle\xi, \delta\rangle_{X}=\left\langle\xi^{\prime}, \delta^{\prime}\right\rangle_{\mathcal{X}}
$$

which does not depend on the choice of lift.

- Beilinson conjectures:

$$
\mathrm{CH}^{n}(X)_{\mathbb{Q}}^{00}=\mathrm{CH}^{n}(X)_{\mathbb{Q}}^{0}
$$

Beilinson's height pairing

- Beilinson describes the pairing $\langle-,-\rangle_{X}$ in local terms, each defined cohomologically.
- We can define the terms at primes both infinite and non-infinite in a unified way using the tensor category formulation of 'geometric' and 'arithmetic' cohomology theories discussed in Alex's talk.

Beilinson's height pairing

- Given a rigid abelian tensor category \mathcal{T} with coefficient ring $A=\operatorname{End}_{\mathcal{T}}(\mathbb{1})$ and 'geometric cohomology' objects $R \Gamma_{c}(X), R \Gamma_{Y}(X)$ in $\mathscr{D}^{b}(\mathcal{T})$ for schemes of finite type X / F and closed subsets $Y \hookrightarrow X$, letting $R \Gamma(X)=R \Gamma_{X}(X)$.
- Pertinent examples:
(1) F is a number field or a finite extension of $\mathbb{Q}_{\ell}^{u r}$ and \mathcal{T} is the category of finite-dimensional \mathbb{Q}_{ℓ}-linear representations of G_{F} and $R \Gamma(X)=R \Gamma\left(\bar{X}_{e ́ t}, \mathbb{Q}_{\ell}\right)$
(2) $F=\mathbb{R}$ and \mathcal{T} is the category of mixed \mathbb{R}-Hodge structures over F and $R \Gamma(X)$ is the 'Hodge complex'.
- Both examples admit a Tate object $A(1)$. Write denote $R \Gamma_{?}(X) \otimes A(n)=: R \Gamma(X, n)$. Define arithmetic cohomology groups $H_{\mathcal{T}}^{i}$ as:

$$
R \Gamma_{\mathcal{T}, ?}(X, n):=R \operatorname{Hom}_{?}\left(\mathbb{1}, R \Gamma_{?}(X, n)\right) \in \mathscr{D}(A)
$$

- Produces 'absolute Hodge cohomology' 'continuous étale cohomology', 'motivic cohomology' etc.

Beilinson's height pairings

- We have exact triangles

$$
\begin{array}{r}
R \Gamma_{Y}(X) \rightarrow R \Gamma(X) \rightarrow R \Gamma(X-Y) \rightarrow R \Gamma_{Y}(X)[1] \\
R \Gamma_{c}(X-Y) \rightarrow R \Gamma_{c}(X) \rightarrow R \Gamma_{c}(Y) \rightarrow R \Gamma_{c}(X-Y)[1]
\end{array}
$$

duality pairings

$$
R \Gamma_{Y}(X) \otimes R \Gamma(X) \rightarrow R \Gamma_{Y}(X), R \Gamma_{c}(X) \otimes R \Gamma(X) \rightarrow R \Gamma_{c}(X)
$$

and trace maps

$$
\operatorname{Tr}: R \Gamma_{c}(X) \rightarrow A(-N)[-2 N]
$$

when X is smooth of dimension N.

- X smooth, $Y \subset X$ codimension d we have

$$
H_{Y}^{i}(X)=0, i<2 d
$$

and a cycle class map

$$
\operatorname{cl}_{Y}: A(-d) \rightarrow H_{Y}^{2 d}(X)
$$

which is an isomorphism for Y absolutely irreducible.

Beilinson's height pairing

- cl_{Y} induces an 'absolute' cycle map

$$
\mathrm{cl}_{\mathcal{T}, Y}: \mathscr{Z}_{Y}^{d}(X) \rightarrow H_{\mathcal{T}, Y}^{2 d}(X, d) .
$$

This becomes an isomorphism after tensoring with A.

- We refer to the above cases where F is not a number field as the local cases, in which case we have a natural isomorphism

$$
\operatorname{Ext}_{\mathcal{T}}(A(0), A(1)) \cong A
$$

Beilinson's height pairing

- Fix one of the local \mathcal{T}. Let ξ, δ be cycles on X_{F} of respective codimensions a, b with disjoint supports Y, Z. Assume that their global absolute cohomology classes vanish in $H_{\mathcal{T}}^{2 *}(X, *)$. Let $\tilde{c}_{\mathcal{T}}(\delta) \in H_{\mathcal{T}}^{2 b-1}(X-Z, b)$ be any lift of $\mathrm{cl}_{\mathcal{T}, Z}(\delta) \in H_{Z}^{2 b}(X, b)$. The local pairing $\langle\underset{\sim}{\langle }, \delta\rangle_{X, \mathcal{T}}$ at \mathcal{T} is defined to be the image of $-\mathrm{cl}_{\mathcal{T}, Y}(\xi) \otimes \tilde{\mathrm{c}}_{\mathcal{T}}(\delta)$ under

$$
H_{\mathcal{T}, Y}^{2 a}(X-Z, a) \otimes H_{\mathcal{T}}^{2 b-1}(X-Z, b) \xrightarrow{\cup} H_{\mathcal{T}, Y}^{2 N+1}(X-Z, N+1) \xrightarrow{\operatorname{Tr}_{r}} \operatorname{Ext}_{\mathcal{T}}^{1}(A(0), A(1))
$$

Beilinson's height pairing

- For the non-archimedean cases when $F=\mathbb{Q}_{v}^{u r}$ and the archimedean cases where $F=\mathbb{R}$ write

$$
\langle-,-\rangle_{X, \mathcal{T}}=:\langle-,-\rangle_{X, v}
$$

If χ and δ have disjoint supports and their rational equivalence classes are in $\mathrm{CH}^{*}(X)_{\mathbb{Q}}^{00}$ (assuming a regular model) then for $v \nmid \infty$ the local pairing is in \mathbb{Q} and independent of ℓ. The global pairing decomposes as

$$
\langle-,-\rangle_{X}=\sum_{v \mid \infty}\langle-,-\rangle_{X, v}+\sum_{v \nmid \infty} \log q_{v}^{-1}\langle-,-\rangle_{X, v}
$$

where q_{v} is what you think it is.

- This pairing generalises the Néron-Tate pairing. Its construction is unconditional for X a curve, an abelian variety and for $a=1$.

Motivic height pairings

- Let G be a finite dimensional $G_{\mathbb{Q}}$-representation over \mathbb{Q}. Such a representation defines an Artin motive, denoted $G(0)$.
- Let $E \in \mathcal{M M}_{\mathbb{Q}}$ satisfy

$$
\operatorname{Gr}_{-1}^{W} E=M, \operatorname{Gr}_{0}^{W} E=G_{1}(0), \operatorname{Gr}_{1}^{W} E=G_{2}(1)
$$

and $\operatorname{Gr}_{i}^{W} E=0$ otherwise for Galois reps G_{1}, G_{2} as above. Scholl defines local pairings

$$
b_{v, E}: G_{1} \times G_{2}^{\vee} \rightarrow \begin{cases}\mathbb{R} & v \mid \infty \\ \mathbb{Q}_{\ell} & v \nmid \ell \infty\end{cases}
$$

under certain hypothesis. These pairings will transform under base change: if K / \mathbb{Q} is a finite extension and $e\left(v^{\prime} / v\right)$ is the ramification degree of a prime v^{\prime} / v then

$$
b_{v^{\prime}, E^{\prime}}=e\left(v^{\prime} / v\right) b_{v, E}
$$

where $E^{\prime}=E \otimes K$.

Motivic height pairings: archimedean places

There is a canonical splitting

$$
E_{\mathbb{R}}=V_{\mathbb{R}} \oplus M_{\mathbb{R}}
$$

where $V_{\mathbb{R}}$ is an extension

$$
0 \rightarrow G_{2}(1)_{\mathrm{R}} \rightarrow V_{\mathbb{R}} \rightarrow G_{1}(0)_{\mathbb{R}} \rightarrow 0
$$

This defines an element of

$$
\begin{aligned}
\operatorname{Ext}_{\mathcal{M} \mathcal{H}_{\mathbb{R}}}\left(G_{1}(0)_{\mathbb{R}}, G_{2}(1)_{\mathbb{R}}\right) & =\operatorname{Hom}\left(G_{1}, G_{2}\right) \otimes \operatorname{Ext}(\mathbb{R}(0), \mathbb{R}(1)) \\
& =\operatorname{Hom}\left(G_{1}, G_{2}\right) \otimes \mathbb{R}
\end{aligned}
$$

i.e. a pairing $b_{\infty, E}: G_{1} \times G_{2}^{\vee} \rightarrow \mathbb{R}$.

Motivic height pairings: Non-archimedean pairings

- We need some assumptions at non-archimedean places. Write

$$
M_{1}=E / W_{-2}, M_{2}=W_{-1}
$$

We assume that M_{i} are defined over \mathbb{Z}. Equivalently For every v, ℓ with $v \nmid \ell$ that no eigenvalue of Frob_{v} on $M_{\ell}^{l_{v}}$ or $M_{\ell}(1)_{I_{v}}$ is a root of unity.

- Assume G_{i} have trivial $G_{\mathbb{Q}}$ action. A similar argument gives a pairing

$$
b_{v, E}: G_{1} \times G_{2}^{\vee} \rightarrow \mathbb{Q}_{\ell}
$$

- The pairings satisfy the base-change property. In general take a finite extension K / \mathbb{Q} such that G_{K} acts trivially on each G_{i}, then define

$$
b_{v, E}=\frac{1}{e\left(v^{\prime}, v\right)} b_{v^{\prime}, E^{\prime}}
$$

- Scholl conjectures these pairings to be valued in \mathbb{Q} and independent of ℓ.

Mixed periods and the height pairing

- Scholl defines a notion of criticality for mixed motives in a similar way as for pure motives.
- Critical mixed motives E admit periods $c_{+}(E)$.
- It can be shown that the motive E as above is critical if and only if the pairing $b_{\infty, E}$ is perfect.
- In this case we have

$$
c_{+}(E)=c_{+}(M) \operatorname{det}\left(b_{\infty, E}\right)
$$

Motivic height pairing: a thought experiment

- Scholl assumes following hypothesis: $\operatorname{Ext}_{\mathbb{Z}}^{2}(\mathbb{Q}(0), \mathbb{Q}(1))=0$ and $\operatorname{Ext}_{\mathbb{Q}}^{1}(\mathbb{Q}(0), \mathbb{Q}(1))$ is generated by a special class of '1-motives'.
- Let M be pure of weight -1 and set G, G^{\prime} to be any finite dimensional subspaces

$$
\begin{aligned}
G & \subset \operatorname{Ext}_{\mathbb{Z}}^{1}(M, \mathbb{Q}(1)) \\
G^{\prime} & \subset \operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Q}(1), M)
\end{aligned}
$$

- There are motives M_{i} over \mathbb{Z} given by

$$
\begin{array}{r}
0 \rightarrow M \rightarrow M_{1} \rightarrow G^{\prime}(0) \rightarrow 0 \\
0 \rightarrow G^{\vee}(1) \rightarrow M_{2} \rightarrow M \rightarrow 0
\end{array}
$$

Motivic height pairing: a thought experiment

- The hypothesis allows us to infer the existence of a unique object $E \in \mathcal{M} \mathcal{M}_{\mathbb{Z}}$ with isomorphisms

$$
\alpha_{1}: W_{-1} E \cong M_{1}, \alpha_{2}: E / W_{-2} E \cong M_{2}
$$

such that the induced isomorphisms

$$
\operatorname{Gr}_{-1}^{W}\left(\alpha_{i}\right): \operatorname{Gr}_{-1}^{W} E \cong M
$$

are equal for for $i=1,2$.

- This defines a canonical pairing

$$
b_{\infty, E}: G \times G^{\prime} \rightarrow \mathbb{R}
$$

compatible with restriction to smaller subspaces $H \subset G, H^{\prime} \subset G^{\prime}$. Taking the inductive limit, define a canonical motivic height pairing

$$
\langle-,-\rangle_{\mathcal{M}}: \operatorname{Ext}_{\mathbb{Z}}^{1}(M, \mathbb{Q}(1)) \times \operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Q}(1), M) \rightarrow \mathbb{R}
$$

Global motivic height pairing

Theorem

Let G_{1}, G_{2} be finite dimensional \mathbb{Q}-vector spaces with trivial Galois action. Suppose we have a mixed motive $E^{\prime} \in \mathcal{M} \mathcal{M}_{\mathbb{Q}}$ satisfying

$$
\operatorname{Gr}_{-1}^{W} E^{\prime}=M, \operatorname{Gr}_{0}^{W} E^{\prime}=G_{1}(0), \operatorname{Gr}_{1}^{W} E^{\prime}=G_{2}(1)
$$

and $\mathrm{Gr}_{i}^{W} E^{\prime}=0$ for $i \notin[-2,0]$. Set

$$
M_{1}=E^{\prime} / W_{-2} E^{\prime}, M_{2}=W_{-1} E^{\prime}
$$

which we assume are defined over \mathbb{Z}. Assume the pairings $b_{p, E^{\prime}}$ are \mathbb{Q}-valued and independent of p. Then there is a motive E defined over \mathbb{Z} satisfying

$$
M_{1}=E / W_{-2} E, \quad M_{2}=W_{-1} E
$$

and

$$
b_{\infty, E}=b_{\infty, E^{\prime}}+\sum_{p} \log p^{-1} \cdot b_{p, E}
$$

Comparison of local pairings

- Let X be a smooth projective variety over \mathbb{Q} and assume it admits a regular model over \mathbb{Z}. For $M=h^{2 a-1}(X)(a)$ Scholl constructs canonical maps

$$
\begin{aligned}
\alpha: \mathrm{CH}^{a}(X)_{\mathbb{Q}}^{00} & \rightarrow \operatorname{Ext}^{1}(\mathbb{Q}(0), M) \\
\beta: \operatorname{CH}^{b}(X)_{\mathbb{Q}}^{00} & \rightarrow \operatorname{Ext}^{1}(M, \mathbb{Q}(1)) .
\end{aligned}
$$

These are conjecturally isomorphisms.

- Scholl proves the following theorem:

Theorem

Let $G \subset \mathrm{CH}^{a}(X)_{\mathbb{Q}}^{00}, G^{\prime} \subset \mathrm{CH}^{b}(X)_{\mathbb{Q}}^{00}$ be finite-dimensional subspaces.
Then there is a unique motive \tilde{M} over \mathbb{Z} satsifying the usual conditions on its grading satisfying

$$
b_{\infty, \tilde{M}}(\alpha(x), \beta(y))=\langle x, y\rangle_{x}
$$

Special values of L-functions

Given a motive M, Scholl constructs a mixed motive E according to the following recipe:
(1) Construct M_{1} by taking M_{1} to be the quotient in the sequence

$$
0 \rightarrow \operatorname{Hom}(\mathbb{Q}(0), M) \otimes \mathbb{Q}(0) \rightarrow M \rightarrow M_{1} \rightarrow 0
$$

(2) Construct a motive M_{2} :

$$
0 \rightarrow M_{2} \rightarrow M_{1} \rightarrow \operatorname{Hom}\left(M_{1}, \mathbb{Q}(1)\right) \otimes \mathbb{Q}(1) \rightarrow 0
$$

(3) Take the universal extension by $\mathbb{Q}(0)$ on the left and $\mathbb{Q}(1)$ on the right:

$$
\begin{array}{r}
0 \rightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}\left(M_{2}, \mathbb{Q}(1)\right)^{\vee} \otimes \mathbb{Q}(1) \rightarrow M_{3} \rightarrow M_{2} \\
0 \rightarrow M_{3} \rightarrow E \rightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}\left(\mathbb{Q}(0), M_{3}\right) \otimes \mathbb{Q}(0) \rightarrow 0
\end{array}
$$

if $\operatorname{Ext}_{\mathbb{Z}}^{i}(\mathbb{Q}(0), \mathbb{Q}(1))=0$ then the order in which this is done is not important and E has a three-step weight filtration with associated graded pieces $\operatorname{Ext}_{\mathbb{Z}}^{1}\left(\mathbb{Q}(0), M_{3}\right) \otimes \mathbb{Q}(0), M_{2}, \operatorname{Ext}_{\mathbb{Z}}^{1}\left(M_{2}, \mathbb{Q}(1)\right)^{\vee} \otimes \mathbb{Q}(1)$.

Special values of L-functions

- Take $M=h^{2 a-1}(X)(a)$. This is the only situation in which both $\operatorname{Ext}_{\mathbb{Z}}^{1}\left(\mathbb{Q}(0), M_{3}\right)$ and $\operatorname{Ext}_{\mathbb{Z}}^{1}\left(M_{2}, \mathbb{Q}(1)\right)$ can be non-zero. Set ρ, ρ^{\prime} to be their respective dimensions.
- The L-function of E is given by

$$
L(E, s)=L(M, s) \zeta(s)^{\rho} \zeta(s+1)^{\rho^{\prime}}
$$

and E is critical if and only if the associated pairing $\langle-,-\rangle$ is non-singular. We have $L^{*}(E, s) \equiv L^{*}(M, s) \bmod \mathbb{Q}^{\times}$and E does not vanish at $s=0$.

- The extended Deligne conjecture suggests that for critical E

$$
L^{*}(E, 0)=c_{+}(E) \cdot \mathbb{Q}^{\times} .
$$

- The unified Beilinson conjecture is: The height pairing $\langle-,-\rangle$ is non-singular and
(1) $\operatorname{ord}_{s=0} L(M, s)=\rho$.
(2) $L^{*}(M, 0)=c_{+}(M) \operatorname{det}\langle-,-\rangle \cdot \mathbb{Q}^{\times}$.

