Beilinson at weight -1

Rob Rockwood

BSD

Let E be an elliptic curve over number field $\mathbb Q$ of rank r

- BSD conjecture (Beilinson style):
 - $\mathbf{0} \operatorname{ord}_{s=1} L(E, s) = r$
 - $L^{(r)}(E,1) \equiv \Omega_E R_E \mod \mathbb{Q}^{\times}$
- Ω_F is the real period.
- If $\{P_i\}$ is a basis for $E(\mathbb{Q})$, then $R_E = \det \langle P_i, P_j \rangle_E$ where $\langle -, \rangle_E$ is the Néron-Tate height pairing.

Néron-Tate height pairing

- $\langle -, \rangle_E : E(\mathbb{Q})^2 \to \mathbb{R}$ non-singular on $E(\mathbb{Q})^2 \otimes \mathbb{Q}$.
- $h(P) = \langle P, P \rangle_E$ is canonical height function, a quadratic form.
- h can be constructed as a sum of 'almost quadratic' local terms $h_v : E(\mathbb{Q}_v) \setminus \{\mathcal{O}\} \to \mathbb{R}$ for each place v:

$$h(P) = \sum_{v} h_{v}(P)$$

for $P \neq \{\mathcal{O}\}$.

• Since $E(\mathbb{Q}) = \mathrm{CH}^1(E)^0$ (homologically trivial subspace) get a perfect pairing

$$\mathrm{CH}^1(E)^0_{\mathbb{O}}\otimes\mathrm{CH}^1_{\mathbb{O}}(E)^0\to\mathbb{R}.$$

Relation to Beilinson's conjectures

• Let $M = h^1(E)(1)$. M is a pure motive of weight $\omega = -1$ and

$$L(E,1)=L(M,0)$$

- What does Beilinson's conjecture say in this case?
- Problems at $\omega = -1$:
 - **1** For $\omega = -2, -1$, s = 0 is not in the convergence region.
 - 2 Deligne conjectures that zeroes can only occur at $\omega = -1$.
 - 3 Deligne's conjecture: Pure motives are always critical when $\omega=-1$. But conjecture becomes vacuous in the presence of zeroes.
- BSD shows us that the order of zeroes can carry important arithmetic information.

Relation to Beilinson's conjectures

- Let X be a smooth projective variety over \mathbb{Q} equidimensional of dimension N and let $M = h^{2a-1}(X)(a)$.
- For a + b = N + 1, Beilinson has, under some assumptions, constructed a 'geometric' height pairing

$$\langle -, - \rangle_X : \mathrm{CH}^a(X)^0_\mathbb{Q} \otimes \mathrm{CH}^b(X)^0_\mathbb{Q} \to \mathbb{R}$$

- Beilinson conjectures:
 - $(-,-)_X$ is non-degenerate.

 - ③ $L^*(M,0) = c_+(M) \det \langle -, \rangle_X \cdot \mathbb{Q}^*$, where L^* denotes the leading term and $c_+(M)$ is Deligne's period.

Outline

- A discussion of mixed motives and their ext groups
- Beilinson's construction of geometric height pairings
- Scholl's construction of motivic height pairings
- Relation to L-values: Scholl's unification.

Mixed motives

- \bullet Let $\mathcal{MM}_{\mathbb Q}$ denote the conjectural category of mixed motives over $\mathbb Q.$
- $\mathcal{MM}_{\mathbb{Q}}$ should be abelian and generated by the full subcategory of pure motives $\mathcal{M}_{\mathbb{Q}}$ under homological equivalence.
- $E \in \mathcal{MM}_{\mathbb{Q}}$ has realisations $(E_B, E_{dR}, \{E_\ell\}_\ell)$. E_{dR} is mixed Hodge structure: Additional increasing weight filtration: $W_{\bullet}E_{dR}$ such that $\operatorname{Gr}_i^W E_{dR}$ are pure of weight i. Corresponding filtration on E.
- Scholl defines 'mixed motives over \mathbb{Z} ' to be the subcategory of $\mathcal{MM}_{\mathbb{Q}}$ whose weight filtration splits over the inertia subgroup I_{ν} for all ν, ℓ with $\nu \nmid \ell$. For $E \in \mathcal{MM}_{\mathbb{Z}}$

$$L(E,s) = \prod_{i} L(Gr_i^W E, s),$$

Ext groups in \mathcal{MM}_K

• We write $\operatorname{Ext}_{\mathbb Q}^i$, $\operatorname{Ext}_{\mathbb Z}^i$ for ext in $\mathcal{MM}_{\mathbb Q}$, $\mathcal{MM}_{\mathbb Z}$. We expect these groups to vanish for $i \notin [0,1]$. If X is a smooth proper variety over $\mathbb Q$, $M = h^i(X)(m)$ we expect:

$$\operatorname{Ext}_{\mathbb{Z}}^{0}(M,\mathbb{Q}(1)) = \begin{cases} 0 & \text{if } i \neq 2n \\ \operatorname{CH}^{n}(X)/\operatorname{CH}^{n}(X)^{0} \otimes \mathbb{Q} & \text{if } i = 2n \end{cases}$$
$$\operatorname{Ext}_{\mathcal{O}}^{1}(M,\mathbb{Q}(1)) = \begin{cases} H_{\mathcal{M}}^{i+1}(X,\mathbb{Q}(n))_{\mathbb{Z}} & i \neq 2n+1 \\ \operatorname{CH}^{n}(X)^{0} \otimes \mathbb{Q} & i = 2n+1 \end{cases}$$

where n = I + 1 - m.

• $N = M^{\vee}(1) = h^{i}(X)(n)$ then equality for $\operatorname{Ext}_{\mathcal{O}}^{i}(\mathbb{Q}(0), N) \cong \operatorname{Ext}_{\mathcal{O}}^{i}(M, \mathbb{Q}(1)).$

- Let X be as before.
- Suppose X admits a regular model \mathcal{X} over \mathbb{Z} . For a+b=N+1, we have an intersection pairing

$$\mathrm{CH}^a(\mathcal{X})^0_{\mathbb{Q}} \times \mathrm{CH}^b(\mathcal{X})^0_{\mathbb{Q}} \to \mathbb{R},$$

defined as a sum of local terms.

• Define $CH^n(X)^{00}_{\mathbb{O}}$ to be the image of

$$\cap_{v,\ell,v\nmid\ell}\mathrm{Ker}(\mathscr{Z}^n(\mathcal{X})_{\mathbb{Q}}\to H^{2n}(\mathcal{X}\otimes\overline{k(v)},\mathbb{Q}_{\ell}(n)).$$

in $\mathrm{CH}^n(X)^0_{\mathbb{Q}}$. Cycles ξ, δ lying in this subspace can be lifted to ξ', δ' on \mathcal{X} and we define

$$\langle \xi, \delta \rangle_{\mathcal{X}} = \langle \xi', \delta' \rangle_{\mathcal{X}}$$

which does not depend on the choice of lift.

Beilinson conjectures:

$$\mathrm{CH}^n(X)^{00}_{\mathbb Q}=\mathrm{CH}^n(X)^0_{\mathbb Q}.$$

- Beilinson describes the pairing $\langle -, \rangle_X$ in local terms, each defined cohomologically.
- We can define the terms at primes both infinite and non-infinite in a unified way using the tensor category formulation of 'geometric' and 'arithmetic' cohomology theories discussed in Alex's talk.

- Given a rigid abelian tensor category \mathcal{T} with coefficient ring $A = \operatorname{End}_{\mathcal{T}}(\mathbbm{1})$ and 'geometric cohomology' objects $R\Gamma_c(X)$, $R\Gamma_Y(X)$ in $\mathscr{D}^b(\mathcal{T})$ for schemes of finite type X/F and closed subsets $Y \hookrightarrow X$, letting $R\Gamma(X) = R\Gamma_X(X)$.
- Pertinent examples:
 - F is a number field or a finite extension of \mathbb{Q}_{ℓ}^{ur} and \mathcal{T} is the category of finite-dimensional \mathbb{Q}_{ℓ} -linear representations of G_F and $R\Gamma(X) = R\Gamma(\bar{X}_{\text{\'et}}, \mathbb{Q}_{\ell})$
 - ② $F = \mathbb{R}$ and \mathcal{T} is the category of mixed \mathbb{R} -Hodge structures over F and $R\Gamma(X)$ is the 'Hodge complex'.
- Both examples admit a Tate object A(1). Write denote $R\Gamma_{?}(X)\otimes A(n)=:R\Gamma(X,n)$. Define arithmetic cohomology groups $H^{i}_{\mathcal{T}}$ as:

$$R\Gamma_{\mathcal{T},?}(X,n) := R\operatorname{Hom}_?(\mathbb{1}, R\Gamma_?(X,n)) \in \mathscr{D}(A).$$

 Produces 'absolute Hodge cohomology' 'continuous étale cohomology', 'motivic cohomology' etc.

We have exact triangles

$$R\Gamma_Y(X) \to R\Gamma(X) \to R\Gamma(X-Y) \to R\Gamma_Y(X)[1]$$

$$R\Gamma_c(X-Y) \to R\Gamma_c(X) \to R\Gamma_c(Y) \to R\Gamma_c(X-Y)[1],$$

duality pairings

$$R\Gamma_Y(X) \otimes R\Gamma(X) \to R\Gamma_Y(X), R\Gamma_c(X) \otimes R\Gamma(X) \to R\Gamma_c(X)$$

and trace maps

$$Tr: R\Gamma_c(X) \to A(-N)[-2N]$$

when X is smooth of dimension N.

• X smooth, $Y \subset X$ codimension d we have

$$H_Y^i(X) = 0, i < 2d$$

and a cycle class map

$$\operatorname{cl}_Y: A(-d) \to H^{2d}_Y(X),$$

which is an isomorphism for Y absolutely irreducible.

cl_Y induces an 'absolute' cycle map

$$\operatorname{cl}_{\mathcal{T},Y}: \mathscr{Z}^d_Y(X) \to H^{2d}_{\mathcal{T},Y}(X,d).$$

This becomes an isomorphism after tensoring with A.

 We refer to the above cases where F is not a number field as the local cases, in which case we have a natural isomorphism

$$\operatorname{Ext}_{\mathcal{T}}(A(0),A(1))\cong A.$$

• Fix one of the local \mathcal{T} . Let ξ, δ be cycles on X_F of respective codimensions a, b with disjoint supports Y, Z. Assume that their global absolute cohomology classes vanish in $H^{2*}_{\mathcal{T}}(X,*)$. Let $\widetilde{\operatorname{cl}}_{\mathcal{T}}(\delta) \in H^{2b-1}_{\mathcal{T}}(X-Z,b)$ be any lift of $\operatorname{cl}_{\mathcal{T},Z}(\delta) \in H^{2b}_{Z}(X,b)$. The local pairing $\langle \xi, \delta \rangle_{X,\mathcal{T}}$ at \mathcal{T} is defined to be the image of $-\operatorname{cl}_{\mathcal{T},Y}(\xi) \otimes \widetilde{\operatorname{cl}}_{\mathcal{T}}(\delta)$ under

• For the non-archimedean cases when $F=\mathbb{Q}_{v}^{ur}$ and the archimedean cases where $F=\mathbb{R}$ write

$$\langle -, - \rangle_{X,\mathcal{T}} =: \langle -, - \rangle_{X,\mathbf{v}}.$$

If χ and δ have disjoint supports and their rational equivalence classes are in $\mathrm{CH}^*(X)^{00}_{\mathbb Q}$ (assuming a regular model) then for $v \nmid \infty$ the local pairing is in $\mathbb Q$ and independent of ℓ . The global pairing decomposes as

$$\langle -, - \rangle_X = \sum_{v \mid \infty} \langle -, - \rangle_{X,v} + \sum_{v \nmid \infty} \log q_v^{-1} \langle -, - \rangle_{X,v}$$

where q_v is what you think it is.

• This pairing generalises the Néron-Tate pairing. Its construction is unconditional for X a curve, an abelian variety and for a = 1.

Motivic height pairings

- Let G be a finite dimensional $G_{\mathbb{Q}}$ -representation over \mathbb{Q} . Such a representation defines an *Artin motive*, denoted G(0).
- Let $E \in \mathcal{MM}_{\mathbb{O}}$ satisfy

$$\operatorname{Gr}_{-1}^W E = M, \operatorname{Gr}_0^W E = \mathit{G}_1(0), \operatorname{Gr}_1^W E = \mathit{G}_2(1)$$

and $Gr_i^W E = 0$ otherwise for Galois reps G_1, G_2 as above. Scholl defines local pairings

$$b_{v,E}: G_1 \times G_2^{\vee} \to \begin{cases} \mathbb{R} & v \mid \infty \\ \mathbb{Q}_{\ell} & v \nmid \ell \infty \end{cases}$$

under certain hypothesis. These pairings will transform under base change: if K/\mathbb{Q} is a finite extension and e(v'/v) is the ramification degree of a prime v'/v then

$$b_{v',E'}=e(v'/v)b_{v,E}$$

where $E' = E \otimes K$.

Motivic height pairings: archimedean places

There is a canonical splitting

$$E_{\mathbb{R}} = V_{\mathbb{R}} \oplus M_{\mathbb{R}}$$

where $V_{\mathbb{R}}$ is an extension

$$0
ightarrow \mathit{G}_{2}(1)_{\mathrm{R}}
ightarrow \mathit{V}_{\mathbb{R}}
ightarrow \mathit{G}_{1}(0)_{\mathbb{R}}
ightarrow 0.$$

This defines an element of

$$egin{aligned} \operatorname{Ext}_{\mathcal{MH}_{\mathbb{R}}}(\mathit{G}_{1}(0)_{\mathbb{R}},\mathit{G}_{2}(1)_{\mathbb{R}}) &= \operatorname{Hom}(\mathit{G}_{1},\mathit{G}_{2}) \otimes \operatorname{Ext}(\mathbb{R}(0),\mathbb{R}(1)) \\ &= \operatorname{Hom}(\mathit{G}_{1},\mathit{G}_{2}) \otimes \mathbb{R}, \end{aligned}$$

i.e. a pairing $b_{\infty,E}:G_1\times G_2^\vee\to\mathbb{R}$.

Motivic height pairings: Non-archimedean pairings

• We need some assumptions at non-archimedean places. Write

$$M_1 = E/W_{-2}, M_2 = W_{-1}$$

We assume that M_i are defined over \mathbb{Z} . Equivalently For every v,ℓ with $v \nmid \ell$ that no eigenvalue of Frob_v on $M_\ell^{I_v}$ or $M_\ell(1)_{I_v}$ is a root of unity.

ullet Assume G_i have trivial $G_{\mathbb Q}$ action. A similar argument gives a pairing

$$b_{v,E}: G_1 \times G_2^{\vee} \to \mathbb{Q}_{\ell}.$$

• The pairings satisfy the base-change property. In general take a finite extension K/\mathbb{Q} such that G_K acts trivially on each G_i , then define

$$b_{v,E} = \frac{1}{e(v',v)} b_{v',E'}.$$

• Scholl conjectures these pairings to be valued in $\mathbb Q$ and independent of $\ell.$

Mixed periods and the height pairing

- Scholl defines a notion of criticality for mixed motives in a similar way as for pure motives.
- Critical mixed motives E admit periods $c_+(E)$.
- It can be shown that the motive E as above is critical if and only if the pairing $b_{\infty,E}$ is perfect.
- In this case we have

$$c_+(E) = c_+(M) \det(b_{\infty,E}).$$

Motivic height pairing: a thought experiment

- Scholl assumes following hypothesis: $\operatorname{Ext}^2_{\mathbb{Z}}(\mathbb{Q}(0),\mathbb{Q}(1))=0$ and $\operatorname{Ext}^1_{\mathbb{Q}}(\mathbb{Q}(0),\mathbb{Q}(1))$ is generated by a special class of '1-motives'.
- Let M be pure of weight -1 and set G, G' to be any finite dimensional subspaces

$$G \subset \operatorname{Ext}^1_{\mathbb{Z}}(M, \mathbb{Q}(1))$$

 $G' \subset \operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Q}(1), M)$

• There are motives M_i over \mathbb{Z} given by

$$0 o M o M_1 o G'(0) o 0 \ 0 o G^{\vee}(1) o M_2 o M o 0$$

Motivic height pairing: a thought experiment

• The hypothesis allows us to infer the existence of a unique object $E \in \mathcal{MM}_{\mathbb{Z}}$ with isomorphisms

$$\alpha_1: W_{-1}E \cong M_1, \alpha_2: E/W_{-2}E \cong M_2$$

such that the induced isomorphisms

$$\operatorname{Gr}_{-1}^W(\alpha_i):\operatorname{Gr}_{-1}^WE\cong M$$

are equal for for i = 1, 2.

• This defines a canonical pairing

$$b_{\infty,E}: G \times G' \to \mathbb{R}$$
,

compatible with restriction to smaller subspaces $H \subset G$, $H' \subset G'$. Taking the inductive limit, define a canonical motivic height pairing

$$\langle -, - \rangle_M : \operatorname{Ext}^1_{\mathbb{Z}}(M, \mathbb{Q}(1)) \times \operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Q}(1), M) \to \mathbb{R}.$$

Global motivic height pairing

Theorem

Let G_1 , G_2 be finite dimensional \mathbb{Q} -vector spaces with trivial Galois action. Suppose we have a mixed motive $E' \in \mathcal{MM}_{\mathbb{Q}}$ satisfying

$$\operatorname{Gr}_{-1}^W E' = M, \operatorname{Gr}_0^W E' = G_1(0), \operatorname{Gr}_1^W E' = G_2(1)$$

and $Gr_i^W E' = 0$ for $i \notin [-2, 0]$. Set

$$M_1 = E'/W_{-2}E', M_2 = W_{-1}E'$$

which we assume are defined over \mathbb{Z} . Assume the pairings $b_{p,E'}$ are \mathbb{Q} -valued and independent of p. Then there is a motive E defined over \mathbb{Z} satisfying

$$M_1 = E/W_{-2}E$$
, $M_2 = W_{-1}E$

and

$$b_{\infty,E} = b_{\infty,E'} + \sum_{p} \log p^{-1} \cdot b_{p,E}$$

Comparison of local pairings

• Let X be a smooth projective variety over $\mathbb Q$ and assume it admits a regular model over $\mathbb Z$. For $M=h^{2a-1}(X)(a)$ Scholl constructs canonical maps

$$\alpha: \mathrm{CH}^{s}(X)^{00}_{\mathbb{Q}} \to \mathrm{Ext}^{1}(\mathbb{Q}(0), M)$$

 $\beta: \mathrm{CH}^{b}(X)^{00}_{\mathbb{Q}} \to \mathrm{Ext}^{1}(M, \mathbb{Q}(1)).$

These are conjecturally isomorphisms.

• Scholl proves the following theorem:

Theorem

Let $G \subset \mathrm{CH}^a(X)^{00}_{\mathbb{Q}}$, $G' \subset \mathrm{CH}^b(X)^{00}_{\mathbb{Q}}$ be finite-dimensional subspaces.

Then there is a unique motive \tilde{M} over \mathbb{Z} satisfying the usual conditions on its grading satisfying

$$b_{\infty,\tilde{M}}(\alpha(x),\beta(y)) = \langle x,y \rangle_X$$

Special values of *L*-functions

Given a motive M, Scholl constructs a mixed motive E according to the following recipe:

• Construct M_1 by taking M_1 to be the quotient in the sequence

$$0 \to \operatorname{Hom}(\mathbb{Q}(0),M) \otimes \mathbb{Q}(0) \to M \to M_1 \to 0$$

② Construct a motive M_2 :

$$0 \to M_2 \to M_1 \to \operatorname{Hom}(M_1,\mathbb{Q}(1)) \otimes \mathbb{Q}(1) \to 0.$$

3 Take the universal extension by $\mathbb{Q}(0)$ on the left and $\mathbb{Q}(1)$ on the right:

$$0 \to \operatorname{Ext}_{\mathbb{Z}}^{1}(M_{2}, \mathbb{Q}(1))^{\vee} \otimes \mathbb{Q}(1) \to M_{3} \to M_{2}$$
$$0 \to M_{3} \to E \to \operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Q}(0), M_{3}) \otimes \mathbb{Q}(0) \to 0$$

if $\operatorname{Ext}^i_{\mathbb Z}(\mathbb Q(0),\mathbb Q(1))=0$ then the order in which this is done is not important and E has a three-step weight filtration with associated graded pieces $\operatorname{Ext}^1_{\mathbb Z}(\mathbb Q(0),M_3)\otimes \mathbb Q(0),M_2,\operatorname{Ext}^1_{\mathbb Z}(M_2,\mathbb Q(1))^\vee\otimes \mathbb Q(1)$.

Special values of *L*-functions

- Take $M=h^{2a-1}(X)(a)$. This is the only situation in which both $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Q}(0),M_3)$ and $\operatorname{Ext}^1_{\mathbb{Z}}(M_2,\mathbb{Q}(1))$ can be non-zero. Set ρ,ρ' to be their respective dimensions.
- The L-function of E is given by

$$L(E,s) = L(M,s)\zeta(s)^{\rho}\zeta(s+1)^{\rho'}$$

and E is critical if and only if the associated pairing $\langle -, - \rangle$ is non-singular. We have $L^*(E, s) \equiv L^*(M, s) \mod \mathbb{Q}^{\times}$ and E does not vanish at s = 0.

• The extended Deligne conjecture suggests that for critical E

$$L^*(E,0) = c_+(E) \cdot \mathbb{Q}^{\times}$$
.

- \bullet The unified Beilinson conjecture is: The height pairing $\langle -, \rangle$ is non-singular and
 - **1** ord_{s=0} $L(M, s) = \rho$.