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BSD

Let E be an elliptic curve over number field Q of rank r
@ BSD conjecture (Beilinson style):
Q ords_iL(E,s)=r
Q@ L(E,1) = QeRe mod Q%
@ Qf is the real period.
o If {P;} is a basis for E(Q), then Rg = det(P;, P;) g where (—, —)g is
the Néron-Tate height pairing.



Néron-Tate height pairing

o (—,—)e: E(Q)? — R non-singular on E(Q)?> ® Q.

e h(P) = (P, P)g is canonical height function, a quadratic form.
@ h can be constructed as a sum of ‘almost quadratic’ local terms
hy : E(Q,)\{O} — R for each place v:

h(P)=Y_h(P)

for P # {O}.
e Since E£(Q) = CH(E)° (homologically trivial subspace) get a perfect
pairing
CH'(E)Q ® CHG(E)® — R.



Relation to Beilinson’s conjectures

o Let M = h'(E)(1). M is a pure motive of weight w = —1 and
L(E,1) = L(M,0)

@ What does Beilinson's conjecture say in this case?
@ Problems at w = —1:

@ Forw= —-2—1, s=0is not in the convergence region.

@ Deligne conjectures that zeroes can only occur at w = —1.

© Deligne's conjecture: Pure motives are always critical when w = —1.
But conjecture becomes vacuous in the presence of zeroes.

@ BSD shows us that the order of zeroes can carry important arithmetic
information.



Relation to Beilinson’s conjectures

@ Let X be a smooth projective variety over Q equidimensional of
dimension N and let M = h?a~1(X)(a).

@ For a4+ b= N + 1, Beilinson has, under some assumptions,
constructed a ‘geometric’ height pairing

(—, —)x : CH(X) ® CHP(X), — R

@ Beilinson conjectures:
@ (—,—)x is non-degenerate.
Q ords—L(M,0) = dimgCH"(X),
Q L*(M,0) = cy(M)det(—,—)x - Q*,where L* denotes the leading term
and ¢ (M) is Deligne's period.



Outline

A discussion of mixed motives and their ext groups
Beilinson’s construction of geometric height pairings
Scholl’s construction of motivic height pairings
Relation to L-values: Scholl’s unification.



Mixed motives

o Let MMg denote the conjectural category of mixed motives over Q.
o MM should be abelian and generated by the full subcategory of
pure motives Mg under homological equivalence.

o £ € MMy has realisations (Eg, E4r, {Er}¢). Edr is mixed Hodge
structure: Additional increasing weight filtration: W, Egr such that
Gr,WEdR are pure of weight i. Corresponding filtration on E.

@ Scholl defines ‘mixed motives over Z' to be the subcategory of
MM whose weight filtration splits over the inertia subgroup /, for
all v, ¢ with vt /¢. For E € MMz

HL GrVE,s),



Ext groups in MM

o We write Ext(i@, Ext% for ext in MMg, MMgz. We expect these
groups to vanish for i ¢ [0,1]. If X is a smooth proper variety over Q,
M = hi(X)(m) we expect:

0 if i 2n
CH"(X)/CH"(X)°® Q ifi=2n

HH(X,Q(n)z i #2n+1
CH"(X)°®Q i=2n+1

Exty(M,Q(1)) = {

Exto(M, Q(1)) = {

where n=/+1—m.
o N = MY(1) = h'(X)(n) then equality for
Ext(Q(0), N) = Extp(M, Q(1)).



Beilinson’s height pairing

o Let X be as before.
@ Suppose X admits a regular model X over Z. For a+ b= N+ 1, we
have an intersection pairing

CH? (X)) x CH?(X)Q — R,

defined as a sum of local terms.
o Define CH"(X)%0 to be the image of

NvovpeKer(27(X)g = H*"(X @ k(v), Qe(n)).
in CH"(X)&. Cycles &, 4 lying in this subspace can be lifted to &', ¢’

on X and we define
(€ 0)x = (0"
which does not depend on the choice of lift.
@ Beilinson conjectures:

CH"(X)Q = CH"(X)Q.
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Beilinson’s height pairing

@ Beilinson describes the pairing (—, —)x in local terms, each defined
cohomologically.

@ We can define the terms at primes both infinite and non-infinite in a
unified way using the tensor category formulation of ‘geometric’ and
‘arithmetic’ cohomology theories discussed in Alex's talk.
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Beilinson’s height pairing

@ Given a rigid abelian tensor category T with coefficient ring
A = End7(1) and ‘geometric cohomology’ objects RI¢(X), R y(X)
in 2°(T) for schemes of finite type X/F and closed subsets Y — X,
letting RT(X) = Rl x(X).
@ Pertinent examples:
@ F is a number field or a finite extension of Q" and 7 is the category
of finite-dimensional Qg-linear representations of Gg and
RT(X) = RT(Xet, Qo)
@ F =R and 7 is the category of mixed R-Hodge structures over F and
RT(X) is the ‘Hodge complex’.
@ Both examples admit a Tate object A(1). Write denote
RI2(X) ® A(n) =: R[(X, n). Define arithmetic cohomology groups
Hi as:

Rr7’7?(X, n) = RHom?(]l, RF?(X, n)) S .@(A)

@ Produces ‘absolute Hodge cohomology’ ‘continuous étale
cohomology’, 'motivic cohomology' etc.
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Beilinson’s height pairings
@ We have exact triangles
Ry (X) — RI(X) = RT(X = Y) — RMy(X)[1]
RT(X —=Y) = RI(X) = RI(Y) = RI[(X = Y)[1],
duality pairings
RTy(X) ® RT(X) — Rl y(X), Rl <(X) ® RT(X) — RI(X)

and trace maps
Tr: RT(X) = A(=N)[—2N]

when X is smooth of dimension N.
@ X smooth, Y C X codimension d we have

H,(X)=0, i <2d
and a cycle class map
cly : A(=d) = H¥(X),
which is an isomorphism for Y absolutely irreducible.
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Beilinson’s height pairing

@ cly induces an ‘absolute’ cycle map
clry : 29(X) = HZ% (X, d).

This becomes an isomorphism after tensoring with A.

@ We refer to the above cases where F is not a number field as the
local cases, in which case we have a natural isomorphism

Ext7(A(0), A(1)) = A.

13



Beilinson’s height pairing

@ Fix one of the local 7. Let &, be cycles on X of respective
codimensions a, b with disjoint supports Y, Z. Assume that their
global absolute cohomology classes vanish in H?r*(X, ). Let
clr(8) € H?*71(X — Z, b) be any lift of cly z(3) € HZ*(X, b). The
local pairing (£,0)x,7 at T is defined to be the image of
—clr.y (&) ® cl(8) under

H32\ (X — Z,2) ® H3"}(X — Z,b) —2= HINH (X — Z, N +1) — Ext}(A(0), A(1))

lw ~

H22\,(X,2) ® HF "1 (X = Z, b) ~----mmmmmmmm oo + A
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Beilinson’s height pairing

@ For the non-archimedean cases when F = QY" and the archimedean
cases where F = R write

<_7 _>X,T =: <_7 _>X,V'

If x and ¢ have disjoint supports and their rational equivalence classes
are in CH*(X) (assuming a regular model) then for v { oo the local
pairing is in Q and independent of £. The global pairing decomposes

as
<_7 _>X = Z<_7 _>X,V + Zlogq;1<_7 _>X,v
v|oo v{oo

where g, is what you think it is.

@ This pairing generalises the Néron-Tate pairing. Its construction is
unconditional for X a curve, an abelian variety and for a = 1.
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Motivic height pairings

@ Let G be a finite dimensional Gg-representation over Q. Such a
representation defines an Artin motive, denoted G(0).

o Let E € MMy satisfy
Gr"™ E = M, CGrVE = G1(0),Gr{VE = Gy(1)
and Gr,WE = 0 otherwise for Galois reps Gy, G> as above. Scholl
defines local pairings
R v]oo

Qr viloo

under certain hypothesis. These pairings will transform under base
change: if K/Q is a finite extension and e(v’/v) is the ramification
degree of a prime v//v then

bv’,E’ = e(V//V)bv,E

bV’EZG1><G2V—>{

where E' = E® K.
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Motivic height pairings: archimedean places

There is a canonical splitting
Er = Vg & Mg
where Vg is an extension
0— G(1)r — Vr — G1(0)g — 0.
This defines an element of

EXtMHR(Gl(O)R, Gz(l)R) = HOm(Gl, G2) & EXt(]R(O), R(l))
= Hom(Gi, Gp) ® R,

i.e. a pairing b g : G1 X Gy = R.
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Motivic height pairings: Non-archimedean pairings
@ We need some assumptions at non-archimedean places. Write
My = E/W_o, My = W_4

We assume that M; are defined over Z. Equivalently
For every v, ¢ with v £ that no eigenvalue of Frob, on I\/Ilfv or
My(1),, is a root of unity.

@ Assume G; have trivial Gg action. A similar argument gives a pairing
bv7E : Gl X G2v — Qg.

@ The pairings satisfy the base-change property. In general take a finite
extension K/Q such that Gk acts trivially on each G;, then define

1

bv,E =

@ Scholl conjectures these pairings to be valued in Q and independent
of /.
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Mixed periods and the height pairing

@ Scholl defines a notion of criticality for mixed motives in a similar way
as for pure motives.

o Critical mixed motives E admit periods c, (E).

@ It can be shown that the motive E as above is critical if and only if
the pairing b £ is perfect.

@ In this case we have

cr(E) = cp (M) det(bso £)-
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Motivic height pairing: a thought experiment

@ Scholl assumes following hypothesis:

Ext2(Q(0),Q(1)) = 0 and Extb(@(O),(@(l)) is generated by a
special class of ‘1-motives'.

@ Let M be pure of weight —1 and set G, G’ to be any finite
dimensional subspaces

G C Ext}(M,Q(1))
G' C Ext}(Q(1), M)

@ There are motives M; over Z given by

0—M— M — G'(0) =0
0—GY(1) > My, - M—0

20



Motivic height pairing: a thought experiment

@ The hypothesis allows us to infer the existence of a unique object
E € MMy with isomorphisms

ay: W_1E = M, ap: E/W_QE = M,
such that the induced isomorphisms
Gr (o) : Gt E= M

are equal for for i =1, 2.

@ This defines a canonical pairing
bk :Gx G —R,

compatible with restriction to smaller subspaces H C G, H' C G'.
Taking the inductive limit, define a canonical motivic height pairing

(=, =)m 1 Bxt:(M,Q(1)) x Ext}(Q(1), M) — R.
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Global motivic height pairing

Theorem

Let G1, Gy be finite dimensional Q-vector spaces with trivial Galois action.
Suppose we have a mixed motive E' € MMy satisfying

Gt E' = M, GrVE' = G1(0), GrIVE' = Gy(1)
and GrVE' = 0 for i ¢ [-2,0]. Set
My = E'/W_oE' My = W_,E'

which we assume are defined over 7. Assume the pairings b, g are
Q-valued and independent of p. Then there is a motive E defined over 7
satisfying

My =E/W_E, My =W_1E

and

boo,E = boo,E’ + Zlogp_l : bp,E
p
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Comparison of local pairings

@ Let X be a smooth projective variety over Q and assume it admits a
regular model over Z. For M = h?*~1(X)(a) Scholl constructs
canonical maps

a1 CH?(X)Y — Ext'(Q(0), M)
B : CHP(X)® — Ext'(M,Q(1)).
These are conjecturally isomorphisms.

@ Scholl proves the following theorem:
Theorem

Let G C CH?(X)®, G' c CH*(X)® be finite-dimensional subspaces.

Then there is a unique motive M over Z satsifying the usual conditions on
its grading satisfying

boo,l\?l(a(x)a B(y)) = <XaY>X
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Special values of L-functions

Given a motive M, Scholl constructs a mixed motive E according to the
following recipe:

@ Construct My by taking M to be the quotient in the sequence
0 — Hom(Q(0), M) ® Q(0) = M — M; — 0
@ Construct a motive Ms:
0 — My - M; — Hom(M;,Q(1)) ® Q(1) — 0.

© Take the universal extension by Q(0) on the left and Q(1) on the
right:
0 — Extz(M2, Q1)) @ Q(1) — Mz — M,
0 — Mz — E — Ext}(Q(0), M3) ® Q(0) — 0

if Ext,(Q(0),Q(1)) = 0 then the order in which this is done is not
important and E has a three-step weight filtration with associated graded
pieces Ext1(Q(0), M3) ® Q(0), Mo, Exts (Mo, Q(1))Y @ Q(1) .

24



Special values of L-functions

o Take M = h?a~1(X)(a). This is the only situation in which both
Ext}(Q(0), M3) and Extl(Ma, Q(1)) can be non-zero. Set p, o’ to be
their respective dimensions.

@ The L-function of E is given by
L(E,s) = L(M.5)¢(s)"¢(s + 1)

and E is critical if and only if the associated pairing (—, —) is
non-singular. We have L*(E,s) = L*(M,s) mod Q* and E does not
vanish at s = 0.

@ The extended Deligne conjecture suggests that for critical E

L*(E,0) = c(E) - Q™.
@ The unified Beilinson conjecture is: The height pairing (—, —) is
non-singular and
Q ords_oL(M,s) =p.
2] L*(M,O) = C+(M)d€t<—, _> ' QX-
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