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Abstract

A Leibniz sum is an alternating sum with the absolute value of the
terms decreasing to zero, well loved and well understood. Here we prove a
small statement regarding such sums whose terms decrease exponentially.

Theorem. Suppose (a,)22; is a non-negative sequence together with A > u > 0
satisfying for allm > 1,
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Proof. First we establish some notation. Let A > p > 0 and a7 be fixed and
let S denote the set of non-negative sequences which satisfy (1) and have first
term equal to a;. Let f : S — R denote the map taking sequences onto their
alternating sum:

(an) — Y _(=1)"ay.

As for the proof itself: for obvious reasons, take a; # 0. Then
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with a strict inequality if as > pa;.
Likewise, the value of f can be increased by a perturbation within S, if for
any n > 1, either ag, > pas,—1 or asn+1 < Aag, holds. It is then immediate



that the maximal value of f on S is obtained by taking the almost-geometric
series,
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