Fun with Leibniz sums

Benedict Sewell

September 11, 2019

Abstract

A Leibniz sum is an alternating sum with the absolute value of the terms decreasing to zero, well loved and well understood. Here we prove a small statement regarding such sums whose terms decrease exponentially.

Theorem. Suppose $\left(a_{n}\right)_{n=1}^{\infty}$ is a non-negative sequence together with $\lambda \geq \mu \geq 0$ satisfying for all $n \geq 1$,

$$
\begin{equation*}
\mu a_{n} \leq a_{n+1} \leq \lambda a_{n} \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n} \leq a_{1} \frac{1-\mu}{1-\lambda \mu} \tag{2}
\end{equation*}
$$

Proof. First we establish some notation. Let $\lambda \geq \mu \geq 0$ and a_{1} be fixed and let S denote the set of non-negative sequences which satisfy (1) and have first term equal to a_{1}. Let $f: S \rightarrow \mathbb{R}$ denote the map taking sequences onto their alternating sum:

$$
\left(a_{n}\right) \longmapsto \sum_{n=1}^{\infty}(-1)^{n+1} a_{n}
$$

As for the proof itself: for obvious reasons, take $a_{1} \neq 0$. Then

$$
\begin{align*}
f\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\sum_{n=1}^{\infty}(-1)^{n+1} a_{n} & =a_{1}-\overbrace{\sum_{n=1}^{\infty}(-1)^{n+1} a_{n+1}}^{\text {positive }} \tag{3}\\
& \leq a_{1}-\frac{\mu a_{1}}{a_{2}} \sum_{n=1}^{\infty}(-1)^{n+1} a_{n+1} \tag{4}\\
& =f(\underbrace{\left(a_{1}, \mu a_{1}, \frac{\mu a_{1} a_{3}}{a_{2}}, \ldots\right)}_{\text {still in } S} \tag{5}
\end{align*}
$$

with a strict inequality if $a_{2}>\mu a_{1}$.
Likewise, the value of f can be increased by a perturbation within S, if for any $n \geq 1$, either $a_{2 n}>\mu a_{2 n-1}$ or $a_{2 n+1}<\lambda a_{2 n}$ holds. It is then immediate
that the maximal value of f on S is obtained by taking the almost-geometric series,

$$
f\left(a_{1}, \mu a_{1}, \lambda \mu a_{1}, \lambda \mu^{2} a_{1}, \lambda^{2} \mu^{2} a_{1}, \ldots\right)=a_{1} \frac{1-\mu}{1-\lambda \mu} .
$$

