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Abstract

In recent work [1] we uncovered intriguing connections between Otto’s characterisation
of diffusion as entropic gradient flow [16] on one hand and large-deviation principles
describing the microscopic picture (Brownian motion) on the other. In this paper, we
sketch this connection, show how it generalises to a wider class of systems, and comment
on consequences and implications.

Specifically, we connect macroscopic gradient flows with large deviation principles,
and point out the potential of a bigger picture emerging: we indicate that in some non-
equilibrium situations, entropies and thermodynamic free energies can be derived via
large deviation principles. The approach advocated here is different from the established
hydrodynamic limit passage but extends a link that is well known in the equilibrium
situation.

1 Introduction

For systems in equilibrium, it is well known that the roles of energy and entropy can be
understood rigorously in terms of large-deviation principles. We describe two examples below.
Recently, we showed how large-deviation principles also allow us to understand the role of
entropy in a specific non-equilibrium system [1]: the large-deviation behaviour of a system of
independent Brownian particles connects rigorously to the entropy gradient-flow structure of
the diffusion equation. We explain this connection in Section 3.1.

The aim of this paper is to take this connection two steps further. The first step is to
extend the connection of [1], which was studied in a discrete-time context, to the case of
continuous time. The second step is to discuss a variety of examples that illustrates the
breadth of this phenomenon, and suggest a general principle that might hold across a wide
range of systems.

In equilibrium systems, the connection is as follows. Let Xi (i = 1, 2, . . . ) be independent
and identically distributed stochastic variables with distribution µ on a state space X . We
think of the Xi as positions of particles in the space X , so that their concentration is given
by the empirical measure ρn := 1

n

∑n
i=1 δXi . Sanov’s theorem (e.g., [7, Sec. 6.2]) states that

the random measure ρn satisfies the large-deviation principle

Prob(ρn ≈ ρ) ∼ exp[−nI(ρ)], as n→∞, (1)
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where the rate function I ≥ 0 is the relative entropy of ρ with respect to µ, which is

I(ρ) = H(ρ|µ) :=
{

∫

f log f dµ if ρ≪ µ and ρ = fµ,

+∞ otherwise,

This property illustrates how the relative entropy H(ρ|µ) characterises the probability of
observing a state ρ: higher relative entropy means smaller probability, as described by (1).
It also provides a rigorous version of the well-known thermodynamic principle that a system
aims to maximise its entropy (which corresponds to minimising H(ρ|µ), since the physical
entropy carries the opposite sign). For in the limit of large n, the characterisation (1) gives
vanishing probability to all states ρ except those for which I(ρ) = 0; in other words, only the
minimisers of I have non-vanishing probability.

This connection between entropy and large-deviation principles extends to systems in-
volving energy. In the appendix we show, for instance, how coupling a system with en-
ergy E to a heat bath with temperature θ changes the rate functional I to the free energy
F(ρ) := H(ρ|µ) + (kθ)−1E(ρ) + constant:

Prob(ρn ≈ ρ) ∼ exp[−nF(ρ)], as n→∞. (2)

In the same way as (1) explains why relative entropy is minimized, (2) explains why systems
coupled to a heat bath minimize their free energy: when n is large, only states ρ with near-
minimal free energy F(ρ) will have finite probability.

As mentioned above, the central aim of this paper is to show how this connection between
entropy and free energies on one hand and large-deviation principles on the other extends
into the realm of non-equilibrium systems. We restrict our focus to the important class of
gradient flows, where this connection explains many aspects of these systems. Since the
entropy appears as the driving force of the process, we will occasionally call this functional
“energy” to conform with the standard terminology for gradient flows.

The general philosophy is illustrated by the diagram below.

dynamic rate functional

I or Ih

this paper←−−−−−−−→ gradient-flow structure

J or Ih
large-deviation principle

n→∞

x



y

x



y

stochastic n-particle system
continuum limit−−−−−−−−−−→

n→∞
continuum evolution equation

(3)

The bottom row in this diagram is the classical connection between a stochastic n-particle
system and its hydrodynamic limit: the typical case is that as n → ∞, the particle system
becomes deterministic, and the empirical measure of the particle system converges to the
solution of the (deterministic) continuum equation. Note that this statement concerns only
the typical behaviour of the particle system; large deviations are not captured.

In the left-hand column, a large-deviation principle characterises the behaviour in the
limit n → ∞ in a different manner, in terms of a functional I or Ih of the time-dependent
system, as we shall see below. The right-hand column is the connection between an evolution
equation and the corresponding gradient-flow structure, when it exists.

The central statement of this paper is the double-headed arrow at the top. It provides
a connection between representations with more information on both sides: on the left-hand
side, the rate functional contains more information than just the most probable behaviour,
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and on the right-hand side, the gradient-flow structure is an additional structure on top of
the equation itself.

In the following sections, we illustrate the double-headed arrow in a number of concrete
examples, first in the discrete-time approximation (Section 3) and then in continuous time
(Section 4). Section 5 generalises the argument to non-quadratic dissipations. Since the
implications of this connection are best appreciated once one has an overview of the breadth
of the phenomenon, we postpone most of the discussion of the consequences to Section 6.

The mathematical results described in this paper are not new, and mostly due to other
authors, such as Freidlin & Wentzell [10], Dawson & Gärtner [5, 6], Feng & Kurtz [9], Kipnis,
Olla, & Varadhan [12] and others. Instead, we see the novelty of this paper in extracting
from these results the suggestion of a general principle connecting the broad class of gradient
flows with large deviations of stochastic processes. A particularly interesting aspect of this
connection is that thermodynamic quantities are derived in a non-equilibrium context.

2 The Wasserstein metric

Much of this paper centres on the Wasserstein metric and Wasserstein gradient flows. The
(quadratic) Wasserstein distance between two probability measures ρ0 and ρ1 with finite
second moments is [18]

d(ρ0, ρ1)
2 = inf

q

∫

Rd×Rd

|x− y|2 q(dxdy), (4)

where the infimum is taken over all q with marginals ρ0 and ρ1, i.e., over all q satisfying

for any A ⊂ R
d, q(A× R

d) = ρ0(A) and q(Rd ×A) = ρ1(A).

We also need an incremental version of the Wasserstein distance. The Brenier-Benamou
formula [3] gives an alternative formulation of d as an infimum of curves of measures t 7→ ρ(t)
such that ρ(0) = ρ0 and ρ(1) = ρ1:

d(ρ0, ρ1)
2 = inf

ρ : [0,1]→M1(Rd)

∫ 1

0
‖∂tρ(t)‖2ρ(t),∗ dt. (5)

Here the local norm ‖ · ‖ρ,∗ at a given point ρ is derived from an inner product (a local metric
tensor) formally given by

(s1, s2)ρ,∗ :=

∫

Rd

ρ(x)∇p1(x) · ∇p2(x) dx, (6)

where ∇ is the usual gradient in R
d, and the pi solve the equation div(ρ∇pi) = si in R

d

(see [5, 13] or [9, Sec. 9.4] for a rigorous definition).

A Wasserstein gradient flow is a gradient flow of an energy E with respect to the Wasser-
stein metric structure. A curve of measures t 7→ ρ(t) is a solution of such a gradient-flow
equation if its time derivative ∂tρ, in the sense of distributions, satisfies

(∂tρ(t), s2)ρ(t),∗ = −
∫

Rd

δE
δρ

(ρ(t)) s2 dx for all s2 and all t > 0, (7)
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where δE/δρ is the variational derivative of E . A straightforward calculation shows that this
is equivalent to the equation

∂tρ = div ρ∇
(δE
δρ

)

. (8)

By analogy with gradients in Riemannian geometry, this suggests to define the Wasserstein
gradient of a functional E as

gradW E(ρ) := − div ρ∇
(δE
δρ

)

. (9)

Below we shall also use more general versions of this structure. Replacing ρ above by a
general diffusion matrix D(ρ), we define

(s1, s2)D(ρ),∗ :=

∫

Rd

D(ρ(x))∇p1(x) · ∇p2(x) dx, where si = divD(ρ)∇pi. (10)

Repeating the construction above, it follows that theD-Wasserstein gradient of a functional E
is characterised by the equation

∂tρ = divD(ρ)∇
(δE
δρ

)

. (11)

Gradient flows have natural time-discrete approximations, constructed in an iterative
manner:

For given approximation ρk−1 at time (k − 1)h, choose ρk at time kh

as minimiser of the functional ρ 7→ 1

2h
d(ρ, ρk−1)2 + E(ρ). (12)

This is essentially a backward-Euler discretisation, as can be recognised by comparing it with
the R

d-gradient-flow ẋ = −∇E(x). For this equation the backward-Euler discretisation is
constructed by solving

1

h
(xk − xk−1) = −∇E(xk),

for xk, which is equivalent to minimising

x 7→ 1

2h
|x− xk−1|2 + E(x). (13)

Note the similarity between (13) and (12): in both expressions the first term measures the
distance between old and new states, while the second term favours a reduction of the func-
tional E respectively E.

3 Discrete time

We can now formulate the first example.
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3.1 A system of independent Brownian particles

We consider n independent Brownian particles Xn,i(t) in R
d, with deterministic initial posi-

tions Xn,i(0) = xn,i, each hopping to a new position Xn,i(h) at time h > 0 with a Gaussian
probability with mean xn,i and variance1 2h.

As in the equilibrium case discussed above, we describe this system by the empirical
measure ρn(t) := 1

n

∑n
i=1 δXn,i(t) at a given time t, and we assume that the initial measure

ρn(0) converges to a given measure ρ0 as n → ∞. In the limit of large n, the probability
of this jump process attaining any ρ1 at time t = h is again characterised in terms of a
large-deviation principle,

Prob(ρn(h) ≈ ρ1) ≈ exp[−nIh(ρ1)], (14)

where the rate functional Ih has an explicit expression that can be derived from Stirling’s
formula (see [1] for the expression; in [1], Ih is only the limit of a sequence of rate functionals,
but can be shown to be a rate functional in its own right [14, 17]).

The main result of [1] is that

Ih ≈ Kh as h→ 0, (15)

where

Kh(ρ
1; ρ0) :=

1

4h
d(ρ0, ρ1)2 +

1

2
Ent(ρ1)− 1

2
Ent(ρ0). (16)

Here d is the Wasserstein distance defined above, and

Ent(ρ) := H(ρ|L) =
{

∫

f log f dx if ρ≪ L and ρ = fL,
+∞ otherwise,

is the relative entropy of ρ with respect to the Lebesgue measure L. The rigorous formulation
of (15) is a Gamma-convergence result of Ih to Kh after both have been desingularised.

The functional Kh has the same form as the functional in (12), since the term Ent(ρ0)/2
does not influence the minimisation with respect to ρ1. Therefore the time-discrete approxi-
mation that one constructs with this Kh is an approximation of the Wasserstein gradient flow
of the entropy Ent, which is the diffusion equation [11]

∂tρ = ∆ρ in R
d. (17)

This is the connection referred to above: the large-deviation behaviour of the system of
particles is represented by the rate functional Ih, and this functional is asymptotically equal
to the functional Kh that defines the gradient-flow formulation of the diffusion equation. The
approximation result (15) therefore creates a link between the gradient-flow structure of the
deterministic limit equation on one hand and the large-deviation behaviour of the system
of particles on the other. The same result can be shown for Gaussian measures on the real
line [8]. In the rest of this paper we shall see many more versions of such connections.

1In this paper, we consider Brownian particles with generator ∆, rather than (1/2)∆, and therefore the
transition kernel is (4πh)−d/2 exp−|x− y|2/4h.
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Consequences While most of the discussion is deferred to Section 6, we mention here a few
consequences of the fact (15) that the large-deviation rate functional Ih and the constructing
functional Kh of the gradient flow are equal in the limit h→ 0.

First, the construction of a time-discrete approximation (12) to the diffusion equation (17)
was motivated in [11] by analogy with the backward-Euler discretisation (13). This is an
indirect and purely mathematical motivation, which explains neither the reason for the ap-
pearance of the entropy and the Wasserstein distance in Kh, nor the reason for minimising
just this combination.

The connection between Kh and Ih, however, gives a direct motivation. By (14)–(15),
Kh(ρ; ρ

0) is a measure of the likelihood of observing a state ρ after time h. For large n,
the characterisation (14) implies that only the global minimiser of Ih, and therefore of Kh, is
observed with non-vanishing probability. The stochastic minimisation (14) of Ih thus becomes
converted into an absolute minimisation of Kh.

Secondly, in the limit h→ 0, the proof that Ih ≈ Kh explains the origin of the two terms
of Kh. The entropy arises from the indistinguishibility of the particles after transforming to
an empirical measure. The origin of the Wasserstein cost functional |x − y|2 in (4) can be
traced back to the exponent of the term e−|x−y|2/4h in the Gaussian transition probability of
the Brownian particles. We return to this issue in Section 6.

4 Continuous time

The construction in the previous section is discrete in time: the rate function Ih describes the
probability distribution of the state ρn(h) at time h > 0. A continuous-time large-deviation
principle, where one considers deviations from a whole path of empirical measures for a fixed
terminal time, provides a different kind of insight, and may be even closer to the gradient-flow
formulation. We start with some preliminaries.

4.1 An alternative formulation of the gradient-flow structure

In a formal sense, Wasserstein gradient flows and many others can be written in the form

∂tρ = −Mρ
δE
δρ
, (18)

where E is the ‘energy’ functional driving the evolution, and Mρ a ρ-dependent symmetric
mapping2. In the case of Wasserstein gradient flows, for instance,

Mρξ = − div ρ∇ξ,

as follows by comparing (8) with (18). Taking this case of Wasserstein gradient flow as an
example, we shall encounter the equation (18) in a different form, connected to the functional
J given by

J(ρ) := E(ρ(T )) − E(ρ(0)) + 1

2

∫ T

0

[

‖∂tρ‖2ρ,∗ +
∥

∥

∥
−δE
δρ

∥

∥

∥

2

ρ

]

dt, (19)

2This way of writing the gradient flow highlights the fact that a gradient flow is an instance of a GENERIC
evolution, in which the conservative evolution term is absent [15].
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where

‖ξ‖2ρ :=
∫

Rd

ξ Mρ ξ dx =

∫

Rd

ρ |∇ξ|2

and the norm ‖ · ‖2ρ,∗ is the norm defined in (6). The norms ‖ · ‖ρ and ‖ · ‖ρ,∗ are dual norms,
and ‖ · ‖ρ,∗ has the alternative characterisation

‖s‖ρ,∗ := sup
ξ 6=0

∫

Rd

sξ dx

‖ξ‖ρ
.

By writing the energy difference E(ρ(T )) − E(ρ(0)) as

E(ρ(T ))− E(ρ(0)) =
∫ T

0

∫

Rd

δE
δρ

∂tρ dxdt =

∫ T

0

(

Mρ
δE
δρ
, ∂tρ

)

ρ,∗
dt,

using the inner product defined in (7), the functional J in (19) can now be written as

J(ρ) =
1

2

∫ T

0

∥

∥

∥

∥

∂tρ+Mρ
δE
δρ

∥

∥

∥

∥

2

ρ,∗

dt.

This expression shows that J is non-negative. It also implies that if ρ satisfies J(ρ) = 0, then
equation (18) holds at almost each time 0 < t < T ; therefore

ρ is a Wasserstein gradient flow of E ⇐⇒ J(ρ) = 0. (20)

In the examples of this paper, J is a large-deviation rate functional, and this equivalence
is the connection between the large-deviation behaviour, given by J , and the gradient-flow
structure of the limiting equation.

If we take for the operatorMρ in (18) not the Wasserstein operator but a general operator,
then we find a similar statement:

ρ is a solution of the (E ,Mρ)-gradient-flow (18) ⇐⇒ JM (ρ) = 0, (21)

where

JM (ρ) := E(ρ(T )) − E(ρ(0)) + 1

2

∫ T

0

[

‖∂tρ‖2M−1
ρ

+
∥

∥

∥
−δE
δρ

∥

∥

∥

2

Mρ

]

dt, (22)

and the two norms are defined, at least formally, by

‖ξ‖2Mρ
:=

∫

Rd

ξ Mρ ξ dx,

‖s‖M−1
ρ

:= sup
ξ 6=0

∫

Rd

sξ dx

‖ξ‖Mρ

=

∫

Rd

sM−1
ρ s dx = ‖M−1

ρ s‖2Mρ
.

We now discuss a number of examples.
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4.2 Continuous-time large deviations for the diffusion equation

Taking the same system of particles as in Section 3.1, the continuous-time large-deviation
principle for that system of Brownian particles is as follows. Fix a terminal time T > 0 and
consider the whole path [0, T ]→M1(R

d) of empirical measures [0, T ] ∋ t 7→ ρn(t). Then the
probability that the entire curve ρn(·) is close to some other ρ(·) is characterised as [5, 13] as
a pathwise large-deviation principle,

Prob(ρn ≈ ρ) ∼ exp[−nI(ρ)],
where now

I(ρ) :=
1

2

∫ T

0
‖∂tρ−∆ρ‖2ρ(t),∗ dt. (23)

This rate function I has the structure of J in (19). Using the fact that

∆ρ = div ρ∇
(δ Ent

δρ

)

,

we find that

I(ρ) = Ent(ρ(T )) − Ent(ρ(0)) +
1

2

∫ T

0

[

‖∂tρ‖2ρ,∗ +
∥

∥

∥
−δEnt

δρ

∥

∥

∥

2

ρ

]

dt.

Therefore the Entropy-Wasserstein gradient flow is connected to the large-deviation behaviour
of a system of stochastic particles, in the sense of (20). We discuss this further in Section 6.

4.3 Diffusive particles with interactions

We extend the previous example by including interaction of the particles with a background
potential Ψ and with each other via an interaction potential Φ, and modelled by Itô stochas-
tic differential equations. Specifically, we take the microscopic system of n particles to be
described by

dXi(t) = −∇Ψ(Xi(t)) dt−
1

n

n
∑

j=1

∇Φ(Xi(t)−Xj(t)) dt+
√
2 dWi(t), (24)

where for each i, Wi is a Brownian motion in R
d. The hydrodynamic limit of this system is

the equation
∂tρ = ∆ρ+ div ρ∇

[

Ψ+ ρ ∗ Φ
]

. (25)

The large-deviation rate functional describing fluctuations of the system is given by (see [9,
Theorem 13.37], and also [5] for weakly interacting diffusive particle systems)

I(ρ) :=
1

2

∫ T

0

∥

∥

∥
∂tρ−∆ρ− div ρ∇

[

Ψ+ ρ ∗Φ
]

∥

∥

∥

2

ρ,∗
dt, (26)

which again can be written as

I(ρ) = F(ρ(T ))−F(ρ(0)) + 1

2

∫ T

0

[

‖∂tρ‖2ρ,∗ +
∥

∥

∥

δF
δρ

∥

∥

∥

2

ρ

]

dt,

where the free energy F is given by the sum of entropy and potential energy,

F(ρ) := Ent(ρ) +

∫

Rd

[

ρΨ+
1

2
ρ(ρ ∗ Φ)

]

. (27)

Indeed equation (25) is the Wasserstein gradient flow of the functional F .
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4.4 The Symmetric Simple Exclusion Process

The diffusion equation (17) is the continuum limit for various stochastic processes, one of
which is the system of Brownian particles described above. Here we briefly describe the
symmetric simple exclusion process, which has the same limiting equation in a parabolic
scaling. However, it has a different large-deviation behaviour, which gives rise to a different
gradient flow.

Consider a periodic lattice Tn = {0, 1/n, 2/n, . . . (n − 1)/n} and its continuum limit, the
flat torus T = R/Z. Each lattice site contains zero or one particle; each particle attempts to
jump from to a neighbouring site with rate n2/2, and they succeed if the target site is empty.
We define the configuration ρn : Tn → {0, 1} such that ρn(k/n) = 1 if there is a particle at
site k/n, and zero otherwise. For this system the large deviations are characterised by the
rate function [12]

I(ρ) :=
1

2

∫ T

0
‖∂tρ− ∂xxρ‖2ρ(1−ρ),∗ dt, (28)

where the norm ‖ · ‖ρ(1−ρ),∗ is given by (10) with D(ρ) = ρ(1 − ρ). This functional can be
written as

I(ρ) = Entmix(ρ(T ))− Entmix(ρ(0)) +
1

2

∫ T

0

[

‖∂tρ‖2ρ(1−ρ),∗ +
∥

∥

∥
−δ Entmix

δρ

∥

∥

∥

2

ρ(1−ρ)

]

dt,

where the mixing entropy Entmix is defined as

Entmix(ρ) :=

∫

Rd

[

ρ log ρ+ (1− ρ) log(1− ρ)
]

.

This is true since −∂xxρ is the ‘ρ(1− ρ)’-Wasserstein gradient of Entmix, by

−∂xxρ = −∂x
(

ρ(1− ρ)∂x log
ρ

1− ρ

)

= −∂x
(

ρ(1− ρ)∂x
δ Entmix

δρ
(ρ)

)

(compare this to (11)). Therefore I is of the form (22), with operator

Mρξ := div ρ(1− ρ)∇ξ,

and the equation ∂tρ = ∂xxρ is (also) the gradient flow of Entmix with respect to this ‘ρ(1−ρ)’-
Wasserstein structure ‖ · ‖ρ(1−ρ),∗.

5 Further generalisations

The arguments of the integrals in (5), (23), (26), and (28) are quadratic. This arises from
a parabolic rescaling and the central limit theorem, and it leads to a gradient flow with a
(formal) inner-product structure, or equivalently, to a linear operatorMρ in (18). Other types
of randomness lead to non-quadratic gradient-flow structures, as we now describe.

A close inspection of the arguments of Section 4.1 shows that they hinge on the inequality

∂tE(ρ) ≥ −
1

2
‖∂tρ‖2M−1

ρ
− 1

2

∥

∥

∥
−δE
δρ

∥

∥

∥

2

Mρ

,

9



together with the observation that equality holds if and only if ∂tρ = −MρδE/δρ. This
can be generalised by introducing a Legendre pair of convex functions ψρ and ψ∗

ρ, where the
subscript ρ serves to indicate that they may depend on ρ, in the same way as the operator Mρ

does; in this context, ψρ, is often called dissipation potential. In terms of this pair we then
derive that

∂tE(ρ(t)) =
∫

δE
δρ
∂tρ ≥ −ψ∗

ρ(∂tρ)− ψρ
(δE
δρ

)

,

and equality holds if and only if

∂tρ ∈ ∂ψρ
(

−δE
δρ

)

. (29)

The case of the M -gradient flow (29) corresponds to

ψ∗
ρ(ξ) :=

1

2
‖ξ‖2Mρ

and ψρ(s) :=
1

2
‖s‖2

M−1
ρ
.

The obvious generalisation of (20) then is

ρ is a solution of the (E , ψ)-gradient-flow (29) ⇐⇒ Jψ(ρ) = 0, (30)

where Jψ is given by

Jψ(ρ) := E(ρ(T ))− E(ρ(0)) +
∫ T

0

[

ψ∗
ρ(∂tρ) + ψρ

(

−δE
δρ

)

]

dt. (31)

5.1 Birth-death processes

A simple example of a stochastic process with non-quadratic dissipation ψ and a corresponding
generalised gradient flow is a birth-death process, which is a continuous-time jump process
on Z. The system may only jump to neighbours, from position k with rate ak to k + 1 and
with rate bk to k− 1. We construct a continuum limit by defining the new stochastic variable
Un by rescaling time t and position k(t) with n:

Un(t) :=
k(nt)

n
.

A standard argument gives the large-deviation behaviour for Un in terms of the rate functional
(see [4] for a finite-lattice proof of the claims made below). If we choose the jump rates so
that

ak = αe−E ′(k/n) and bk = αe+E ′(k/n)

for α > 0 and some smooth function E : R→ R, then the rate functional is

I(u) =

∫ T

0
L(u(t), u′(t)) dt,

with

L(u, v) = v log
v +
√
v2 + 4α2

2α exp(−E ′(u)) −
√

v2 + 4α2 + αe−E ′(u) + αe+E ′(u).

Writing

ψ∗(v) = v log
v +
√
v2 + 4α2

2α
−
√

v2 + 4α2,
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it follows that ψ(ξ) = α(eξ + e−ξ), and I can be written in the form (31).
The corresponding generalised gradient flow in R, given by (29), reads

u̇ = 2 sinh(−E ′(u)).

Observe how this differs from the standard (quadratic-dissipation) gradient flow, which is
u̇ = −E ′(u); the non-quadratic dissipation preserves the sign of the velocity, but not its
amplitude. Because of the preservation of sign, the energy E is monotonic along a solution:

d

dt
E(u(t)) = E ′(u(t))u̇(t) = 2E ′(u) sinh(−E ′(u)) ≤ 0.

This example shows how the connection between large-deviation principles and (gener-
alised) gradient flows extends to the case of non-quadratic dissipations. Note that here the
large deviations refer to a single process and henceforth are not due to an averaging process
as in the empirical measure case.

5.2 Spin-flip processes

For n ∈ N, let Tn be the one-dimensional n-torus (Z/nZ). An Ising spin at sites of Tn takes
values in {−1,+1} and is subject to a rate-1 independent spin-flip dynamics. We consider
the trajectory of the magnetisation, i.e., t 7→ mn(t) =

1
n

∑

i∈Tn
σi(t), where σi(t) is the spin

at site i ∈ Tn at time t. The generator for the process (mn(t))t≥0 is given by

(Anf)(m) =
(1 +m)

2
n[f(m− 2n−1)− f(m)] +

(1−m)

2
n[f(m+ 2n−1)− f(m)]

form ∈ {−1,−1+2n−1, . . . , 1}. The trajectory of the magnetisation satisfies a large deviation
principle, i.e., for every trajectory γ = (γt)t∈[0,T ],

Prob
(

(mn(t))t∈[0,T ] ≈ (γt)t∈[0,T ]
)

≈ exp
[

− n
∫ T

0
L(γt, γ̇t) dt

]

,

where the Lagrangian L can be computed following the scheme of Feng and Kurtz [9, Exam-
ple 1.5.]. We obtain

L(m, q) =
q

2
log

(

q +
√

q2 + 4(1 −m2)

2(1−m)

)

− 1

2

√

q2 + 4(1−m2) + 1.

This can similarly be written as ψ∗(q) + ψ(−E ′(m)) + qE ′(m), where

ψ∗(q) =
q

2
log

q +
√

q2 + 4(1 −m2)

2
√
1−m2

− 1

2

√

q2 + 4(1−m2)

and

ψ(ξ) =
1

2

√

1−m2
(

exp(2ξ) + exp(−2ξ)
)

;

the involved energy is

E(m) =
1

4
(1 +m) log(1 +m) +

1

4
(1−m) log(1−m).

Then the limiting equation (29) can be written as ṁ = −2m. This is consistent with the
optimal trajectory via the Euler-Lagrange equation, m(t) = m0e

−2t.
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6 Discussion

In the sections above we have described a number of pairs of systems, each consisting of
a stochastic process and its continuum limit. Each pair has the property that the large
deviations of the stochastic process are closely linked to a gradient-flow structure of the limit
equation. These links are time-dynamic versions of the equilibrium connection mentioned in
the introduction. We now describe how this provides us insight into the properties of the
gradient-flow structures for each pair.

6.1 Wasserstein gradient flows

We claim that the Wasserstein metric characterises the mobility of the empirical measure of a
large number of Brownian particles. Indeed, this claim can be made meaningful in a number
of different ways:

1. In discrete time, letting ρn be the empirical measure of a system of Brownian particles,
we have

Prob(ρn(h) ≈ ρ1|ρn(0) ≈ ρ0) ∼ e−nh·d(ρ
0,ρ1)2/4 as n→∞,

which follows from (16) and was proved independently in [14].

2. In continuous time, for the whole path ρn : [0, T ] →M1(R
d) of empirical measures up

to a fixed terminal time T , we have

Prob(ρn ≈ ρ) ∼ e−nI(ρ), as n→∞,

where I, defined in (23), measures the size of the deviation by the Wasserstein metric
tensor ‖ · ‖ρ.

3. When the particles also undergo a deterministic drift, the same statement holds with I
defined by (26), where again the size of the deviation is measured by the norm ‖ · ‖ρ.

The origin of this role of the Wasserstein metric as the mobility of Brownian particles can
be understood by considering the geometric relationship between (Rd)n and the space of
measures endowed with the Wasserstein distance. Consider the embedding

e : (Rd)n → (M1(R
d), d), (x1, . . . , xn) 7→

1

n

n
∑

i=1

δxi .

Note that e is not one-to-one, since the numbering of the particles is lost: the particles
have become indistinguishable. Indeed, one can identify the set of empirical measures of
the form n−1

∑

i δxi with the space obtained by identifying all elements in (Rd)n that are
rearrangements of each other, i.e., the quotient space (Rd)n/Sn, where Sn is the set of all
permutations of n elements.

Now the Wasserstein metric on M1 makes the embedding of (Rd)n/Sn in M1(R
d) iso-

metric. This follows from the simple property that

d

(

1

n

n
∑

i=1

δxi ,
1

n

n
∑

j=1

δyj

)2

=
1

n
inf
σ∈Sn

n
∑

i=1

∣

∣xi − yσ(i)
∣

∣

2
. (32)
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With this property the role of the Wasserstein distance can be fully explained. The Freidlin-
Wentzell theory for Brownian particles [10] shows how the mobility of a vector X = (X1, . . . ,Xn)
of n Brownian particles has a stochastic mobility given by the Euclidean norm (x, y) 7→
∑

i |xi − yi|2, in the sense that

Prob(X(h) ≈ y|X(0) ≈ x) ∼ exp− 1

4h

n
∑

i=1

|xi − yi|2 for small h.

The loss of information upon introducing indistinguishability, or equivalently upon transform-
ing to empirical measures, implies by the contraction principle (e.g., [7, Sec. 4.2.1]) that the
exponent (1/4)

∑

i |xi − yi|2 becomes replaced by its minimum under rearrangement,

1

4h
inf
σ∈Sn

n
∑

i=1

|xi − yσ(i)|2.

This expression is equal to n/(4h) times (32). If we gloss over the approximations in different
limits (h→ 0 and n→∞), this explains how the Wasserstein distance is the natural measure
of the mobility of an empirical measure of Brownian particles, through transformation of the
original mobility of a single Brownian particle.

6.2 Consequences for modelling

Gradient flows can be thought of as overdamped systems, in the sense that any inertial
effects are damped out quickly by the effects of viscous, frictional, or other damping forces,
and can therefore be neglected. One way of modelling such overdamped systems is therefore
by assuming an abstract gradient-flow structure from the start and making it concrete by
postulating an energy E and a dissipation potential ψ. These choices should be motivated,
and in the case of Wasserstein and Wasserstein-like dissipations this motivation is non-trivial.

One area where this is particularly visible is in the modelling of lower-dimensional struc-
tures, such as threads and surfaces, moving through a viscous fluid. The biology of sub-cell
structures knows many such examples, including microtubules and lipid bilayers. The assump-
tion of overdampedness is reasonable in this viscosity-dominated situation, but the interplay
of geometry and mechanics makes the direct formulation of evolution equations complicated
and error-prone (see, e.g., [2]). In this context, the construction of evolution equations through
the postulation of energy and dissipation is often simpler and allows for clearer separation of
the various assumptions. However, it remains necessary to motivate the choices made for the
energy and the dissipation.

To take the Wasserstein metric as an example, its interpretation as the measure of mobility
of empirical measures of Brownian particles provides such a motivation, and because of the
connection to the Brownian mobility of the particles it also allows for generalisation to other
situations.

But similar arguments apply to other dissipations, coupled to other underlying stochastic
processes. For instance, the symmetric simple exclusion process leads to ρ(1 − ρ) mobility,
implying that if such an exclusion process is one’s idea of the underlying system, then the
ρ(1− ρ)-dissipation is the natural choice.

One might go even further. The diffusion equation (17) is known to be a gradient flow
in many different ways; in addition to the two mentioned above, also as the L2-gradient flow
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of the Dirichlet integral
∫

|∇ρ|2, for instance, as the H−1-gradient flow of the L2-norm, and
even as the Hs−1-gradient flow of the Hs-seminorm for each s ∈ R. For the two structures
that we have discussed, the different underlying stochastic processes provide clear reasons for
the differing dissipations and energies. Here we formulate the

Conjecture 1 Each gradient-flow structure can be connected to an appropriate stochastic
process via a large-deviation principle.

To the extent that this conjecture turns out to be true, it provides an explanation for the
occurrence of multiple gradient-flow formulations of the same differential equation.

6.3 Geometry and reversibility

There are interesting connections between the geometry of the Brownian noise, the reversibil-
ity of the stochastic process, and the question whether the resulting evolution equation is a
gradient flow or not.

This becomes apparent when we modify the system of Section 4.3 by introducing a dif-
fusion matrix A ∈ R

d×d and replacing the scalar σ by a mobility matrix σ ∈ R
d×d, thus

obtaining

dXi(t) = −A∇Ψ(Xi(t)) dt −
1

n

n
∑

j=1

A∇Φ(Xi(t)−Xj(t)) dt +
√
2σ dWi(t). (33)

The large-deviation rate functional of the system is similarly given by

I(ρ) :=
1

2

∫ T

0

∥

∥

∥
∂tρ− div σσT∇ρ− div ρA∇

[

Ψ+ ρ ∗ Φ
]

∥

∥

∥

2

D(ρ),∗
dt, (34)

where the norm ‖ · ‖D(ρ),∗ is induced by (10) with D(ρ) = ρσσT . The formula (34) implies
that the hydrodynamic limit of this system is the minimiser of I, satisfying

∂tρ = div σσT∇ρ+ div ρA∇
[

Ψ+ ρ ∗ Φ
]

. (35)

With this additional parameter freedom, it is not always possible to write (34) in the
form (22). This depends on whether the cross term in (34) is an exact differential, i.e.,
whether there exists a functional E such that

(

∂tρ,− div σσT∇ρ− div ρA∇
[

Ψ+ ρ ∗ Φ
]

)

D(ρ),∗
= ∂tE(ρ).

This is the case if and only if σσT is a positive multiple of A, a condition that is familiar
from the fluctuation-dissipation theorem. In that case, and writing σσT = kTA for some
‘temperature’ T > 0 and the Boltzmann constant k,

− div σσT∇ρ− div ρA∇
[

Ψ+ ρ ∗ Φ
]

=Mρ
δF
δρ
,

where Mρξ is defined as − divD(ρ)∇ξ and the free energy F is a modification of (27),

F(ρ) := Ent(ρ) +
1

kT

∫

Rd

[

ρΨ+
1

2
ρ(ρ ∗Φ)

]

.
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Then the rate functional I can be written in the form (19) as

I(ρ) = F(ρ(T )) −F(ρ(0)) + 1

2

∫ T

0

[

‖∂tρ‖2D(ρ),∗ +
∥

∥

∥

δF
δρ

∥

∥

∥

2

D(ρ)

]

dt

and the evolution equation (35) is the (modified, D-) Wasserstein gradient flow of F .
Our freedom to choose A and σ separately gives us the insight that for this system the

following four statements are equivalent:

1. σσT = kTA for some T > 0;

2. The evolution (35) is a D(ρ)-Wasserstein gradient flow of F ;

3. The rate functional I can be written in the form (19);

4. For any finite number n of particles, the system (33) is reversible.

We expect that such an equivalence property, including the reversibility of the microscopic
system, might hold more generally.

6.4 Diffusion with decay

Yet another generalisation concerns systems with decay, which is implemented as a jump
process. In [17], Peletier and Renger have derived a similar connection for the case of dif-
fusing particles that are convected and may also decay, given by the equation (in one space
dimension)

∂tρ = ∂xxρ+ ∂x(ρ ∂xΨ)− λρ, (36)

with Ψ ∈ C2
b (R) and λ ≥ 0.

In [17], the particles perform a Brownian motion in the spatial dimension, augmented by
a deterministic drift given by −∂xΨ. This part of the process gives rise to the two terms
∂xxρ + ∂x(ρ ∂xΨ). In addition, the particles change their state from ‘normal’ to ‘decayed’,
after an exponentially distributed time; this part gives rise to the term −λρ. The opposite
transition is not allowed: decay is irreversible.

An analysis similar to Section 3.1 then connects the large-deviation rate functional for
this stochastic particle system to a corresponding minimisation problem describing the time-
discrete evolution, i.e., the equivalent of (12). In this case the time-discrete minimisation
problem is

ρk ∈ argmin
ρ

inf
ρND:|ρ+ρND|=|ρk−1|

−1

2
F(ρ+ ρND)−

1

2
F(ρk−1) +

1

4h
d(ρ+ ρND, ρ

k−1)2

+ F(ρ) + F(ρND)− |ρ| log e−λh − |ρND| log(1− e−λh), (37)

where |ρ| :=
∫

ρ and the free energy F is defined as

F(ρ) = Ent(ρ) +

∫

Ψ dρ.

In [17], the authors explain how the structure of (37) can be understood: if we define

Kh
Ψ(ρ; ρ

k−1) :=
1

2
F(ρ)− 1

2
F(ρk−1) +

1

4h
d(ρ, ρk−1)2,

Kh
Dec(ρ; ρ) := F(ρ)−F(ρ) + F(ρ−ρ) − |ρ| log e−λh + |ρ− ρ| log(1− e−λh),
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then the terms inside the infimum in (37) can be written as Kh(ρ+ ρND; ρ
k−1) +Kh

Dec(ρ; ρ+
ρND). In this decomposition, the first term describes diffusion and convection by Ψ of the
joint measure ρ + ρND starting from the previous state ρk−1, similar to (16) and (12). The
second term describes the decay process, in which the joint diffused-and-convected measure
ρ + ρND is split into a part ρ that remains ‘normal’ and the remainder ρND that becomes
decayed.

While the structure of (37) is not the same as (12), and (37) does not represent a time
discretisation of a gradient flow, both are minimisation problems that define the next step in
the iteration, and in both cases one can identify a driving force (the free energy F , in the case
of (37)) and a mechanism that acts as a brake. In Kh

Ψ the ‘brake’ is the Wasserstein metric
d(ρ, ρk−1)2/4h, and in Kh

Dec it is the two terms −|ρ| log e−λh + |ρ− ρ| log(1− e−λh). In both
cases these terms restrict the movement of ρ respectively ρ, and this restriction becomes more
and more severe as h→ 0.

6.5 General remarks on interacting particle systems

Section 5 explained how, once a large deviation principle for the interacting particle system
with rate functional I(ρ) is established, different Wasserstein-type metrics occur in a natural
way. Such large deviation results are stronger than results on limit equations. Indeed, a part
of the standard proof of a large deviation result involves modifying the process by adding a
forcing such that a given path which does not solve the original limit equation solves the limit
equation of the modified process. So the question arises whether the point of view advocated
in this paper has the potential of deriving limit equations without using large deviation results
which contain limit results derived in the classical way. This open question is of particular
importance because limit points of the implicit time discretisation provide a weak notion of
solution of the limit equation in cases where distributional solutions are not appropriate, e.g.,
for problems with a sharp interface like the mean curvature flow. In situations such as (24),
where a particle interacts with the average of many others, the distribution of a family of
initially independent particles stays close to a product measure (propagation of chaos), so a
modification of the techniques for independent particles seems promising.

7 Conclusion

The examples of this paper illustrate how the two concepts of large-deviation principles for
stochastic particle systems and gradient flows are closely entwined. Further examples are
currently under study, such as Brownian particles with inertia, which lead to the Kramers’
equation, and rate-independent systems such as friction and fracture. We expect that many
more examples of this kind will be uncovered.

A Free energy and the Boltzmann distribution

In this appendix we show how the free energy

F(ρ) := H(ρ|µ) + 1

kθ
E(ρ) (38)

arises from the coupling of a system of particles with a heat bath. Here θ > 0 (in Joules) is the
temperature of the heat bath, and the Boltzmann constant k has the value 1.4 · 10−23 J/K.
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The measure µ ∈ P(X ) is the probability distribution of the particles in a state space X ,
and E is the average energy of the particles:

E(ρ) =

∫

X
e(x) ρ(dx),

where e : X → R is a fixed function that we call the energy of a state x ∈ X . We now
construct an explicit system in which F arises as the large-deviation rate functional. This
will allow us to interpret all these concepts in the context of large deviations.

We start by choosing a system S and its connection to a heat bath called SB. Both
are probabilistic systems of particles; S consists of n independent particles Xi ∈ X , with
probability law µ ∈ P(X ); similarly SB consists of m independent particles Yj ∈ Y, with law
ν ∈ P(Y). The total state space of the system is therefore X n × Ym.

The coupling between these systems is done via an energy constraint. We assume that
there are energy functions e : X → R and eB : Y → R, and we will constrain the joint system
to be in a state of fixed total energy, i.e., we will only allow states in X n × Ym that satisfy

n
∑

i=1

e(Xi) +
m
∑

j=1

eB(Yj) = constant. (39)

The physical interpretation of this is that energy (in the form of heat) may flow freely from
one system to the other, but no other form of interaction is allowed.

Similar to the example in the Introduction, we describe the total states of systems S and
SB by empirical measures ρn = 1

n

∑

i δXi and ζm = 1
m

∑

j δYj . We define the average energies

E(ρn) :=
1
n

∑

i e(Xi) =
∫

X e dρn and EB(ζm) :=
∫

Y eB dζm, so that the energy constraint (39)
reads nE(ρn) +mEB(ζm) = constant.

By Sanov’s theorem each of the systems separately satisfies a large-deviation principle
with rate functions I(ρ) = H(ρ|µ) and IB(ζ) = H(ζ|ν). However, instead of using the explicit
formula for IB, we are going to assume that IB can be written as a function of the energy
EB of the heat bath alone, i.e., IB(ζ) = ĨB(EB(ζ)). For the coupled system we derive a joint
large-deviation principle by choosing that (a) m = nN for some large N > 0, and (b) the
constant in (39) scales as nN , i.e.,

nE(ρn) + nNEB(ζnN ) = nNE for some E.

Formally, the joint system then satisfies a large-deviation principle

Prob
(

(ρn, ζnN ) ≈ (ρ, ζ)
∣

∣

∣
E(ρn) +NEB(ζnN ) = E

)

∼ exp
(

−nJ(ρ, ζ)),

with rate functional

J(ρ, ζ) :=

{

H(ρ|µ) +NĨB(EB(ζ)) + constant if E(ρ) +NEB(ζ) = NE,

+∞ otherwise.

Here the constant is chosen to ensure that inf J = 0.
The functional J can be reduced to a functional of ρ alone,

J(ρ) = H(ρ|µ) +NĨB

(

E − E(ρ)

N

)

+ constant.
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In the limit of large N , one might approximate

NĨB

(

E − E(ρ)

N

)

≈ NĨB(E)− Ĩ ′B(E)E(ρ).

The first term above is absorbed in the constant, and we find

J(ρ) ≈ H(ρ|µ)− E(ρ)Ĩ ′B(E) + constant.

We expect that I ′B is negative, since larger energies typically lead to higher probabilities and
therefore smaller values of IB . Now we simply define kθ := −1/Ĩ ′B(E), and we find

J(ρ) ≈ H(ρ|µ) + 1

kθ
E(ρ) + constant.

This is the same expression as (38). Note that the right-hand side can be written as H(ρ|µ̃),
where µ̃ is the tilted distribution

µ̃(A) =

∫

A
e−e(x)/kθ µ(dx)

∫

X
e−e(x)/kθ µ(dx)

.

This derivation shows that the effect of the heat bath is to tilt the system S: a state ρ
of S with larger energy E(ρ) implies a smaller energy EB of SB , which in turn reduces the
probability of ρ. This is reflected in the approximation Ĩ ′B(E)E(ρ) of IB(ζ). The role of
temperature θ is that of an exchange rate, since it characterises the change in probability (as
measured by the rate function IB) per unit of energy. When θ is large, the exchange rate
is low, and then larger energies incur only a small probabilistic penalty. When temperature
is low, then higher energies are very expensive, and therefore more rare. From this point
of view, the Boltzmann constant k is simply the conversion factor that converts our Kelvin
temperature scale for θ into the appropriate ‘exchange rate’ scale.

In thermodynamics one often encounters the identity (or definition) θ = dS/dE. This is
formally the same as our definition of kθ as −dIB/dE, if one interprets IB as an entropy and
adopts the convention to multiply the non-dimensional quantity IB with −k.
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[5] D. A. Dawson and J. Gärtner. Large deviations from the McKean-Vlasov limit for weakly
interacting diffusions. Stochastics, 20(4):247–308, 1987.
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