MA3H2 Markov Processes and Percolation theory Example Sheet 2

Students should hand in solutions by 1 pm Monday of week 5 to the maths pigeonloft.

Exercise 5: Let $S_{n}=\left(X_{n}, Y_{n}\right)_{n \in \mathbb{N}_{0}}$ be a simple symmetric random walk in \mathbb{Z}^{2}, starting from $(0,0)$, and set $T=\inf \left\{n \geq 0: \max \left\{\left|X_{n}\right|,\left|Y_{n}\right|\right\}=2\right\}$. Determine the quantities $\mathbb{E}(T)$ and $\mathbb{P}\left(X_{T}=2\right.$ and $\left.Y_{T}=0\right)$.

Exercise 6: Markov chains

(a) Show that any sequence of independent random variables taking values in the countable set I is a Markov chain. Under what condition is this chain homogeneous (in time)?
(b) A die is rolled repeatedly. Which of the following are Markov chains? For those that are, supply the transition matrix.
(i) The number N_{n} of sixes in n rolls.
(ii) At time r, the time C_{r} since the most recent six.

Exercise 7: Exponential distribution

(a) Let X and Y be independent random variables having the exponential distribution with parameters λ and μ respectively. Find the probability density function of the sum $X+Y$.
(b) Let X have an exponential distribution. Show that $\mathbb{P}(X>s+x \mid X>s)=$ $\mathbb{P}(X>x)$, for $x, s \geq 0$.

Exercise 8: Poisson process

(a) Superposition. Flies and wasps land on your dinner plate in the manner of independent Poisson processes with respective intensities λ and μ. Show that the arrivals of flying objects form a Poisson process with intensity $\lambda+\mu$.
(b) Thinning. Insects land in the soup in the manner of a Poisson process with intensity λ, and each insect is green with probability $p \in[0,1]$, independently of the colours of all other insects. Show that the arrivals of green insects form a Poisson process with intensity λp.

