MA3H2 Markov Processes and Percolation theory Example Sheet 5

Students should hand in solutions by 3pm Tuesday of week 10 to the maths pigeonloft.

Exercise 17:

(a) Let $X=\left(X_{t}\right)_{t \geq 0}$ be an irreducible positive recurrent birth-death process. Show that $X=\left(X_{t}\right)_{t \geq 0}$ is reversible in equilibrium.
(b) If $X=\left(X_{t}\right)_{t \geq 0}$ and $Y=\left(Y_{t}\right)_{t \geq 0}$ are independent reversible processes, prove that $\left(X_{t}, Y_{t}\right)_{t \geq 0}$ is a reversible process.
(c) Customers arrive in a barber's shop according to a Poisson process of rate $\lambda>0$. The shop has s barbers and N waiting places; each barber works (on a single customer) provided that there is a customer to serve, and any customer arriving when the shop is full (i.e. the numbers of customers present is $N+s$) is not admitted and never returns. Every admitted customer waits in the queue and is then served, on a first-come-first-served order, the service taking an exponential time of rate $\mu>0$; the service times of admitted customers are independent. After completing the hair cut, the customer leaves the shop and never returns. Set up a Markov process model for the number X_{t} of customers in the shop at time $t \geq 0$. Calculate the equilibrium distribution π of this process and explain why it is unique. Show that $X=\left(X_{t}\right)_{t \geq 0}$ in equilibrium is reversible, i.e. for all $T>0,\left(X_{t}: 0 \leq t \leq T\right)$ has the same distribution as $\left(Y_{t}: 0 \leq t \leq T\right)$ where $Y_{t}=X_{T-t}$, and $X_{0} \sim \pi$.

Exercise 18: Bond percolation on \mathbb{Z}^{d}.

(a) Explain and justify the following facts (recall that $\left.p_{\mathrm{c}}(d)=p_{\mathrm{c}}\left(\mathbb{Z}^{d}\right)\right)$:
(i) $p_{\mathrm{c}}(1)=1$; (ii) $p_{\mathrm{c}}(d+1) \leq p_{\mathrm{c}}(d)$ for all $d \geq 1$; (iii) $\lambda(d) \leq 2 d-1$; (iv) $p_{\mathrm{c}}(d) \sim(2 d)^{-1}$ as $d \rightarrow \infty$.
(b) Consider now \mathbb{Z}^{2} : Prove that $\mathbb{P}_{\frac{1}{2}}(H(Q)) \geq \frac{1}{2}$ and $\mathbb{P}_{\frac{1}{2}}(H(R))=\frac{1}{2}$, where Q is any square and R is an $(n+1) \times n$ rectangle. Use the fact that exactly one of the events $H(R)$ (horizontal crossing using open bonds of R) and $V\left(R^{\mathrm{h}}\right)$ (vertical crossing of the dual R^{h}; where for a rectangle $R=[a, b] \times[c, d]$ in \mathbb{Z}^{2} the horizontal dual is the rectangle $R^{\mathrm{h}}=\left[a+\frac{1}{2}, b-\frac{1}{2}\right] \times\left[c-\frac{1}{2}, d+\frac{1}{2}\right]$ in the dual lattice $\left.\left(\mathbb{Z}^{2}\right)^{*}\right)$ always hold.
(c) Formulate Harris Theorem.

Exercise 19: Bond percolation on rooted trees. Consider bond percolation on a rooted tree $\mathbb{T}_{k}, k \geq 2$, (i.e. a k-branching tree with a root in which each vertex has k children).
(a) Prove that $p_{\mathrm{c}}\left(\mathbb{T}_{k}\right)=p_{\mathrm{T}}\left(\mathbb{T}_{k}\right)=\frac{1}{k}$.
(b) Write and prove a formula (respectively an equation) for the probability $\theta(p)$ of infinite cluster containing the root for $p>p_{c}\left(\mathbb{T}_{k}\right)=\frac{1}{k}$, and the expectation $\chi(p)$ of the size of the cluster containing the root for $p<p_{\mathrm{c}}\left(\mathbb{T}_{k}\right)$.
(c) Find an explicit formula for $\theta(p)$ for $k=2$.

Exercise 20:

(a) Define the BK (van den Berg, Kesten) operation $A \square B$ for bond percolation (on a finite set of bonds).
(b) Prove that $A \square B \subset A \cap B$ always and $A \square B=A \cap B$ whenever A is increasing and B decreasing.
(c) Consider bond percolation on \mathbb{Z}^{d}. Formulate Russo's Lemma and prove Russo's Lemma.

