2011, term 2 Stefan Adams

MA3H2 Markov Processes and Percolation theory Example Sheet 4

Students should hand in solutions by 3pm Tuesday of week 10 to the maths pigeonloft.

Exercise 13: Bond percolation on \mathbb{Z}^d .

- (a) Explain and justify the following facts (recall that $p_{\rm c}(d)=p_{\rm c}(\mathbb{Z}^d)$): (i) $p_{\rm c}(1)=1$; (ii) $p_{\rm c}(d+1)\leq p_{\rm c}(d)$ for all $d\geq 1$; (iii) $\lambda(d)\leq 2d-1$; (iv) $p_{\rm c}(d)\sim (2d)^{-1}$ as $d\to\infty$.
- (b) Consider now \mathbb{Z}^2 : Prove that $\mathbb{P}_{\frac{1}{2}}(H(Q)) \geq \frac{1}{2}$ and $\mathbb{P}_{\frac{1}{2}}(H(R)) = \frac{1}{2}$, where Q is any square and R is an $(n+1)\times n$ rectangle. Use the fact that exactly one of the events H(R) (horizontal crossing using open bonds of R) and $V(R^{\rm h})$ (vertical crossing of the dual $R^{\rm h}$; where for a rectangle $R = [a,b]\times [c,d]$ in \mathbb{Z}^2 the horizontal dual is the rectangle $R^{\rm h} = [a+\frac{1}{2},b-\frac{1}{2}]\times [c-\frac{1}{2},d+\frac{1}{2}]$ in the dual lattice $(\mathbb{Z}^2)^*$) always hold.
- (c) Formulate Harris Theorem.

Exercise 14: Bond percolation on rooted trees. Consider bond percolation on a rooted tree \mathbb{T}_k , $k \geq 2$, (i.e. a k-branching tree with a root in which each vertex has k children).

- (a) Prove that $p_{\mathbf{c}}(\mathbb{T}_k) = p_{\mathbf{T}}(\mathbb{T}_k) = \frac{1}{k}$.
- (b) Write and prove a formula (respectively an equation) for the probability $\theta(p)$ of infinite cluster containing the root for $p>p_{\rm c}(\mathbb{T}_k)=\frac{1}{k}$, and the expectation $\chi(p)$ of the size of the cluster containing the root for $p< p_{\rm c}(\mathbb{T}_k)$.
- (c) Find an explicit formula for $\theta(p)$ for k=2.

Exercise 15:

- (a) Define the BK (van den Berg, Kesten) operation $A \square B$ for bond percolation (on a finite set of bonds).
- (b) Prove that $A \square B \subset A \cap B$ always and $A \square B = A \cap B$ whenever A is increasing and B decreasing.
- (c) Consider bond percolation on \mathbb{Z}^d . Formulate Russo's Lemma and prove Russo's Lemma.

Exercise 16:

- (a) Define increasing/decreasing events and state the FKG (Fortuin, Kasteleyn, Ginibre) inequality. State and prove Harris's Lemma for events depending only on finitely many bonds.
- (b) Let A and B be events. Define the BK (van den Berg, Kesten) operation $A \square B$ for bond percolation (on a finite set of bonds) and state the BK inequality. Give an example for $A \square B$ and an example for an event in $A \cap B \setminus (A \square B)$.
- (d) Consider bond percolation on \mathbb{Z}^2 .
 - (i) Denote by $R_{n,L}(p)$ the probability of an open horizontal crossing of an nL by L rectangle with $L>1, n\in\mathbb{N}$. Pick $c=\frac{1}{16}$ and $\lambda\in(0,1)$. Prove the following statement: If $R_{2,L}(p)\geq 1-c\lambda$ then $R_{2,2L}(p)\geq 1-c\lambda^2$.
 - (ii) Give the main ideas for the proof of Harris Theorem (you may assume an appropriate lower bound on probabilities of left-right crossings of rectangles (RSW Theorem)).