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Preface

Health Warning: These notes give the skeleton of the course and are not a
substitute for attending lectures. They are meant to make note-taking easier
so that you can concentrate on the lectures. An important part in vector
analysis are figures and pictures. These will not be contained in these notes.
For any figure which appears on the blackboard in my lectures I leave some
empty space with a reference number which coincides with the number I am
using in the lectures. You can fill the diagrams and figures by your own.

These notes grew out of hand written notes from Jochen Voß who gave
this course 2005 and 2006. I thank him very much for letting me using his
notes.
Any remarks and suggestions for improvements would help to create better
notes for the next year.

Stefan Adams

Motivation

What is Vector Analysis?
In analysis differentiation and integration were mostly considered in one di-
mension. Vector analysis generalises this to curves, surfaces and volumes in
Rn, n ∈ N. As an example consider the “normal” way to calculate a one
dimensional integral: You may find a primitive of a function f and use the
fundamental theorem of calculus, i.e. for f = F ′ we get∫ b

a

f(x) dx = F (b)− F (a).

The value of the integral can be determined by looking at the boundary
points of the interval [a, b]. Does this also work in higher dimensions? The
answer is given by Gauss’s divergence theorem.

Notation

One of the main problems in vector analysis is that there are many books
with all possible different notations. During the whole course I outline alter-
native notations in use. It is one of the objectives to acquaint you with the
different notations and symbols. Note that most of the material originated
from physics and hence many books are using notations and symbols known
by people in physics.
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Vectors: x ∈ Rn with x = (x1, . . . , xn) and with norm ‖x‖ =
√
x2

1 + · · ·+ x2
n.

Alternative notations are: ~x, x,x and in dimension n = 3 ~r = (x, y, z) for
the vector and |x| or r for the norm of ~x, x,x or ~r.
Properties of the norm are (i)‖x‖ ≥ 0; (ii)‖λx‖ = |λ|‖x‖ for λ ∈ R; (iii)‖x+
y‖ ≤ ‖x‖+ ‖y‖ for x, y ∈ Rn.
Functions: f : Rm → Rn with component functions f1, . . . , fn : Rm → R.
Alternative notations are: ~f or f or f .
Partial derivatives: Let ei, 1 ≤ i ≤ n, be the canonical basis vectors in Rn

(i.e. 〈ei, ej〉 for i, j+1, . . . , n). The partial derivative of a function f : Rn → R
with respect to the i-th direction at point x ∈ Rn is given by

∂f(x)

∂xi
= lim

h→0

f(x+ hei)− f(x)

h
, x ∈ Rn.

Alternative notation is: ∂if(x).
Scalar product: The scalar product (dot product) is defined as 〈x, y〉 =∑n

i=1 xiyi for x, y ∈ Rn. Alternative expression is x·y.
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Part I: Real Vectoranalysis

1 Gradients and Directional Derivatives

In this section we ask how does a function f : Rn → R change when we move
from x ∈ Rn in direction of a vector y ∈ Rn.

Figure 1

We can reduce the problem to one dimension. We define for the given x ∈ Rn

and y ∈ Rn the function

ϕ(x) : R→ R
t 7→ f(x+ ty).

The change of f in direction y equals the change of ϕ(x) and is thus given by
ϕ′(x).

Definition 1.1 The directional derivative Dyf(x) of a function f : Rn →
R at the point x ∈ Rn in direction of y ∈ Rn is given by

Dyf(x) = lim
t→0

f(x+ ty)− f(x)

t

if the indicted limit exists. Dyf(x) is also called the derivative along the
vector y at the point x.
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Remark 1.2 (a) With ϕ(x)(t) = f(x + ty) the directional derivative of f
at point x ∈ Rn in direction y ∈ Rn is given as

Dyf(x) = ϕ′(x)(0).

(b) We have defined the directional derivative via the limit as t → 0 for
the differential quotient. If one takes the limit t ↓ 0, that is t > 0 and
t→ 0, one gets the directional derivative from the right hand side. The
same applies to the limit t ↑ 0 for the directional derivative from the
left.

We calculate directional derivatives in the next example.

Example 1.3 Let f : R2 → R2, f(x) = x2
1 + x2

2 be given. Then for x, y ∈ R2

we have

f(x+ ty) = (x1 + ty1)2 + (x2 + ty2)2

= x2
1 + x2

2 + t(2x1y1 + 2x2y2) + t2(y2
1 + y2

2)

Hence Dyf(x) = ϕ′(x)(0) = 2〈x, y〉.

Figure 2
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Recall ϕ(x)(t) = f(x + ty), t ∈ R, x, y ∈ Rn. The function ϕ(x) : R → R is
the composition of the function g : R → Rn, t 7→ x + ty, and the function
f : g(R)→ R (i.e. the restrition of f on g(R) ⊂ Rn), that is

ϕ(x)(t) = (f ◦ g)(t) = f(g(t)).

The chain rule gives

(f ◦ g)′(t) =
n∑
i=1

∂if(g(t))g′i(t)

=
n∑
i=1

∂if(x+ ty)yi,

where gi(t) = xi + tyi, t ∈ R, 1 ≤ i ≤ n, are the component functions of g.
Hence we get

Dyf(x) = ϕ′(x)(0) =
n∑
i=1

∂if(x)yi. (1.1)

We can write (1.1) in a shorter way with the following definition.

Definition 1.4 Let the function f : Rn → R be differentiable. The vector
∇f = (∂1f, . . . , ∂nf) is called the gradient of f . Alternative notations are
grad f,∇f,∇f or ∇f =

∑n
i=1

∂f
∂xi

ei.

Note that ∇f : Rn → Rn, x 7→ (∂1f, . . . , ∂nf), that is, ∇f is a “vector” of
the component functions ∂if : Rn → R, x 7→ ∂if(x), 1 ≤ i ≤ n.

Definition 1.5 A scalar or a vector quantity is said to be a field if it is a
function of position. Examples: Let D ⊂ Rm, then f : D → Rn is called a
vector field if n > 1, and f : D → R is called a scalar field.

Examples for vector fields are the magnetic, electric or velocity (vector) field,
whereas temperature and pressure are scalar fields.

Our calculation in (1.1) shows that the directional derivative Dyf at any
point x ∈ Rn is linear in y and we only need to know the gradient ∇f(x) in
order to calculate Dyf(x)

Dyf(x) = 〈∇f(x), y〉 (1.2)
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Remark 1.6 Recall the Cauchy-Schwarz inequality

|〈x, y〉| ≤ ‖x‖‖y‖ for x, y ∈ Rn.

We get
|Dyf(x)| = |〈∇f(x), y〉| ≤ ‖∇f(x)‖‖y‖,

and for y ∈ Rn with ‖y‖ = 1 we have |Dyf(x)| ≤ ‖∇f(x)‖. Consider now

y = ∇f(x)|
‖∇f(x)‖ with ‖y‖ = 1. This gives

Dyf(x) =
〈
∇f(x),

∇f(x)

‖∇f(x)‖
〉

= ‖∇f(x)‖.

Thus, the directional derivative Dyf is maximal if y points in the direction
of the gradient (both Dyf and ∇f evaluated at a given point). That is, the
rate of increase of the function f (expressed in the units of f relative to
the unit length in Rn) is maximal and equal to ‖∇f(x)‖ for motion from
the point x precisely when the displacement is in the direction of the vector
∇f(x). The value of the function decreases most sharply under displacement
in the opposite direction, and the rate of variation of the function is zero in
a direction perpendicular to the vector ∇f(x).

2 Visualisation of functions f : Rm → Rn

Visualisation of functions is hard and needs practice. One of the objectives
of the course is to learn basic techniques to create sketches/figures showing
basic features of a given function.

2.1 Scalar fields, n = 1

We recall the notion of a graph of a function and introduce the notion of a
level set of a function. The graph of a function f : Rm → Rn is easily pictured
for m = n = 1 and m = 2, n = 1, see Figure 3.
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Figure 3:

Definition 2.1 Let f : D → R be a function for some domain D ⊂ Rm.

(a) The graph of f is the subset of Rm+1 consisting of all points (x, f(x)), x ∈
D. In symbols,

graph f = {(x, f(x)) ∈ Rm+1 : x ∈ D}.

(b) Let c ∈ R. The set

f−1(c) = {x ∈ D : f(x) = c}

is called the c-level set of the function f . In dimension m = 2 we
speak also of level curve and in dimension m = 3 of a level surface.

The behaviour or structure of a function is determined in part by the
shape of its level sets; consequently, understanding theses sets aids us in
understanding the functions in question. The idea of level sets is also used in
preparing contour maps, where one draws lines to represent constant altitude.
Walking along such a line would mean walking on a level path. In the case of
a hill rising from the x− y plane, a graph of all level curves gives us a good
idea of the “height” function h(x, y), which represents the height of the hill
at point (x, y).
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Example 2.2 (a) f : R2 → R, (x, y) 7→ f(x, y) = x2 + y2.

Figure 4:

(b) f : R3 → R, (x, y, z) 7→ f(x, y, z) = z2 − x2 − y2.
Let c = 0: f−1(0) is a cone,

f(x, y, z) = 0⇔ r2 := x2 + y2 = z2 ⇔ r = |z|,

where r =
√
x2 + y2.

Let c > 0:

f(x, y, z) = c⇔ r =
√
z2 − c with z2 ≥ c⇔ z = ±

√
x2 + y2 + c.

Hence the level set is a hyperboloid of two sheets around the z axis, passing
through the z axis at the points (0, 0,±

√
c).

6



Figure 5: cone

Figure 6: hyperboloid (two sheets)

Let c < 0:

f(x, y, z) = c⇔ r =
√
z2 − c⇔ z = ±

√
x2 + y2 − c.

7



The level set (surface) is the single-sheeted hyperboloid of revolution around
the z axis, which intersects the x− y plane in the circle of radius

√
−c.

Figure 7: hyperboloid (single-sheet)

2.2 Vector fields, n > 1

We are going to sketch vector fields. As an example think about the velocity
vector field inside a fluid or the electric and magnetic field of power currents.

Example 2.3 (a) f : R2 → R2, (x, y) 7→ f(x, y) =

(
1
2

0

)
, see figure 8 below.
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Figure 8:

(b) f : R2 → R2, (x, y) 7→ f(x, y) =

(
x
y

)
, see figure 9 below.

Figure 9:
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(c) f : R2 → R2, (x, y) 7→ f(x, y) =

(
y
x

)
, see figure 10 below.

Figure 10:

Vector fields in two dimensions can be visualised by a sketch. In this case
the simplest procedure is to evaluate the vector field at a sequence of points
and draw vectors indicating the magnitude and direction of the vector field
at each point. An example of this procedure is the drawing of wind speeds
and directions on weather maps. In the above example 2.2 the third vector
field at point is f(1, 0) = (0, 1), so at this point a vector of magnitude 1 in
the y-direction is drawn. By considering a few additional points, a sketch of
the vector field can be built up (see figure 10).

2.3 Curves and Surfaces

We examine now curves and surfaces, i.e. we consider m < n. We consider
mainly two examples, m = 1, 2. For m = 1 we have parametric curves in Rn

and for m = 2 we have parametric surfaces in Rn. Parametric curves and
surfaces are defined via mappings from subsets of R respectively subsets of
R2 into Rn. In the next example we study the case n = 3. That is we have no
axis available for the arguments of the mappings, we only sketch the range
of these mappings.
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Example 2.4 (a)

f : [0, 2π]→ R3, t 7→ f(t) =

cos t
sin t
t

 .

This defines the helix seen in the figure 11 below.

Note that for c ∈ R the mapping fc : [0, 2π] → R3, t 7→ f(t) =

cos t
sin t
c


defines a circle line in the x− y plane shifted in z direction by c.

(b)

f : [0, 1]× [0, 2π]→ R3, (s, t) 7→ f(s, t) =

s cos t
s sin t
t

 .

This mapping defines the helicoid seen in figure 12.

Note that for fixed parameter t we have lines within the surface of the helicoid
and through any point of the helicoid there is a helix going through that point.

Curves can be given in two ways. A parametric curve is a map ϕ : [a, b]→
Rn, e.g. ϕ(t) = (cos t, sin t) ∈ R2 for t ∈ [0, 2π]. Curves in Rn, i.e. subsets
C ⊂ Rn, can be given as the level set of some real valued function, e.g.
consider the function f : R2 → R, (x, y) 7→ f(x, y) = x2 + y2. The curve C is
then the level set

C = {(x, y) ∈ R2 : x2 + y2 = 1},
which is again the circle line in x− y plane.

For a parametric curve ϕ : R→ Rn the point ϕ(t) gives the point at time
“time” t. The derivative with respect to the parameter t gives the velocity
vector ϕ′(t) at time “time” t. Both are vectors in Rn with the following
components

ϕ(t) = (ϕ1(t), . . . , ϕn(t)) ∈ Rn and ϕ′(t) = (ϕ′1(t), . . . , ϕ′n(t)) ∈ Rn.

If ϕ′(t) 6= 0, then ϕ′(t) is a tangent vector of the curve. The tangent line
Tϕ(t) at point ϕ(t) is given by

Tϕ(t) : R→ Rn, λ 7→ Tϕ(t)(λ) = ϕ(t) + λϕ′(t).

Definition 2.5 A vector x ∈ Rn is orthogonal to a parametric curve
ϕ : R → Rn at the point ϕ(t) if 〈x, ϕ′(t)〉 = 0, i.e. if it is orthogonal to
the tangent line.
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Figure 11: helix

12



Figure 12: helicoid
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Lemma 2.6 Let f : Rn → R be differentiable and a ∈ Rn. Then

∇f(a) ⊥ {x ∈ Rn : f(x) = f(a)} =: L(a).

Proof. Let ϕ : R→ L(a) be differentiable with ϕ(0) = a. Then

0 =
d

dt
f(ϕ(t))

∣∣
t=0

= 〈∇f(ϕ(0)), ϕ′(0)〉

= 〈∇f(a), ϕ′(0)〉.

This implies ∇f(a) ⊥ ϕ′(0) and ϕ′(0) is tangent vector, i.e. it is in L(a). 2

Notation 2.7 Let a curve C ⊂ Rn be given, either as a level set of some
function or of some indirect description. A parametric curve γ : [a, b] → Rn

is called a parametrisation of the curve C if γ([a, b]) = C.

3 Line integrals

In this section we want to take integrals along a curve C ⊂ Rn. A curve is a
one-dimensional object in Rn.

3.1 Integrating scalar fields

If we integrate the constant scalar field u : Rn → R, x 7→ u(x) = 1 along a
curve with given parametrisation γ we shall get the length of the γ. And if
we integrate some density along that curve we get the total mass of a thin
curve.

14



Figure 13:

Definition 3.1 (Scalar line integral) Let γ : [a, b] → Rn be a parametri-
sation of the curve C ⊂ Rn. The scalar line integral of a scalar field
u : Rn → R along the curve C is given by∫

C
u :=

∫ b

a

u(γ(t))‖γ′(t)‖ dt. (3.3)

Alternative notations are:
∫
γ
u,
∫
C u ds and

∫
γ
u ds and the integral is

sometimes also called the path integral along the path C.

Note that the scalar field u needs only to be defined along the curve, i.e.
u : C → R.

Remark 3.2 The length of a parametric curve γ : [a, b]→ Rn is given by∫
γ

1 =

∫ b

a

‖γ′(t)‖ dt.

As an example consider n = 2 and calculate the length of the circle line

γ : [0, 2π]→ R2, t 7→ γ(t) =

(
cos t
sin t

)
.

15



As

γ′(t) =

(
− sin t
cos t

)
and ‖γ′(t)‖ =

√
(− sin t)2 + cos2 t = 1,

we have
∫
γ

1 =
∫ 2π

0
‖γ′(t)‖ dt = 2π.

3.2 Integrating vector fields

As an introductory example consider a particle moving along a curve (path)

C ⊂ R3. The particle is acted on by a force ~F (~x), ~x ∈ R3, which is a vector

field ~F : R3 → R3, ~x 7→ ~F (~x).
What is the total amount of work done as the particles moves along the
curve C? We consider a small displacement d~x at position ~x within the curve
C. Then the work that is done when the particle moves from position ~x to
position ~x+ d~x along the curve C is precisely −~F ·d~x = −〈~F , d~x〉.

Figure 14:

Hence, heuristically the total amount of work shall be an integral (the sum
of all these small contributions)

−
∫
C

~F ·d~x.

We make this notion mathematically precise in the following definition.
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Definition 3.3 (Tangent line integral) Let C ⊂ Rn be a curve with parametri-
sation γ : [a, b]→ Rn. The tangent line integral of a vector field f : Rn →
Rn along C is defined as∫

C
f =

∫ b

a

〈f(γ(t), γ′(t)〉 dt. (3.4)

Alternative notations are
∫
C f · d~s,

∫
γ
f ·d~s or

∫
γ
f ·T̂ ds.

Remark 3.4 The tangent line integral of a vector field f : Rn → Rn along
the curve C with parametrisation γ : [a, b]→ Rn can be written as∫

C
f =

∫ b

a

〈
f(γ(t),

γ′(t)

‖γ′(t)‖

〉
‖γ′(t)‖ dt,

where
〈
f(γ(t), γ′(t)

‖γ′(t)‖

〉
is the projection of f onto the tangent line, see figure

15 below. Hence, the tangent line intergal
∫
γ
f of a vector field f is the scalar

line integral of the component of f along the tangent direction.

Figure 15:

We close with two examples.

Example 3.5 (Tangent line integral) We calculate the work done when
moving a mass m > 0 along a line/curve with parametrisation γ : [0, π] →

17



R2, t 7→
(

t
− cos t

)
in the gravity field f : R2 → R2, (x, y) 7→ f(x, y) =(

0
−mg

)
. Here g is a constant, called the earth acceleration. Then the

work to move the mass from

(
0
−1

)
to

(
π
1

)
is given by

−
∫
γ

f = −
∫ π

0

〈( 0
−mg

)
,

(
1

sin t

)〉
dt

= mg

∫ π

0

sin t dt = 2mg.

Figure 16:

Example 3.6 (Scalar line integral) Consider the curve C with parametri-
sation γ : [−π, π] → R3, t 7→ (cos t, sin t, t). The scalar line integral of
u : R3 → R, (x, y, z) 7→ x2 + y2 along the curve C is∫

C
u =

∫
C
(x2 + y2) =

∫ π

−π
(cos2(t) + sin2(t))‖γ′(t)‖ dt,

and as γ′(t) = (− sin t, cos t, 1) with ‖γ′(t)‖ =
√

sin2 t+ cos2 t+ 1 =
√

2 we
get ∫

C
(x2 + y2) = 2π

√
2.
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4 Gradient Vector Fields

In this section we will study gradient vector fields. We will prove the Fun-
damental Theorem of vector calculus (FTC) for vector fields. Moreover,
integrals (tangent line integrals) of gradient vector fields along curves can
easily be calculated once the potential (primitive) is known.

4.1 FTC for gradient vector fields

Definition 4.1 A vector field f : D → Rn, D ⊂ Rn, is called a gradient
vector field , if there exists a scalar field V : D → R with

f(x) = ∇V (x) for all x ∈ D. (4.5)

V is called the potential of the vector field f if (4.5) is satisfied. Sometimes
a gradient vector field is also called a vector field of gradient type.

Remark 4.2 (a) If V is a potential for the vector field f , then V + c is a
potential for f for any c ∈ R as well because ∇(V +c)(x) = ∇V (x), x ∈
D. That is, the potential is not unique.

(b) Not every vector field is of gradient type, e.g.

f : R3 → R3, (x, y, z) 7→ f(x, y, z) = (z, z, y).

If V : R3 → R would be a potential it would satisfy

∂xV (x, y, z) = z ⇒ V (x, y, z) = zx+ c1(y, z)

∂zV (x, y, z) = y ⇒ V (x, y, z) = yz + c2(x, y),

which has no solution because of xz versus yz.

The most important result about gradient vector fields is the following
theorem.

Theorem 4.3 (FTC for gradient vector fields) Let V : Rn → R be a
scalar field (C1- differentiable) and let C ⊂ Rn a curve with a (piecewise
C1- differentiable) parametrisation γ : [a, b] → Rn. Let f : Rn → Rn be a
vector field with ∇V = f . Then the tangent line integral of the vector field
is given by ∫

C
f = V (γ(b))− V (γ(a)). (4.6)

This is the Fundamental Theorem of calculus for gradient vector fields.
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Proof. The map [a, b]→ R, t 7→ V (γ(t)) has derivative

(V (γ(t))′ =
n∑
i=1

∂V

∂xi
(γ(t))

dγi(t)

dt

= 〈∇V (γ(t)), γ′(t)〉 = 〈f(γ(t)), γ′(t)〉.

Thus we get ∫
C
f =

∫ b

a

〈f(γ(t)), γ′(t)〉dt =

∫ b

a

(V (γ(t))′dt

= V (γ(b))− V (γ(a)),

where we used the Fundamental Theorem of Calculus for functions on the
real line.

2

Example 4.4 (Revisit of Example 3.5) Moving a mass m > 0 in the

gravity field f : R2 → R2, (x, y) 7→ f(x, y) =

(
0
−mg

)
with potential v : R2 →

R, (x, y) 7→ V (x, y) = −mgy. Then the tangent line integral along any curve
C ⊂ R2 with parametrisation γ : [a, b]→ R2 gives the work moving the mass
along C, that is

−
∫
C
f = −

∫
γ

f = −V (γ(b)) + V (γ(a)).

In Example 3.5 we have a curve C with parametrisation γ : [0, π]→ R2, t 7→

γ(t) =

(
t

− cos t

)
, hence the work (tangent line intergal) can be computed

directly with the potential

−
∫
C
f = mg(cos π − (−1)) = 2mg.

Notation 4.5 (a) A simple curve C ⊂ Rn is a curve which is the image of a
piecewise C1-parametrisation γ : [a, b]→ R that is one-to-one on the interval
[a, b]. The points γ(a) and γ(b) are the endpoints of the curve.
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Figure 17: Simple and not simple curve

(b) Let γ : [a, b] → Rn be a (piecewise C1- differentiable) parametrisation.
Then the map

ω : [a, b]→ Rn, t 7→ ω(t) = γ(a+ b− t)

is the parametrisation of the reversed (inverse direction) path called C−1.

21



Figure 18:

Remark 4.6 If f is a gradient vector field with potential V and γ is a line
(path or parametrisation), then the tangent line integral depends only on the
endpoints of the line (path or parametrisation) and on the direction of γ.

Figure 19:
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Taking the direction into account one gets∫
γ1

f = V (γ(b))− V (γ(a)) = −(V (γ(a))− V (γ(b)) =

∫
γ2

f,

see figure 19. Moreover it follows with the same arguments that the tangent
line integral along a closed curve (path or line) is zero, see figure below.

Figure 20: Integral of a closed curve

The gradient vector fields are important in particular in physics.
Physics notation: A vector field f : D → Rn, D ⊂ Rn, is said to be con-
servative if it has the property that the (tangent) line integral of f along
any closed curve C ⊂ Rn is zero:∫

Cclosed
f = 0.

Equivalent: The vector field f is conservative if the (tangent) line integral
of f along a curve only depends on the endpoints of the curve C, not on the
particular path taken by the curve. That is∫

C1
f =

∫
C2
f

for any two curves connecting two points a ∈ Rn and b ∈ Rn in the same
direction, i.e. both curves travel form a to b.
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Then one can show that a vector field f is of gradient type if and only if it
is conservative.

This provides us with another method to check if a given vector field f
is of gradient type or not. we have just to check if an integral (tangent line)
along a closed curve is zero. However, here one has to ensure that the closed
curve lies in the domain of the vector field.

Example 4.7 Let f : R2 → R2, (x, y) 7→ f(x, y) = (−y, x) be vector field
and integrate this along the circle line with parametrisation γ : [0, 2π] →
R2, t 7→ (cos t, sin t). The tangent line along this closed curve is∫

γ

f =

∫ 2π

0

〈(− sin t

cos t

)
,

(
− sin t

cos t

)〉
dt =

∫ 2π

0

1 dt = 2π 6= 0.

Hence the vector field f cannot be of gradient type.

4.2 Finding a potential

Corollary 4.8 If f : Rn → Rn is a gradient vector field and V : Rn → R a
potential, then for any x ∈ Rn \ {0}

V (x) = V (0) +

∫
γx

f,

where V (0) is a constant and where γx is the straight line from the origin 0
to x, that is

γx : [0, 1]→ Rn, t 7→ γx(t) = tx.
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Figure 21:

We can choose any other reference point x0 ∈ Rn instead the origin. In that
case one needs a path connecting x0 and x. It is important that the point and
the path connecting any point with the reference point are lying in the domain
of definition of V and f . If V1 and V2 are two potentials for the vector field
f , then

V1(x)− V2(x) = V1(0)− V2(0) = constant x ∈ Rn.

Definition 4.9 If f : Rn → Rn is a vector field, a flow line for f is a para-
metric curve (path) γ : [a, b]→ Rn such that

γ′(t) = f(γ(t)). (4.7)

If one considers the flow of a liquid in a pipe, then the vector field f
yields the velocity vector field of the parametric curve (path) γ. The velocity
vector of the fluid is tangent to a flow line, see figure 22 below.
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Figure 22:

If one is given a vector field it is easy to draw the flow line. It is the line
threading its way through the vector field in the plane as shown in figure 23.

Figure 23:

26



Example 4.10 (Finding a potential) Let f : R2 → R2, (x, y) 7→ f(x, y) =
1
2
(−x, y). We sketch the vector field in figure 24 below.

Figure 24:

This is done by considering the mappings

f(x, 0) = −1

2

(
x
0

)
f(0, y) =

1

2

(
0
y

)
f(x, x) =

1

2

(
−x
x

)
.

Assume that f = ∇V for some V : R2 → R. Then

∂xV (x, y) = −1

2
x⇔ V (x, y) = −x

2

4
+ c1(y)

∂yV (x, y) =
1

2
y ⇔ V (x, y) =

y2

4
+ c2(x),

i.e. V (x, y) = y2

4
− x2

4
is a solution (C1 = C2 = 0).

Example 4.11 Let f : R2 → R2, (x, y) 7→ f(x, y) = (2y, x + y). Assume
that f is a gradient vector field, that is ∇V = f for some V : R2 → R. Then
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we could conclude

∂xV (x, y) = 2y ⇔ V (x, y) = 2xy + C1(y)

∂y(x, y) = x+ y ⇔ V (x, y) = xy +
1

2
y2 + C2(x).

But it is impossible to find any such functions C1 and C2 because one can
never match 2xy versus xy. Thus f is not a gradient vector field.

4.3 Radial vector fields

The next example is very important. It contains vector fields which radial
symmetric.

Example 4.12 (Radial vector fields) For the function ϕ : (0,∞) → R
define the vector field f : Rn → Rn by

f(x) =

{
ϕ(‖x‖) x

‖x‖ , for x ∈ Rn \ {0}

0 , for x = 0

We can always find Φ: (0,∞)→ R with Φ′(r) = ϕ(r) for all r > 0. Define

V : Rn \ {0} → R, x 7→ Φ(‖x‖) = Φ
(√

x2
1 + · · ·+ x2

n

)
.

Then for x ∈ Rn \ {0} and any i ∈ {1, . . . , n}, we compute

∂iV (x) = Φ′(‖x‖) 2xi

2
√
x2

1 + · · ·+ x2
n

= ϕ(‖x‖) xi
‖x‖

= fi(x).

Hence, ∇V (x) = f(x) for all x 6= 0.

Result: On Rn \ {0} radial vector fields are always gradient vector fields.

We outline two important examples of radial vector fields in physics.

(a) Gravitational force field: Put the origin at the centre of the earth or
some other planet having acceleration gplanet and mass M > 0. The gravita-
tional force on some testing body with mass m > 0 is the vector field

F : R3 \ {0} → R3, x 7→ F (x) = −gplanetmM
‖x‖3

x,
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which has the potential

V : R3 \ {0} → R, x 7→ V (x) =
gplanetmM

‖x‖
.

The minus sign in the force field ensures that the force is directed to the
centre of the planet.

(b) Coulomb’s law: The force acting on a charge q at position x is due to
a charge Q at the origin with electrostatic constant ε

F : R3 \ {0} → R3, x 7→ F (x) =
εqQ

‖x‖3
x,

which has the potential

V : R3 \ {0} → R, x 7→ V (x) =
εqQ

‖x‖
.

Since the potential V is constant on the level surface of V they are called
equipotential surfaces. Note that the force field is orthogonal to the
equipotential surfaces, compare the example of radial vector fields above.
There, the force field is radial and the equipotential surfaces are concentric
spheres.

We finish this section coming back to the notion of a flow line of a vector
field. We connect it to first order differential equations. Geometrically, a flow
line for a given vector field f is a parametric curve (path) that threads its way
through the domain of the vector field in such a way that the tangent vector
of the parametric curve (path) coincides with the vector field (see figure 23
above). A flow line may be viewed as a solution of a system of differential
equations. Let Φ(x, t) for t ≥ 0 and x ∈ Rn be the position at time t of the
point on the flow line through x (at time t = 0) after time t has elapsed.
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Figure 25:

The mapping Φ: Rn × [0,∞)→ Rn with

∂Φ

∂t
(x, t) = f(Φ(x, t))

Φ(x, 0) = x

is also called the flow line of the vector field f . If we denote the differentiation
of Φ with respect to the spatial variable x byDx (t is fixed) we can interchange
the partial derivative with respect to time t with Dx (under our general
assumptions that all maps are continuous differentiable etc). Then one can
derive the following equation of first variation

∂tDxΦ(x, t) = Df(Φ(x, t))DxΦ(x, t).

Here Df(x), x ∈ Rn, is the n× n-matrix with the first partial derivatives of
the vector field at point x, i.e.

Df(x) =


∂1f1(x) · · · ∂nf1(x)
∂1f2(x) · · · ∂nf2(x)
· · · · ·
· · · · ·
· · · · ·

∂1fn(x) · · · ∂nfn(x)

 .
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Similarly, DxΦ(x, t) is a n× n-matrix.

5 Surface Integrals

We want to extend the notion of line integrals to surface integrals in R3. One
can generalises this to arbitrary k-dimensional surfaces in Rn, 1 < k ≤ n, but
we deal first with the case k = 2 and n = 3.

5.1 Surfaces

We need methods for describing surfaces in R3. A surface S ⊂ R3 as a subset
of points in R3 can be described by two methods:
1.) Level sets of real-valued functions f : R3 → R. That is,

S = f−1(c) = {x ∈ R3 : f(x) = c}

for some c ∈ R.
2.) Parametrisation

α : Q→ R3, (s, t) 7→ α(s, t) =

α1(s, t)
α2(s, t)
α3(s, t)


with some parameter domain Q ⊂ R2.

Notation 5.1 Let S ⊂ R3. A parametrisation for the surface S is a
C1-map α : Q→ R3 with Q ⊂ R2 and α(Q) = S.

Example 5.2 (a) Cylinder (volume). Let R > 0, H > 0. The parametri-
sation

α : [0, R]× [0, 2π]× [0, H]→ R3, (r, ϕ, h) 7→ α(r, ϕ, h) =

r cosϕ
r sinϕ
h


describes a cylinder (see figure 26 below). Note that when the angle variable
varies only in a subset of [0, 2π] one gets not the whole cylinder but one
where a ’piece of cake’ is removed.
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Figure 26:

(b) Graph of a function Let h : Q → R2 be a C1-function, Q ⊂ R2. The
map

α : Q→ R2+1, (s, t) 7→ α(s, t) =

 s
t

h(s, t)


is a parametrisation of a surface S, the graph of the function h, i.e. S =
α(Q) = graph h (see figure 27).
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Figure 27:

(c) Polar coordinates Define Q1 = [−π, π] and

α1 : Q1 → R2, ϕ 7→ α1(ϕ) =

(
cosϕ
sinϕ

)
.

Then define recursively the following parametric k-dimensional surfaces in
Rn, 1 < k ≤ n. Qk = Qk−1 × [−π/2, π/2] and

αk : Qk → Rk+1, (ϕ1, . . . , ϕk) 7→
(
αk−1(ϕ1, . . . , ϕk−1) cosϕk

sinϕk

)
.

The set S1 = α1(Q1) is the circle line in the plane and the set Sk = αk(Qk)
is a k-dimensional surface. One can prove that

Sk = {x ∈ Rk+1 : ‖x‖ = 1}. (5.8)

Sk is called the k-dimensional sphere in Rk+1. For k = 2 and n = 3 we get
the polar coordinates (earth coordinates)

α2(ϕ1, ϕ2) =

cosϕ1 cosϕ2

sinϕ1 cosϕ2

sinϕ2

 ,

where the angle ϕ1 ∈ [0, 2π] is the geographical longitude and respectively
the angle ϕ ∈ [−π/2, π/2] is the geographical latitude.
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Figure 28: Polar coordinates in R3

5.2 Integral

For an integration over a surface in R3 we need surface unit normal vectors N̂ .
The unit normal vectors have norm 1 and they are perpendicular to the plane
at each single point of the surface (more precisely they are perpendicular to
the tangent plane at that point). If we describe our surface as a level set of
a differentiable real-valued function f : R3 → R we know from Lemma 2.6
that the gradient is orthogonal to the level surfaces, i.e.

∇f ⊥ S ⇒ N̂ :=
∇f
‖∇f‖

∈ R3.

When our surface S ⊂ R3 is given with a parametrisation α : Q→ R3 we see
from figure 29 that at each point α(s, t) of the surface S the vectors ∂α

∂s
(s, t)

and ∂α
∂t

(s, t) are both tangent to the surface (that is, they are lying in the
tangent plane). Hence, the cross-product

∂α

∂s
(s, t)× ∂α

∂t
(s, t)

is a normal to the surface at the point α(s, t).
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Figure 29: Tangent vectors of the surface

We normalise this vector to get the unit normal for the surface S

N̂(α(s, t)) =
∂α

∂s
(s, t)× ∂α

∂t
(s, t) (s, t) ∈ Q. (5.9)

We will often write N̂ without the argument. Note that N̂ : S → R3 is a
vector field whose domain is the surface S, but one can conceive it also as
the map N̂ : Q→ R3 for a given parametrisation.
Reminder: Cross-product x, y ∈ R3x1

x2

x3

×
y1

y2

y3

 =

x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1


Definition 5.3 Let α : Q → R3, Q ⊂ R2, be a parametrisation of a surface
S ⊂ R3. Then the scalar surface integral of a scalar field u : R3 → R
over the surface S is defined as∫

S
u =

∫∫
Q

u(α(s, t))
∥∥∥∂α
∂s

(s, t)× ∂α

∂t
(s, t)

∥∥∥ dsdt. (5.10)

Remark 5.4 (a) If we integrate 1 over a surface we get the surface area of
S, ∫

S
1 =

∫∫
Q

∥∥∥∂α
∂s

(s, t)× ∂α

∂t
(s, t)

∥∥∥ dsdt = area (S).
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(b) If we take a small rectangle q ⊂ Q in the parameter domain Q whose left
lower corner is (s, t) ∈ Q and whose side length are ∆s and ∆t respectively,
we can map this rectangle with the parametrisation to R3. The area of the
image rectangle α(q) can be computed as

area (α(q)) =
∥∥∥∂α
∂s

(s, t)× ∂α

∂t
(s, t)

∥∥∥∆s∆t.

Figure 30: Image of the small rectangle q

If S is a surface in R3 do we have several parametrisations? The answer
is yes, and we will formulate this result for any k-dimensional surface (1 <
k ≤ n) in Rn.

Definition 5.5 Let 1 < k ≤ n and Q1 and Q2 two bounded and closed sets
in Rk (with a smooth boundary).

(a) A bijective map T : Q1 → Q2 is called a C1-parameter transfor-
mation if (i) T and T−1 are C1-mappings, (ii) detDT

∣∣
t
> 0 for all

t ∈ Q1 ⊂ Rk.

(b) Let α1 : Q1 → Rn and α2 : Q2 → Rn be two parametrisations (C2-
mappings). α1 and α2 are said to be equivalent if there exists a C1

parameter transformation T : Q1 → Q2 such that α1 = α2 ◦ T .
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The matrix DT
∣∣
t

is the total derivative of the map T : Q1 → Q2, i.e.

DT
∣∣
t

=



∂T1

∂t1

∂T2

∂t2
· · · ∂T1

∂tk
∂T2

∂t1

∂T2

∂t2
· · · ∂T2

∂tk

· · · · · ·
· · · · · ·
· · · · · ·

∂Tk
∂t1

∂Tk
∂t2

· · · ∂Tk
∂tk


.

5.3 Kissing problem

Example 5.6 (a) Spherical cap S: Fix θ ∈ (0, π/2) and define

α : [−π, π]× [θ, π/2]→ R3, (ϕ1, ϕ2) 7→ α(ϕ1, ϕ2) =

cosϕ1 cosϕ2

sinϕ1 cosϕ2

sinϕ2


Figure 31: Spherical cap

We want to compute the surface area of the spherical cap defined by the
parametrisation α. We compute the surface normal vectors:

∂α

∂ϕ1

=

− sinϕ1 cosϕ2

cosϕ1 cosϕ2

0

 ∂α

∂ϕ2

=

− cosϕ1 sinϕ2

− sinϕ1 sinϕ2

cosϕ2


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and their cross-product

∂α

∂ϕ1

× ∂α

∂ϕ2

=

 cosϕ1 cos2 ϕ2

− sinϕ1 cos2 ϕ2

− sinϕ2 cosϕ2


with norm ∥∥ ∂α

∂ϕ1

× ∂α

∂ϕ2

∥∥ =
√

cos2 ϕ2 = cosϕ2,

where the last equality follows due to θ ∈ (−π/2, π/2). The surface area is
then given as the surface integral of 1,

area (S) =

∫
S

1 =

∫ π/2

θ

∫ π

−π
1 cosϕ2 dϕ1dϕ2 = 2π sinϕ2

∣∣∣ϕ2=π/2

ϕ2=θ

= 2π(1− sin θ).

Special case: total surface area (θ = −π/2) is 4π.

(c) Newton’s kissing problem How many unit balls can simultaneously
touch a given ball in R3 ? We calculate the shadowed surface area seen in
figure 32.

Figure 32: Kissing problem

We see that 2 sin(π/2− θ) = 1 which implies π/2− θ = π/6 giving θ = π/3.
Each ball shadows the surface area 2π(1 − sin θ) = 2π(1 −

√
3/4) of the
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Kissing in 1d

central ball in figure 32. As the full surface area is 4π we can have at most

4π

2π(1−
√

3/4)
=

4

2−
√

3
≈ 14.928

balls. Hence, the number in question is less than 14. Is the maximum number
now 12, 13 or 14 ?
What about the other dimensions?
In one dimension, the kissing number is obviously 2.

It is easy to see (and to prove) that in two dimensions the kissing number
is 6.

In three dimensions the answer is not so clear. It is easy to arrange 12
spheres so that each touches a central sphere, but there is a lot of space left
over, and it is not obvious that there is no way to pack in a 13th sphere.
(In fact, there is so much extra space that any two of the 12 outer spheres
can exchange places without any of the outer spheres losing contact with
the centre one.) This was the subject of a famous disagreement between
mathematicians Isaac Newton and David Gregory. Newton thought that the
limit was 12, and Gregory that a 13th could fit. The question was not resolved
until 1874; Newton was correct. In four dimensions, it was known for some
time that the answer is either 24 or 25. It is easy to produce a packing of 24
spheres around a central sphere (one can place the spheres at the vertices of
a suitably scaled 24-cell centred at the origin). As in the three-dimensional
case, there is a lot of space left over - even more, in fact, than for n = 3
- so the situation was even less clear. Finally, in 2003, Oleg Musin proved
the kissing number for n = 4 to be 24, using a subtle trick. The kissing
number in n dimensions is unknown for n > 4, except for n = 8(240), and
n = 24(196, 560). The results in these dimensions stem from the existence
of highly symmetrical lattices: the E8 lattice and the Leech lattice. In fact,
the only way to arrange spheres in these dimensions with the above kissing
numbers is to centre them at the minimal vectors in these lattices. There is
no space whatsoever for any additional balls. Rough volume estimates show
that the kissing number in n dimensions grows exponentially. The base of
exponential growth is not known.
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Kissing in 2d
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Kissing in 3d
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The following table lists some known kissing number in various dimen-
sions.

dimension kissing ] year

1 2
2 6
3 12 (1874)
4 24 (2003)
8 240 (1979)
24 196560 (1979)

6 Divergence of Vector Fields

6.1 Flux across a surface

We consider the flow through a pipe. Let some fluid flowing with velocity ~v
through a pipe. What is the total volume of fluid passing through the pipe
per unit time? This volume flow rate is often called the flux of the fluid
through the pipe or the flux across the surface S that forms the end of the
pipe.

Figure 33: Flow through a pipe

If the velocity ~v is parallel to the walls and if ~v is constant, i.e. ‖~v‖ = v0,
the flow rate (flux) is given as v0A, where A is the area of the surface S.
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Figure 34: Velocity not parallel

If the velocity ~v is not perpendicular to the small surface dS in figure 34 (de-

scribed by the unit normal vector N̂), only the component of ~v perpendicular
to dS contributes to the flux across the small surface dS.

Definition 6.1 Let S ⊂ R3 be a surface with unit normal vector field N̂ : S →
R3 defined with a C2-parametrisation α : Q → R3, Q ⊂ R2. Then the flux
of the vector field f : R3 → R3 across the surface S in direction N̂ is defined
as the scalar surface integral of 〈f, N̂〉, i.e.∫

S
〈f, N̂〉 =

∫∫
Q

〈
f(α(s, t)), N̂(α(s, t)

〉∥∥∂α
∂s

(s, t)× ∂α

∂t
(s, t)

∥∥ dsdt (6.11)

Alternative notations:
∫
S f ·N̂ ds or

∫
S
~f ·d~s.

Example 6.2 (Flux out of a box) Ω = [ax, bx] × [ay, by] × [az, bz] with
ax, ay, az, bx, by, bz ∈ R and let f : R3 → R3 be a continuous differentiable
vector field with component functions f = (f1, f2, f3). We calculate the flux
through any side/surface of the box in figure 35.
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Figure 35: box Ω

Calculation of the flux through the six surfaces of the box Ω

1.) Flux through the top of the box. A parametrisation is given by

αtop(x, y) =

x
y
bz

 for x ∈ [ax, bx], y ∈ [ay, by].

The unit normal vector N̂top can already be seen in figure 35 but we show
the exact calculation.∥∥∥∂αtop

∂x
× ∂αtop

∂y

∥∥∥ =
∥∥∥
1

0
0

×
0

1
0

∥∥∥ =
∥∥∥
0

0
1

∥∥∥ = 1.

Thus, N̂top =

0
0
1

. Hence, the flux through the top is

∫
Stop

〈f, N̂〉 =

∫ bx

ax

∫ by

ay

f3(x, y, bz) · 1 dydx.

2.) Flux through the bottom. This is the same calculation but with the
opposite direction, hence a minus sign appears for the unit surface normal
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N̂bottom =

 0
0
−1

 and the component function has to be evaluated at az for

the third entry.∫
Sbottom

〈f, N̂〉 = −
∫ bx

ax

∫ by

ay

f3(x, y, az) · 1 dydx.

We sum up both contributions and use the Fundamental Theorem of Calculus
(recall that the vector field f is continuously differentiable) to get∫

Stop∪Sbottom

〈f, N̂〉 =

∫ bx

ax

∫ by

ay

(
f3(x, y, bz)− f3(x, y, az)

)
dydx

=

∫ bx

ax

∫ by

ay

∫ bz

az

∂f3

∂z
(x, y, z) dzdydx.

3.) and 4.) Similarly we derive the contribution from the left and the right
surface, Sl and Sr, as∫

Sl∪Sr

〈f, N̂〉 =

∫ bx

ax

∫ by

ay

∫ bz

az

∂f1

∂x
(x, y, z) dzdydx.

5.) and 6.) Finally we get the contribution from the back and the front∫
Sback∪Sfront

〈f, N̂〉 =

∫ bx

ax

∫ by

ay

∫ bz

az

∂f2

∂y
(x, y, z) dzdydx.

Taking the sum over all contributions of the six surfaces gives the total flux
across the surface

∂Ω := Stop ∪ Sbottom ∪ Sl ∪ Sr ∪ Sback ∪ Sfront

as ∫
∂Ω

〈f, N̂〉 =

∫ bx

ax

∫ by

ay

∫ bz

az

(∂f1

∂x
+
∂f2

∂y
+
∂f3

∂z

)
dzdydx. (6.12)

6.2 Divergence

In the following we will often write ∂Ω for the surface of some domain Ω ⊂ R3.
The integrand in (6.12) motivates the following definition.
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Definition 6.3 Let f : Rn → Rn be a differentiable vector field. The diver-
gence of the vector field f = (f1, . . . , fn) is the scalar field

div f : Rn → R

x 7→ div (f)(x) =
n∑
i=1

∂fi
∂xi

(x).

Alternative notations are: ∇ · f or ~∇ · ~f or ∇ · f .

Note the following relations of scalar and vector fields with the corresponding
operations.

scalar field operation vector field

Φ: Rn → R
grad−→ grad Φ: Rn → Rn

div f : Rn → R div←− f : Rn → Rn

Definition 6.4 Given a two times differentiable scalar field Φ: Rn → R, the
Laplacian of the scalar field Φ is the scalar field

∆Φ: Rn → R
x 7→ ∆Φ(x) = div grad Φ(x).

Alternative notation is ∇2Φ.

Note:

∆Φ = div (grad Φ) =
n∑
i=1

∂

∂xi

∂Φ

∂xi
=

n∑
i=1

∂2Φ

∂x2
i

.

We have seen in Example 6.2 that∫
∂Ω

〈f, N̂〉 =

∫
Ω

div f(x) dx

(for boxes only so far). If Ω is a small box centred at a ∈ R3, then∫
Ω

div f(x) dx ≈ div f(a)vol(Ω),
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where vol(Ω) is the volume of the small box Ω, implies that

div f(a) ≈
∫
∂Ω
〈f, N̂〉

vol(Ω)
. (6.13)

The divergence of a vector field gives the outgoing flux per volume.

Consider the following example.

Example 6.5 (a) f : R3 → R3, (x, y, z) 7→ f(x, y, z) = (x, 0, 0).

Figure 36: vector field expanding

As seen div f(a) corresponds to the amount of flux of the vector field out
of the small volume divided by the volume. This is a rate of ’expansion’
or ’stretching’ of the vector field (see figure 36 above). The divergence is
div f(x) = 1, x ∈ R3, and the figure 36 may represent a gas which is expand-
ing.

(b) f : R3 → R3, (x, y, z) 7→ f(x, y, z) = (−x, 0, 0).
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Figure 37: vector field contracting

This vector field is contracting (see figure 37), and its divergence is div f(x) =
−1, x ∈ R3.

(c) f : R3 → R3, (x, y, z) 7→ f(x, y, z) = (0, x, 0).

Figure 38: vector field with divergence zero
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This vector field is neither expanding nor contracting (see figure 38), and its
divergence is div f(x) = 0, x ∈ R3.

7 Gauss’s Divergence Theorem

Theorem 7.1 (Gauss’s Divergence Theorem) Let Ω ⊂ R3 be a bounded

region with surface ∂Ω and outward normal N̂ . Let f : Ω ∪ ∂Ω → R3 be
continuously differentiable. Then∫

Ω

div (f)(x) dx =

∫
∂Ω

〈f, N̂〉. (7.14)

Remark 7.2 (a) The theorem also works for dimension n 6= 3 but one has
to define the surface integral.

n = 2 : ∂Ω is a line and
∫
∂Ω
〈f, N̂〉 is a (tangent) line integral.

(b) The left hand side of (7.14),
∫

Ω
div (f)(x) dx, is just a volume Integral,

that is an iterated integral
∫∫∫

Ω
div f(x, y, z) dxdydz (Fubini’s theorem,

compare Analysis I).

Alternative notations are:
∫

Ω
div f dV for n = 3 or

∫
Ω

div f dA for
n = 2.

Example 7.3 (a) Let Ω = B(0, R) ⊂ Rn a ball of radius R > 0, B(0, R) =
{x ∈ Rn : ‖x‖ ≤ R}, and denote by ∂Ω the surface (sphere) of Ω, i.e.
∂Ω = ∂B(0, R) = {x ∈ Rn : ‖x‖ = R}. The unit outward normal is
then

N̂(x) =
x

R
, for all x ∈ ∂Ω.

Define f : Rn → Rn, x 7→ f(x) = x and check that div f(x) = n for all
x ∈ Rn. Gauss’s Divergence Theorem gives∫

B(0,R)

n dx =

∫
∂B(0,R)

〈x, x
R
〉 =

∫
∂B(0,R)

R.

RHS = R area(B(0, R)) = R× surface area of B(0, R)

LHS = nvol(B(0, R)) = n× volume of B(0, R).

n = 2: vol(B(0, R)) = πR2, length(∂B(0, R)) = 2πR

n = 3: vol(B(0, R)) =
4

3
πR3, area(∂B(0, R)) = 4πR2.
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(b) Differentiability in Guass’s Divergence Theorem is needed as the fol-
lowing example shows.

f : R2 → R2, (x, y) 7→ f(x, y) =
1

x2 + y2

(
x
y

)
.

div f(x, y) = ∂
∂x

(
x

x2+y2

)
+ ∂

∂y

(
y

x2+y2

)
= 0. Set Ω = B(0, 1) ⊂ R2

having unit normal N̂ : ∂Ω → R2, (x, y) 7→ N̂(x, y) =

(
x
y

)
. We get∫

Ω
div f(x, y) dxdy = 0 but∫

∂Ω

〈f, N̂〉 =

∫
∂Ω

1 = length(∂Ω) = 2π.

The theorem does not work due to the singularity at the origin of the
vector field f .

Sketch for the proof of Theorem 7.1. Let Ω ⊂ R3 be a region in R3

and divide it in finitely many small regions Ωi centred at ai ∈ Ω with outward
surfaces ∂Ωi (see figure 39) having unit normal N̂i.

Figure 39: partition of Ω into small regions

We apply the approximation of the divergence in (6.13) to every small
region Ωi, that is

div f(ai) ≈
1

vol(Ωi)

∫
∂Ωi

〈f, N̂i〉. (7.15)
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The approximation becomes exact in the limit vol(Ωi)→ 0. Hence, multiply
(7.15) by vol(Ωi) and sum up to get∑

i

div f(ai)vol(Ωi) ≈
∑
i

∫
∂Ωi

〈f, N̂〉. (7.16)

Here, the left hand side will become the volume integral in the limit vol(Ωi)→
0 (Riemann sum). But what about the right hand side in (7.16)? Consider
in figure 40 two small adjacent regions Ω1 and Ω2.

Figure 40: contributions of the common surface

Along the common surface of ∂Ω1 and ∂Ω2 we get 〈f, N̂1〉 + 〈f, N̂2〉 = 0.
All contributions from the interior of Ω to the sum of the right hand side in
(7.16) cancel out, leaving only the surface integral over the exterior surface

∂Ω. Hence, in the limit the right hand side of (7.16) becomes
∫
∂Ω
〈f, N̂〉. 2

Example 7.4 Let

f : R3 → R3, (x, y, z) 7→ f(x, y, z) =

 4x
−2y2

z2


and Ω = {(x, y, z) ∈ R3 : x2 + y2 ≤ 4, z ∈ [0, 3]} the cylinder in figure 41. We
are going to check Gauss Divergence Theorem. For that we compute both
the volume integral of the divergence and the surface (flux) integral.
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Figure 41: Cylinder

Volume integral: We compute div f(x, y, z) = 4− 4y + 2z.∫∫∫
Ω

(4− 4y + 2z) dzdydx =

∫ 2

−2

[ ∫ √4−x2

−
√

4−x2

(∫ 3

0

(4− 4y + 2z
)

dz
)

dy
]

dx

=

∫ 2

−2

[ ∫ √4−x2

−
√

4−x2

(
21− 12y

)
dy
]

dx

=

∫ 2

2−
42
√

4− x2 dx

= 42

∫ 2

−2

√
4− x2 dx

= 42
[x

2

√
4− x2 + 2 arcsin(

x

2
)
]2

−2
= 84π.

Surface integral: The surface S of the cylinder Ω has the following three
single parts S = Sbottom ∪ Stop ∪ Scyl.

Sbottom:

N̂(x, y, z) = −

0
0
1

 and f(x, y, z) =

 4x
−2y2

0

 for (x, y, z) ∈ Sbottom
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As 〈f(x, y, z), N̂(x, y, z)〉 = 0 for (x, y, z) ∈ Sbottom we get
∫
Sbottom

〈f, N̂〉 = 0.

Stop:

N̂(x, y, z) =

0
0
1

 and f(x, y, z) =

 4x
−2y2

9

 for (x, y, z) ∈ Stop.

A parametrisation is given by

αtop : [0, 2]× [0, 2π]→ R3, (s, t) 7→ αtop(s, t) =

s cos(t)
s sin(t)

3


with

∂αtop

∂s
(s, t) =

cos(t)
sin(t)

0

 and
∂αtop

∂t
(s, t) =

−s sin(t)
s cos(t)

0


and cross-product

∂αtop

∂s
× ∂αtop

∂t
=

0
0
s

 .

Hence, the top contributes to the flux∫
Stop
〈f, N̂〉 =

∫ 2π

0

∫ 2

0

9s dsdt = 36π.

Scyl.: The parametrisation

αcyl. : [0, 2π]× [0, 3]→ R3, (t, z) 7→ αcyl.(t, z) =

2 cos(t)
2 sin(t)
z


gives

∂αcyl.

∂t
(t, z) =

−2 sin(t)
2 cos(t)

0

 and
∂αcyl.

∂z
(t, z) =

0
0
1


and

∂αcyl.

∂t
× ∂αcyl.

∂z
=

2 cos(t)
2 sin(t)

0

⇒ ∥∥∥∂αcyl.

∂t
× ∂αcyl.

∂z

∥∥∥ = 2.
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Hence, N̂cyl.(t, z) = 1
2

2 cos t
2 cos t

0

, and the cylinder barrel contributes to the

flux ∫
Scyl.

〈f, N̂〉 =

∫ 2π

0

∫ 3

0

(
16 cos2(t)− 8 sin3(t)

)
dzdt

=

∫ 2π

0

∫ 3

0

(
16 cos2(t)− 8 sin3(t)

)
dzdt

=

∫ 2π

0

∫ 3

0

(
16 cos2(t)) + 8 sin(t) cos2(t)− 8 sin(t)

)
dzdt

= 3

∫ 2π

0

(
16 cos2(t)) + 8 sin(t) cos2(t)− 8 sin(t)

)
dt

= 48

∫ 2π

0

cos2(t) dt = 48
[1

2
cos(t) sin(t) +

1

2
t
]2π

0
= 48π,

where we used that ∫ 2π

0

sin(t) dt =
[
− cos(t)

]2π
0

= 0∫ 2π

0

(
sin(t) cos2(t)

)
dt =

[
− cos3(t)

]2π
0

= 0.

The total flux is∫
S
〈f, N̂〉 =

∫
Stop
〈f, N̂〉+

∫
Scyl.

〈f, N̂〉 = (36 + 48)π = 84π.

Thus the proof of the Divergence Theorem follows for this example, i.e.∫
S
〈f, N̂〉 =

∫∫∫
Ω

div f(x, y, z) dzdydx.

Example 7.5 (Conservation of mass of a fluid) We consider the flow

of fluid for a domain Ω ⊂ R3 with surface ∂Ω and outward normal N̂ , see
figure 42. The function

% : R3 × R+ → R
gives the density %(x, t) of the fluid a point x = (x1, x2, x3) ∈ R3 and time
t ∈ R+. The mass of the fluid in Ω at fixed time t is the volume integral∫∫∫

Ω
%(x, t) dx1dx2dx3. The rate of mass flow into the domain Ω is given by

the flux integral

−
∫
∂Ω

〈%~v, N̂〉,
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where the minus sign signals that N̂ points outward and where ~v : R3×R+ →
R3 gives the velocity vector ~v(x, t) of the fluid at point x ∈ R3 and time t.
Physical law: mass is conserved, that is, the rate of change of mass
in Ω equals the rate at which mass enters Ω.

Figure 42: Flow of fluid in and out the region Ω

This law can be written as

d

dt

∫∫∫
Ω

%(x, t) dx = −
∫
∂Ω

〈%~v, N̂〉.

The right hand side can be written as the volume integral for the divergence of
%~v and the time derivative can be interchanged with the volume integration.
All this gives ∫∫∫

Ω

(∂%
∂t

(x, t) + div (%~v)(x)
)

dx = 0.

As the domain was arbitrary the integrand equals identically zero. Hence,
we have derived the conservation law for the mass of a fluid.

Mass conservation law

∂%

∂t
+ div (%~v) = 0.
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8 Integration by Parts

This section introduces integration by parts techniques. We let Ω ⊂ R3 be
some region and by ∂Ω we denote the surface of Ω such that Ω = Ω ∪ ∂Ω.
The surface normal is the vector field N̂ : ∂Ω→ R3, N̂ = (N̂1, N̂2, N̂3).

Lemma 8.1 Let the function f : Ω→ R be continuously differentiable. Then∫
Ω

∂f

∂xi
(x) dx =

∫
∂Ω

fN̂i for i = 1, 2, 3. (8.17)

Proof. Without loss of generality choose i = 1 and define the vector field
v : R3 → R3, x 7→ v(x) = (f(x), 0, 0). Then div v(x) = ∂f

∂x1
and v · N̂ =

〈v, N̂〉 = fN̂1. The claim follows then by the Divergence Theorem, where we
put v = (0, f, 0) and v = (0, 0, f) for the other cases. 2

Proposition 8.2 Let the functions g : Ω→ R and h : Ω→ R be continuously
differentiable. Then
(a) For i = 1, 2, 3,

Integration by parts (IBP)∫
Ω

( ∂g
∂xi

(x)
)
h(x) dx =

∫
∂Ω

ghN̂i −
∫

Ω

g(x)
( ∂h
∂xi

(x)
)

dx. (8.18)

(b) If g : Ω→ R is two times continuously differentiable,

Green’s first identity∫
Ω

∆g(x) dx =

∫
∂Ω

〈∇g, N̂〉. (8.19)

(c) If f : Ω→ R is two times continuously differentiable,

Integration by part (IBP) - vector case∫
Ω

∆f(x)h(x) dx =

∫
∂Ω

h〈∇f, N̂〉 −
∫

Ω

〈∇f(x),∇h(x)〉 dx (8.20)
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Proof. (a) Apply Lemma 8.1 to the function f(x) = g(x)h(x), x ∈ Ω, and
use the chain rule

∂f

∂xi
(x) =

∂g

∂xi
(x)h(x) + g(x)

∂h

∂xi
(x)

for i = 1, 2, 3.
(b) Use again Lemma 8.1 for f(x) = ∂g

∂xi
(x) for i = 1, 2, 3 to obtain∫

Ω

∂2

∂x2
i

(x) dx =

∫
∂Ω

∂g

∂xi
N̂i.

Summing up all the terms gives the identity.
(c) Apply part (a) to the function g = ∂f

∂xi
for i = 1, 2, 3 to get∫

Ω

∂2g

∂x2
i

(x) dx =

∫
∂Ω

h
∂f

∂xi
N̂i −

∫
Ω

∂f

∂xi
(x)

∂h

∂xi
(x) dx.

Summing up all the terms again gives the identity. 2

Application of Proposition 8.2

Let Ω ⊂ R3 be some piece of material and fix the temperature f(x) ∈ R+ for
every point x ∈ ∂Ω on the surface (boundary) of Ω. In a steady state the
temperature is a scalar field T : Ω∪∂Ω→ R+ solving the following boundary
value problem

∆T (x) = 0 for all x ∈ Ω

T (x) = f(x) for all x ∈ ∂Ω.
(8.21)

The existence of solutions for (8.21) is difficult, but we can use Proposition 8.2
to show the uniqueness of a solution for (8.21). Assume that T : Ω∪∂Ω→ R+

and T̃ : Ω ∪ ∂Ω → R+ are both a solution to (8.21). Define the scalar field

D : Ω ∪ ∂Ω→ R+, x 7→ D(x) = T (x)− T̃ (x). This solves the following

∆D(x) = ∆T (x)−∆T̃ (x) = 0 for all x ∈ Ω

D(x) = T (x)− T̃ (x) = f(x)− f(x) = 0 for all x ∈ ∂Ω.
(8.22)

Proposition 8.2 implies that

0 =

∫
Ω

(∆D(x))D(x) dx = −
∫

Ω

〈∇D(x),∇D(x)〉 dx+

∫
∂Ω

D〈∇D, N̂〉,

which implies (because the second integral of the right hand side vanishes)∫
Ω

‖∇D(x)‖2 dx = 0.

Hence, we conclude ∇D(x) = 0 for all x ∈ Ω and thus that D is constant.
But as D(x) = 0 for all x ∈ ∂Ω we get D(x) = 0 for all x ∈ Ω ∪ ∂Ω. Thus

T = T̃ , and the uniqueness of the solution of (8.21) follows.
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9 Green’s theorem and curls in R2

The Divergence Theorem in Section 7 relates the flux out of region to the
volume integral of the divergence of the vector field. In this section we
ask about the flow along the boundary line of a region in R2. The three
dimensional case will follow in the next section.

9.1 Green’s theorem

Let the vector field f : R2 → R2, f = (f1, f2), and the rectangle Ω = [a, b]×
[c, d] ⊂ R2, a ≤ b, c ≤ d, be given. The boundary ∂Ω of the rectangle is a
curve C in R2 and we denote the unit tangent vector in counter-clockwise
direction (that is, in positive direction of C) by T̂ : C → R2.
We are going to calculate the tangent line integral along the curve C, see
figure 43.

Figure 43: rectangle Ω

We integrate each single side/edge of the rectangle having parametrisations
γR, γL, γT and γB respectively.∫

γR

f =

∫
γR

〈
f, T̂

〉
=

∫ d

c

〈
f(b, y),

(
0
1

)〉
dy =

∫ d

c

f2(b, y) dy.
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The corresponding left side/edge is∫
γL

f =

∫
γL

〈
f, T̂

〉
=

∫ 1

0

〈
f(a, d+ t(c− d)),

(
0

c− d

)〉
dt = −

∫ d

c

f2(a, y) dy.

We get similar results for the top and the bottom edge. Summing up these
contributions we get the tangent line integral along ∂Ω∫

∂Ω

〈f, T̂ 〉 =

∫ d

c

(
f2(b, y)− f2(a, y)

)
dy +

∫ b

a

(
f1(x, c)− f1(x, d)

)
dx

=

∫ d

c

∫ b

a

∂f2

∂x
(x, y) dxdy −

∫ b

a

∫ d

c

∂f1

∂y
(x, y) dxdy

=

∫
Ω

(∂f2

∂x
− ∂f1

∂y

)
(x, y) dxdy,

where we used the Fundamental Theorem of calculus in the second line. The
integrand in the last line motivates the following definition of a scalar field.

Definition 9.1 Let f : R2 → R2 be a differentiable vector field. The curl of
the vector field f is the scalar field curl f : R2 → R defined by

curl f : R2 → R

(x, y) 7→ curl (f)(x, y) =
∂f2

∂x
(x, y)− ∂f1

∂y
(x, y).

Remark 9.2
∫
∂Ω
〈f, T̂ 〉 is the circulation around ∂Ω.

Example 9.3 (a) The vector field v : R2 → R2, (x, y) 7→ v(x, y) =

(
−y
x

)
has positive curl, curl (v)(x, y) = 1− (−1) = 2 for all (x, y) ∈ R2.
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Figure 44: positive curl

See the sketch of the vector field in figure 44, where the arrows of the
vector field are circulating in positive direction around the origin (that is,
anti-clockwise direction).

(b) The vector field v : R2 → R2, (x, y) 7→ v(x, y) =

(
−x
−y

)
has vanishing

curl, curl (v)(x, y) = 0 for all (x, y) ∈ R2. See the sketch of the vector field
in figure 45, where the arrows are directed towards the origin.
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Figure 45: zero curl

(c) The vector field v : R2 → R2, (x, y) 7→ v(x, y) =

(
0
x

)
has positive curl,

curl (v)(x, y) = 1 for all (x, y) ∈ R2. In figure 46 the arrows are pointing
upwards in the positive half plane and downwards in the negative half plane.
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Figure 46: positive curl, a small wheel centred at y-axis would

turn

The calculation above for the line integral along the boundary of a rectangle
showing that the integral is the surface integral of the curl of the vector field
can be proved for any region Ω ⊂ R2. This is the content of the following
theorem.

Theorem 9.4 (Green’s theorem - Stokes’s theorem in R2) Let Ω ⊂ R2

be a bounded region and T̂ : ∂Ω → R2 be positively oriented unit tangent
vectors for the boundary line ∂Ω of the region Ω. Let Ω = Ω ∪ ∂Ω. If
f : Ω→ R2, f = (f1, f2), is continuously differentiable, then∫

∂Ω

〈f, T̂ 〉 =

∫
Ω

curl (f)(x, y) dxdy. (9.23)

Proof. We give here only a sketch for the proof, because one can use the
proof of the Divergence Theorem for it. The contributions of the interior can-
cel out here as they do for the Divergence Theorem. To apply that theorem
directly define the vector field

v : R2 → R2, (x, y) 7→ v(x, y) =

(
f2(x, y)
−f1(x, y)

)
.
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Then,

div v(x, y) =
∂f2

∂x
(x, y)− ∂f1

∂y
(x, y) = curl f(x, y),

and

〈v, N̂〉 = f2N̂1 − f1N̂2 =
〈
f,

(
−N̂2

N̂1

)〉
= 〈f, T̂ 〉.

Note that T̂ ⊥ N̂ . Applying Gauss’s theorem 7.1 we conclude∫
Ω

curl f(x, y) dxdy =

∫
Ω

div v(x, y) dxdy =

∫
∂Ω

〈v, N̂〉 =

∫
∂Ω

〈f, T̂ 〉.

2

In the next proposition we show how one can apply Green’s theorem.

Proposition 9.5 Let Ω ⊂ R2 be a bounded region with closed boundary
line ∂Ω, which surrounds Ω. Define the vector field f : R2 → R2, (x, y) 7→

f(x, y) =

(
−y
x

)
. Then the area of the region is given by the tangent line

integral of f , that is,

area (Ω) =
1

2

∫
∂Ω

〈f, T̂ 〉. (9.24)

Proof. ∫
∂Ω

〈f, T̂ 〉 =

∫∫
Ω

(1 + 1) dxdy = 2

∫∫
Ω

dxdy = 2area (Ω).

2

9.2 Application

Proposition 9.5 has a direct application for the construction and the use of
a planimeter. A planimeter is a measuring instrument used to measure the
surface area of an arbitrary two-dimensional shape. The most common use
is to measure the area of a plane shape. There are many different kinds of
planimeters but all operate in a similar way. A pointer on the planimeter is
used to trace around the boundary of the shape. This induces a movement
in another part of the instrument and a reading of this is used to establish
the area of the shape. The precise way in which they are constructed varies,
the main types of mechanical planimeter being polar; linear; and Prytz or
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Prytz

”hatchet” planimeters. In the linear and polar planimeter, as one point on
a linkage is traced along the shape’s perimeter, that linkage rolls a wheel
along the drawing. The area of the shape is proportional to the number
of turns through which the measuring wheel rotates when the planimeter is
traced along the complete perimeter of the shape. The concept having been
pioneered by Hermann in 1814, Swiss mathematician Jakob Amsler-Laffon
built the first modern planimeter in 1854, the operation of which can be
justified by appealing to Green’s theorem and in particular to Proposition 9.5.

Example 9.6 Verify Green’s theorem for the following vector field

f : R2 → R2, (x, y) 7→ f(x, y) =

(
xy + y2

x2

)
,

and the region Ω = {(x, y) ∈ [0, 1]× [0, 1] : x ≥ y ≥ x2}, see figure 47
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Figure 47: region Ω

curl f(x, y) = x− 2y gives∫
Ω

curl f(x, y) dxdy =

∫ 1

0

(∫ x

x2

(x− 2y) dy
)

dx

=

∫ 1

0

[
xy − y2

]x
x2

dx

=

∫ 1

0

(x4 − x3) dx = − 1

20
.

We split the boundary in two pieces ∂Ω = ∂Ω1 ∪ ∂2 (see figure 48) with
parametrisation

∂Ω1 : γ1 : [0, 1]→ R2, t 7→ γ1(t) =

(
t
t2

)
, γ′1(t) =

(
1
2t

)

∂Ω2 : γ2 : [0, 1]→ R2, t 7→ γ2(t) =

(
1− t
1− t

)
, γ′2(t) =

(
−1
−1

)
Note that

T̂1(γ1(t)) =
γ′1(t)

‖γ′1(t)‖
=

1√
1 + 4t2

(
1
2t

)
.

Then,
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∫
∂Ω1

〈f, T̂1〉 =

∫ 1

0

〈
f(γ1(t)), T̂1(γ1(t))

〉
‖γ′1(t)‖ dt

=

∫ 1

0

〈(t3 + t4

t2

)
,

(
1
2t

)〉
dt

=

∫ 1

0

(
t4 + 3t3

)
dt =

19

20
.

and ∫
∂Ω2

〈f, T̂2〉 =

∫ 1

0

〈((1− t)2 + (1− t)2

(1− t)2

)
,

1√
2

(
−1
−1

)〉√
2 dt

= −3

∫
(1− t)2 dt = −1.

This gives
∫
∂Ω
〈f, T̂ 〉 = − 1

20
and thus the proof of Green’s theorem for this

example.

10 Stokes’s theorem

Stokes’s theorem gives an alternative expression for the surface integral of
the curl of a vector field. This is given by the flow along the boundary.

10.1 Stokes’s theorem

Theorem 10.1 (Stokes’s theorem) Let S ⊂ R3 be a bounded surface,

N̂ : S → R3 be unit normal vectors of the surface S and T̂ : ∂S → R3 unit
tangent vectors of the the boundary ∂S, and let f : S ∪ ∂S → R3 be a contin-
uously differentiable vector field. If (N̂ , T̂ ) is positively oriented, then∫

∂S
〈f, T̂ 〉 =

∫
S
〈curl f, N̂〉. (10.25)

Remark 10.2 (a) Positively oriented means that the right hand rule for the

pair (N̂ , T̂ ) is satisfied. That is, if you walk around the boundary, the surface
should be on your left.
(b) curl
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f : R3 → R3, f = (f1, f2, f3) differentiable, then the curl in R3 is the vector
field

curl f : R3 → R3, (x, y, z) 7→ curl (f)(x, y, z) =

∂2f3(x, y, z)− ∂3f2(x, y, z)
∂3f1(x, y, z)− ∂1f3(x, y, z)
∂1f2(x, y, z)− ∂2f1(x, y, z)

 .

Alternative notation: curl f = ∇× f .
If g : R2 → R2, g = (g1, g2) is differentiable we have a scalar field

curl g(x, y) = ∂xg2 − ∂yg1(x, y),

and, if we define the vector field

f : R3 → R3, (x, y, z) 7→ f(x, y, z) =

g1(x, y)
g2(x, y)

0

 ,

we get curl f(x, y, z) =

 0
0

curl g

. Green’s theorem 9.4 in R2 is just a special

case of Stokes’s theorem in R3 where S ⊂ R× R× {0} (the x− y-plane).

Proof of Theorem 10.1. Following the last remark we prove the theorem
by ’lifting’ Green’s theorem from R2 to R3. On the left hand side in figure
48 we have the 2d-world and on the right hand side of figure 48 we have the
3d-world.
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Figure 48: lifting from R2 to R3

2d-world: Let Ω ⊂ R2 with boundary ∂Ω be given and denote the parametri-
sation for ∂Ω by γ : [a, b]→ R2.
3d-world: Let α : Ω ∪ ∂Ω → S ∪ ∂S, (s, t) 7→ α(s, t), be a parametrisation
(lifting map from R2 to R3). Then the boundary ∂S is parametrised by

α ◦ γ : [a, b]→ R3, u 7→ α(γ(u)) = α((γ1(u), γ2(u))

with unit tangent vector T̂S given by the chain rule

T̂S(γ(u)) =
1

‖α′(γ(u))‖
α′(γ(u)) =

1

‖∂α
∂s

∂γ1(u)
∂u

+ ∂α
∂t

∂γ2(u)
∂u
‖

(∂α
∂s

∂γ1(u)

∂u
+
∂α

∂t

∂γ2(u)

∂u

)
.

Note that the norm drops out when we compute the tangent line integral.
Hence,∫

∂S
〈f, T̂S〉 =

∫ b

a

〈
f(α(γ(u))),

∂α

∂s
(γ(u))

γ1

∂u
(u) +

∂α

∂t
(γ(u))

∂γ2

∂u
(u)
〉

du

=

∫ b

a

〈(〈f, ∂α
∂s
〉

〈f, ∂α
∂t
〉

)
, γ′(u)

〉
du =

∫
∂Ω

〈(〈f, ∂α
∂s
〉

〈f, ∂α
∂t
〉

)
, T̂Ω

〉
du.
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Similarly we get (after some computation and application of the chain rule)∫
S
〈curl f, N̂〉 =

∫∫
Ω

〈
curl f,

∂α

∂s
× ∂α

∂t

〉
dsdt

=

∫∫
Ω

curl

(
〈f, ∂α

∂s
〉

〈f, ∂α
∂t
〉

)
dsdt.

The result follows now from Green’s theorem.
2

Example 10.3 We prove Stokes’s theorem for the following example. Let
the surface S = {(x, y, z) ∈ R3 : z = x2 + y2, z ≤ 4} with parametrisation

α : B(0, 2)→ R3, (x, y) 7→ α(x, y) =

 x
y

x2 + y2

 ,

where B(0, 2) = {(x, y) ∈ R2 : x2 + y2 ≤ 4} is the ball around the origin

having radius 2. We get the surface unit normal N̂ as the gradient of the
function s(x, y, z) = z − x2 − y2 (level set), that is,

N̂(x, y, z) = ∇s(x, y, z) =

−2x
−2y

1

 , (x, y, z) ∈ S = α(B(0, 2)).

The boundary ∂S is parametrised by

γ : [0, 2π]→ R3, t 7→ γ(t) =

2 cos t
2 sin t

4

 .

Let the vector field f : R3 → R3, (x, y, z) 7→ f(x, y, z) =

 y
x2

3z2

 be given.

Some calculation gives then

∫
∂S
〈f, T̂ 〉 =

∫ 2π

0

〈 2 sin t
4 cos2 t

48

 ,

−2 sin t
2 cos t

0

〉 dt = −4π.

curl (f)(x, y, z) =

 0
0

2x− 1

 ,
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and therefore

∫
S
〈curl f, N̂〉 =

∫
B(0,2)

〈 0
0

2x− 1

 ,

−2x
−2y

1

〉 dxdy

=

∫
B(0,2)

2x dxdy −
∫
B(0,2)

dxdy = 0− vol(B(0, 2)) = −4π.

Thus we have shown Stokes’s theorem for this example.

Remark 10.4 (a) If f : R3 → R3 is a differentiable gradient vector field
(that is, there is a potential V : R3 → R with ∇V (x) = f(x)), we get∫

S
〈curl f, N̂〉 =

∫
∂S
〈f, T̂ 〉 = 0

either by FTC for line integrals or by observing

curl gradV (x, y, z) =

∂x∂y
∂z

×


∂V
∂x

∂V
∂y

∂V
∂z

 =


∂2V
∂y∂z
− ∂2V

∂z∂y

∂2V
∂z∂x
− ∂2V

∂x∂z

∂2V
∂x∂y
− ∂2V

∂y∂x

 = 0,

where we assume that V : R3 → R is two times continuously differentiable.
(b) If the vector field f : R3 → R3 can be represented as the curl of some
vector field v : R3 → R3, that is, f = curl v, we get∫

∂Ω

〈f, N̂〉 =

∫
Ω

div f(x, y, z) dxdydz = 0

by observing div curl v(x, y, z) = 0 for all (x, y, z) ∈ R3.

Example 10.5 (Faraday’s law) Let the time-dependent electric (E) and
magnetic (H) field be given

E : R× R3 → R3

H : R× R3 → R3.

For a surface S ⊂ R3 with boundary ∂S = C the voltage around C is given
by ∫

C
〈E, T̂ 〉,
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which is time-dependent, and the time-dependent magnetic flux is given by
the integral ∫

S
〈H, N̂〉.

Fraday’s law: voltage around C equals the negative rate of change
of magnetic flux through S.

We show that Farday’s law follows from ∇×E = −∂H
∂t

. By Stokes’s theorem∫
C
〈E, T̂ 〉 =

∫
S
〈∇ × E, N̂〉,

which implies that

− ∂

∂t

∫
S
〈H, N̂〉 =

∫
S
〈∇ × E, N̂〉 =

∫
C
〈E, T̂ 〉,

which gives finally the mathematical form of Faraday’s law∫
C
〈E, T̂ 〉 = − ∂

∂t

∫
S
〈H, N̂〉.

We finish this section with a summary on conservative vector fields.

Theorem 10.6 (Conservative vector fields) Let f : R3 → R3 be a C1-
vector field. Then the following conditions are equivalent.

(i) For any oriented closed simple curve C ⊂ R3 :
∫
C〈f, T̂ 〉 = 0.

(ii) For any two oriented simple closed curves C1 ⊂ R3 and C2 ⊂ R3 having

the same endpoints:
∫
C1〈f, T̂1〉 =

∫
C2〈f, T̂2〉.

(iii) f is the gradient of some scalar field V : R3 → R.

(iv) ∇× f(x) = curl (f)(x) = 0 for all x ∈ R3.

The vector field f is called conservative is one of the conditions (i)-(iv) is
satisfied.
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10.2 Polar coordinates

As a reminder we summarise briefly important facts about spherical coordi-
nates.

Polar coordinates in R3

x : [0,∞)× [−π, π]× [0, 2π]→ R3, (r, θ, ϕ) 7→ x(r, θ, ϕ) =

r cosϕ cos θ
r sinϕ cos θ
r sin θ

 .

Here the single coordinates have the following names.
r ∈ [0,∞) is called the radius,
θ ∈ [−π, π] is called the (geographical) latitude,
ϕ ∈ [0, 2π] is called the (geographical) longitude.
Compare with Example 5.2 part (c) where we defined iteratively polar co-
ordinates for any dimension. A function f : R3 → R can be given in polar
coordinates by writing

f : [0,∞)× [−π, π]× [0, 2π]→ R, (r, θ, ϕ) 7→ f(r, θ, ϕ) = f(x(r, θ, ϕ)).

Basis vectors

er =
∂x

∂r
=

cos(ϕ) cos(θ)
sin(ϕ) cos(θ)

sin(θ)

 , ‖er‖ = 1,

êr =
er
‖er‖

= er,

eθ =
∂x

∂θ
=

−r cos(ϕ) sin(θ)
−r sin(ϕ) sin(θ)

r cos(θ)

 , ‖eθ‖ = r,

êθ =

− cos(ϕ) sin(θ)

− sin(ϕ) sin(θ)
cos(θ)

 ,

eϕ =
∂x

∂ϕ
=

−r sin(ϕ) cos(θ)
r cos(ϕ) cos(θ)

0

 , ‖eϕ‖ = r cos(θ),

êϕ =

− sin(ϕ)
cos(ϕ)

0

 .
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The system (êr, êϕ, êθ) is a right hand orthonormal system.

Warning: In some textbooks a slightly modified version is used. Instead of
θ (geographical latitude) one uses Θ ∈ [0, π]. Then π/2 − Θ is the latitude,
i.e. θ = π/2−Θ.

Any vector field can be expressed in this basis,

V : [0,∞)×[−π, π]×[0, 2π]→ R3, (r, θ, ϕ) 7→ Vr(r, θ, ϕ)êr+Vθ(r, θ, ϕ)êθ+Vϕ(r, θ, ϕ)êϕ.

Example 10.7 The vector field V : R3 → R3, x 7→ x can be written as

V : [0,∞)× [−π, π]× [0, 2π]→ R3, (r, θ, ϕ) 7→ V (r, θ, ϕ) = rêr.

Warning:

divV 6= ∂Vr
∂r

+
∂Vθ
∂θ

+
∂Vϕ
∂ϕ

.

Applying the chain rule one obtains after some calculation the differential
operators.
Differential operators:

grad (f) =
∂f

∂r
êr +

1

r cos θ

∂f

∂φ
êφ +

1

r

∂f

∂θ
êθ

div (v) =
1

r2

∂

∂r

(
r2vr

)
+

1

r cos θ

∂vφ
∂φ

+
1

r cos θ

∂

∂θ

(
cos(θ)vθ

)
curl (v) =

1

r cos θ

(∂vθ
∂φ
− ∂

∂θ

(
cos(θ)vφ

))
êr +

1

r

(∂vr
∂θ
− ∂

∂r

(
rvθ)

)
êφ

+
1

r

( ∂
∂r

(
rvφ
)
− 1

cos θ

∂vr
∂φ

)
êθ
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Part II

Introduction to Complex Analysis

11 Complex Derivatives

The second part of the lecture gives an introduction in complex analysis. In
the first section we study complex derivatives. The field of complex numbers
is the set

C = {z = x+ iy : x, y ∈ R} with i2 = −1.

Our aim is to understand the calculus for complex-valued functions f : C→ C
on the complex numbers. The link to our vector analysis part is given by the
representation of any complex number in real and imaginary part,

f(z) = f(x+ iy) = Re(f)(x, y) + iIm(f)(x, y) = u(x, y) + iv(x, y),

where

Re(f) = u : R2 → R2, (x, y) 7→ u(x, y) is the real part,

Im(f) = v : R2 → R2, (x, y) 7→ v(x, y) is the imaginary part.

There is a bijection between any function f : C → C and two two-
dimensional vector fields u, v : R2 → R2. This is the connection with the
first part of the course. We will prove some results with the corresponding
results for real vector fields.
Reminder:

75



Figure 49: Graphical representation of a complex number

From figure 49 we get

z = x+ iy = Re(z) + iIm(z)

= r cos(ϕ) + i sin(ϕ) with r =
√
x2 + y2 = |z|

and the argument ϕ = arctan( y
x
) = arg(z). We call x = Re(z) the real part

and y = Im(z) the imaginary part of z = x+ iy ∈ C and |z| =
√
x2 + y2 the

modulus of z = x+ iy ∈ C.

Addition: (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2), x1, x2, y1, y2 ∈ R.

Multiplication: Let z = r cos(ϕ) + ir sin(ϕ), w = s cos(ψ) + is sin(ψ) ∈ C,
then z · w = rs cos(ϕ+ ψ) + irs sin(ϕ+ ψ) ∈ C.

Complex conjugate: The complex conjugate of z = x + iy ∈ C is z =
x− iy ∈ C with the following rules for z, w ∈ C

(i) z = z.

(ii) z + w = z + w.

(iii) zw = zw.
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(iv) |z| = |z|.

(v) |z|2 = zz.

Inverse: z ∈ C, z 6= 0, the inverse is defined as

1

z
=

x

(x2 + y2)
− i y

(x2 + y2)
=

1

|z|2
z.

Moivre-Laplace:

eiϕ = cos(ϕ) + i sin(ϕ) for ϕ ∈ R.

Any complex number z ∈ C can be written in the polar form, i.e. as
z = |z|eiϕ where ϕ = arg(z) and |z| =

√
Re(z)2 + Im(z)2. Let n ∈ N and

z = |z|eiϕ ∈ C

zn = 1⇔ |z|neinϕ = 1

⇔ |z| = 1 and cos(nϕ) + i sin(nϕ) = 1

⇔ |z| = 1 and ϕ =
2kπ

n
k = 0, 1, . . . , n− 1.

Hence, the distant roots of zn = 1 are given by

zk = e
2kπi
n , k = 0, 1, . . . , n− 1,

and they are called the n-th roots of unity.

Definition 11.1 Let (zn)n∈N be a sequence in C, that is zn ∈ C for all n ∈ N,
and z ∈ C. The sequence (zn)n∈N converges to z as n→∞ if and only if the
real sequence (|zn− z|)n∈N converges to 0 as n→∞. Equivalent formulation
with zn = xn + iyn, z = x+ iy:

zn → z as n→∞⇔ |zn − z| → 0 as n→∞
⇔ |xn − x| → 0 as n→∞ and |yn − y| → 0 as n→∞.

Note that | · | is used in the first line as the modulus for complex numbers and
in the second line as the modulus for real numbers.

Lemma 11.2 (Rules for converging sequences) Let (zn)n∈N, (wn)n∈N be
complex sequences with zn → z ∈ C and wn → w ∈ C as n→∞. then
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(a) zn + wn → z + w as n→∞.

(b) znwn → zw as n→∞.

(c) zn
wn
→ z

w
as n→∞ if w 6= 0.

Proof. Exercise, use the following lemma. 2

Lemma 11.3 (Inequalities) Let z, w ∈ C.

(a) |Re(z)| ≤ |z|, |Im(z)| ≤ |z|.

(b) |z + w| ≤ |z|+ |y| Triangle Inequality.

(c) |z + w| ≥
∣∣|z| − |w|∣∣.

Proof. Exercise. 2

Notation 11.4 Let ε > 0. The set

B(z, ε) = {z′ ∈ C : |z′ − z| < ε}

is the open ball (circle) in C around z ∈ C with radius ε, see figure 50. The
circle line is ∂B(z, ε) = {z′ ∈ C : |z′ − z| = ε} and the closed ball is

B(z, ε) = B(z, ε) ∪ ∂B(z, ε) = {z′ ∈ C : |z′ − z| ≤ ε}.

Figure 50: ball of radius ε
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Remark 11.5 In real analysis convergence of a sequence was defined with
the so-called ε− n0-criterion. For complex valued sequences (zn)n∈N it reads
as follows:

zn → z ∈ C as n→∞⇔ ∀ε > 0 ∃n0(ε) ∈ N∀n ≥ n0(ε) : zn ∈ B(z, ε).

Definition 11.6 A function f : D → C, D ⊂ C, is continuous at z ∈ D if
for any sequence (zn)n∈N in C with zn → z as n→∞ one gets that f(zn)→
f(z) as n → ∞. The function f is continuous on D if it is continuous at
each z ∈ D.

Remark 11.7 The ε− δ-criterion from real analysis reads as

f : D → C is continuous at z ∈ D

⇔ ∀ε > 0 ∃ δ > 0: w ∈ D and |z − w| < δ ⇒ |f(z)− f(w)| < ε

⇔ ∀ε > 0 ∃ δ > 0: w ∈ B(z, δ)⇒ f(w) ∈ B(f(z), ε).

Note that δ = δ(ε, z).

Definition 11.8 The function f : D → C, D ⊂ C, is differentiable at z ∈ D
if the limit (differential quotient)

f ′(z) := lim
h→0

f(z + h)− f(z)

h

exists, that is, if the limit of the sequence f(z+hn)−f(z)
hn

exists for every sequence
(hn)n∈N in C with hn → 0 as n→∞, and this limit is (when it exists) denoted
by f ′(z).

Lemma 11.9 (Rules) Let f, g : D → C, D ⊂ C, be continuous (differen-
tiable) at z ∈ D. Then f+g, fg, f/g (for g(z) 6= 0 for z ∈ D) are continuous
(differentiable) at z ∈ D.

So far there seems to be no much difference with real analysis. But the
following example sheds some light onto the new features of complex analysis.

Example 11.10 (a) f : C → C, z 7→ f(z) = z is continuous on C and,
because of

f(z + h)− f(z)

h
= 1, h ∈ C, h 6= 0,

differentiable at any z ∈ C with f ′(z) = 1.
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(b) f : C→ C, z 7→ f(z) = z = x− iy for z = x+ iy. As

zn = xn + iyn → z as n→∞⇒ xn → x and yn → y as n→∞
⇒ zn → z as n→∞,

we get that f is continuous on C. Pick z ∈ C, for any h ∈ C, h 6= 0, we have

f(z + h)− f(z)

h
=
z + h− z

h
=
h

h
.

If we choose hn = 1
n
, n ∈ N, we get hn

hn
= 1 for any n ∈ N. But if we choose

hn = i 1
n
, n ∈ N, we get hn

hn
= −1. Hence, the limit of the differential quotient

does not exist and therefore f is not differentiable at z ∈ C.

Example 11.10(b) shows that in complex analysis differentiability of complex-
valued function on C is not equivalent to the differentiability of the real and
imaginary part alone.
Warning: Let f = u+iv be a complex valued function on C, z = x+iy ∈ C,

f continuous on C⇔ u, v continuous on R2 is true!

f differentiable at z ∈ C⇔ u, v differentiable at (x, y) ∈ R2 is false!

12 Complex Power Series

In the last section we learned that differentiability for complex valued func-
tions on C is not equivalent to the differentiability of the real and imaginary
parts alone. In this section we study another route to complex calculus, the
theory for complex power series. In real analysis you heard about real power
series and that some real functions can be expressed as a power series (Taylor
series).

Definition 12.1 (a) Let cn ∈ C, n ∈ N0 and c ∈ C. The series
∑∞

n=0 cn con-

verges if and only if the sequence (sN)N∈N, sN =
∑N

n=0 cn, converges. If
∑∞

n=0

converges (in symbols
∑∞

n=0 cn < ∞) we call c =
∑∞

n=0 cn = limN→∞ sN the
sum.
(b) Cauchy-criterion: Let (zn)n∈N, zn = xn + iyn, be a complex sequence.

(zn)n∈N is a Cauchy sequence

⇔ ∀ε > 0 ∃n0(ε) ∈ N : ∀m,n ≥ n0(ε) : |zm − zn| < ε

⇔ (xn)n∈N, (yn)n∈N are Cauchy sequences in R.
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The Cauchy criterion is used in the proof of the following lemma.

Lemma 12.2 Let (fn)n∈N be a sequence of functions fn : D → C, D ⊂ C,
and Mn ≥ 0 for all n ∈ N. If |fn(z)| ≤ Mn for all z ∈ D,n ∈ N, and∑∞

n=0Mn <∞, then the series

f(z) :=
∞∑
n=0

fn(z)

converges for all z ∈ D. If all fn are continuous functions then so is the
function f defined via the sum of the converging series for any z ∈ D.

Proof. Pick z ∈ D and let sN(z) :=
∑N

n=0 fn(z). Then (w.l.o.g. M > N)

|sM(z)− sN(z)| =
∣∣∣ M∑
k=N+1

fk(z)
∣∣∣ ≤ M∑

k=N+1

Mk.

The converges of
∑∞

n=0 Mn implies that Mn → 0 as n→∞. Hence, (|sM(z)−
sN(z)| → 0 as N,M → ∞, and thus f(z) exists (i.e., the sum converges).
For the proof of the continuity part see real analysis. 2

Definition 12.3 (Power series) A power series is defined to be a series of
the form

∑∞
n=0 cn(z − a)n, a ∈ C, and cn ∈ C for all n ∈ N0. W.l.o.g. we

often assume a = 0.

(a) The radius of convergence of the power series
∑∞

n=0 cn(z − a)n is
defined to be

R = sup
{
|z − a| : z ∈ C with

∞∑
n=0

cn(z − a)n converges
}
. (12.26)

We write R =∞ if
∑∞

n=0 cn(z − a)n converges for arbitrarily large |z|,
i.e., for all z ∈ C.

(b) The series
∑∞

n=0 cn(z−a)n is said to be absolutely convergent if the
real series

∑∞
n=0 |cn(z − a)n| is convergent.

Theorem 12.4 (Power series Theorem) Let (cn)n∈N be a sequence in C.
Then there is a R ∈ [0,∞] such that

(a)
∑∞

n=0 cnz
n converges for z ∈ C with |z| < R,
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(b)
∑∞

n=0 cnz
n does not converge for z ∈ C with |z| > R.

(c) If
∑∞

n=0 cn(z − a)n converges for z1 ∈ C then
∑∞

n=0 |cn||(z − a)|n con-
verges for all z ∈ C with |z − a| < |z1 − a|.

(d) If
∑∞

n=0 cn(z − a)n diverges for z1 ∈ C then
∑∞

n=0 cn(z − a)n diverges
for all z ∈ C with |z − a| > |z1 − a|.

(e) On the open ball B(0, R) a function is defined as

f : B(0, R)→ C, z 7→ f(z) =
∞∑
n=0

cnz
n.

The function f is continuous and differentiable on B(0, R) with deriva-
tive given by term-by-term differentiation:

df

dz
(z) =

∞∑
n=1

cnnz
n−1.

Proof. The proof for (a)-(d) is easy. We sketch it for (c): If
∑∞

n=0 cn(z1 −
a)n converges we know that cn(z1 − a)n → o as n → ∞. Hence, there is
M > 0 such that cn(z1 − a)|n ≤M . We get

|cn(z − a)| = |cn(z1 − a)n|
∣∣∣ z − a
z1 − a

∣∣∣n ≤M
∣∣∣ z − a
z1 − a

∣∣∣n,
and if the right hand side gives a convergent series (geometric series) we get
the statement for |z − | < |z1 − a|. The remaining part will be proved later.
The proof is similar to the corresponding one for real analysis. 2

Remark 12.5 (a) The series may or may not converge for |z| = R. This
has to be analysed in detail for any example. Recall that ∂B(0, R) is the circle
line of radius R around the origin and B(0, R) is the closed ball. The set of
complex numbers for which the power series converges includes the open ball
B(0, R) and possibly some points from the boundary line ∂B(0, R).

(b) A similar theorem holds in R.

(c) One can apply the theorem repeatedly:

f is C∞ on B(0, R) with

dkf

dzk
(z) =

∑
n=k

cnn(n− 1) · · · (n− k + 1)zn−k.
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(d) We have put a = 0 in the theorem because, by shifting,

g(z) :=
∞∑
n=0

cn(z − a)n

converges for all z ∈ B(a,R) and f(z) = g(z + a), z ∈ B(0, R).

Two methods for the calculation of the radius of convergence

A d’Alembert’s Ratio test:

If
|cn+1|
|cn|

→ α ∈ [0,∞] as n→∞,

then
∑∞

n=0 |cn| converges if α < 1 (i.e.
∑∞

n=0 cn converges absolutely), and∑∞
n=0 |cn| diverges if α > 1. If α = 1 then the test gives no information.

B Cauchy’s n-th root test:

If
lim
n→∞

n
√
|cn| = α ∈ [0,∞),

then
∑∞

n=0 |cn| converges if α < 1 (i.e.
∑∞

n=0 cn converges absolutely), and∑∞
n=0 |cn| diverges if α > 1. If α = 1 then the test gives no information.

Proof.
A: Let α < 1. Then there a q ∈ (α, 1). Hence, there is n0 ∈ N such that∣∣∣ cn+1

cn

∣∣∣ < q for all n ≥ n0. W.l.o.g. we can assume that the last statement

holds for all n ∈ N as any addition of finitely many terms does not change
the convergence properties of the series. We get∣∣∣cn+1

cn

∣∣∣∣∣∣ cn
cn−1

∣∣∣ · · · ∣∣∣c2

c1

∣∣∣ =
∣∣∣cn+1

c1

∣∣∣, ∀n ∈ N.

Hence,|cn+1| < |c1|qn, and
∑∞

n=1 |c1|qn <∞ gives the convergence of
∑∞

n=0 |cn|.
If α > 1 we get

∣∣ cn+1

cn

∣∣ > 1, and hence |cn| < |cn+1| for all n ∈ N. But this
implies that necessary condition for convergence, cn → 0 as n → ∞, does
not hold.
B: Let α < 1. From the convergence of the sequence ( n

√
|cn|)n∈N we get

for q ∈ (α, 1) a n0(q) with n
√
|cn| < q for all n ≥ n0(q). Hence |cn| <

qn or all n ≥ n0(q). This implies that
∑∞

n=n0(q) q
n converges. Therefore∑∞

n=n0(q) cn converges absolutely as well as
∑∞

n=0 cn (addition of only finitely

many terms). This proves the first (convergence) part. If α > 1 we have
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a subsequence (cnk)k∈N with limk→∞
nk

√
|cnk | = α such that there is k0 ∈ N

with |cnk | > 1 for all k ≥ k0. But this contradicts the necessary condition
cn → 0 as n → ∞ for the convergence of the series. Therefore the series
diverges for α > 1. 2

Example 12.6 (a) For which complex numbers does the series

∞∑
n=0

cn(z − a)n =
∞∑
n=0

(3 + i)(2i)n(z + i)n

converge? Pick z ∈ C and cn = (2i)n(z + i)n. Then

|cn+1|
|cn|

= 2|z + i|.

If |z+ i| < 1
2

the series converges, and if |z+ i| > 1
2

the series diverges. Hence
the radius of convergence is R = 1

2
and the series converges for all points in

the open ball B(−i, 1
2
) of radius 1

2
around −i, see figure 51.

Figure 51: ball of convergence (a)

What happens on the boundary of that open ball? For complex numbers
z ∈ C with |z + i| = 1

2
we get |cn+1|

|cn| = 1, and hence (|cn|)n∈N and there-

fore (cn)n∈N does not converge to zero. Thus the series is divergent for any
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point on the boundary ∂B(−i, 1
2
). The series converges only in the open ball

B(−i, 1
2
).

(b) For which complex numbers does the series
∑∞

n=1
zn

n
converge?

|cn+1|
|cn|

= |z| n

n+ 1
→ |z| as n→∞,

gives R = 1. We know that on the boundary line ∂B(0, 1) the series converges
for z = −1 but it diverges for z = 1 (harmonic series).

Figure 52: ball of convergence (b)

What about other boundary points z ∈ ∂B(0, 1) \ {−1, 1} ? This is a
hard problem.
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Definition 12.7 For z ∈ C the following power series are defined

ez :=
∞∑
n=0

zn

n!
,

cos(z) =
∞∑
n=0

(−1)n

(2n)!
z2n,

cosh(z) :=
∞∑
n=0

1

(2n)!
z2n,

sin(z) :=
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1,

sinh(z) :=
∞∑
n=0

1

(2n+ 1)!
z(2n+1).

(12.27)

Proposition 12.8 The power series on the right hand side of (12.27) have
radius of convergence R =∞.

Proof. Exercise. The ratio test shows, easily, that all series have infinite
radius of convergence. 2

How do the functions defined in (12.27) behave for z ∈ R? From the
Power Series Theorem 12.4 we know for example that

d

dz
ez =

∞∑
n=1

n
zn−1

n!
=
∞∑
n=0

zn

n!
= ez.

The following lemma gives a representation of some functions with the ex-
ponential function.

Lemma 12.9 The following holds for all z ∈ C.

sin(z) =
eiz − e−iz

2i
,

cos(z) =
eiz + e−iz

2
,

sinh(z) =
ez − e−z

2
,

cosh(z) =
ez + e−z

2
.
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Proof. First note that

in + (−i)n =

{
2in ; if n = 2k is even

0 ; if n is odd

Using the power series for the exponential function we get

1

2

(
eiz + e−iz

)
=

1

2

∞∑
n=0

((iz)n

n!
+

(−iz)n

n!

)
=

1

2

∞∑
n=0

zn

n!

(
in + (−i)n

)
=
∞∑
k=0

z2k(−1)k

(2k)!
= cos(z).

The remaining relations are proved similar. 2

The following example shows that the complex sine function is unbounded
in contrast to the real sine function.

Example 12.10 The sine function at z ∈ C \ R is

sin(iy) =
e−y − ey

2i
= i

ey − e−y

2
= i sinh(y), y ∈ R.

Choosing y = 10 we get | sin(10i)| = |i sinh(10)| ≈ 22000 in contrast to
| sin(x)| ≤ 1 for x ∈ R.

Theorem 12.11 (Properties of the exponential function) The exponen-
tial function

exp: C→ C, z 7→ exp(z) = ez =
∞∑
n=0

zn

n!

has the properties

(a) e0 = 1,

(b) ez+w = ezew for all z, w ∈ C,

(c) ez 6= 0 for all z ∈ C.

Proof. (a) Follows from the power series. (b) We first sketch the long
method (Cauchy product rule for series). Put

pl =
∑

n,m∈N0 : n+m=l

zn

n!

wm

m!
for all l ∈ N0.
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Then( ∞∑
n=0

zn

n!

)( ∞∑
m=0

wm

m!

)
=
∞∑
l=0

pl =
∞∑
l=0

1

l!

l∑
n=0

(
l

n

)
znwl−n =

∞∑
l=0

(z + w)l

l!
.

Smart method: Fix c ∈ C and consider the function f(z) := ezec−z, z ∈ C.
The function is differentiable at any z ∈ C with (product rule) f ′(z) =
ezec−z − ezec−z = 0, z ∈ C. Hence (see below Proposition 13.7) there is a
constant K ∈ C such that f(z) = K for all z ∈ C. To find K we put z = c
and obtain K = ecec−c = ec because of (a). Thus ec = ezec−z for all z ∈ C.
Putting c = w+ z we conclude with (b). (c) Now eze−z = 1, z ∈ C, gives (c).

2

Periodicity

Lemma 12.12 Let z ∈ C.

(a) ez = 1⇔ z = 2kπi for some k ∈ Z.

(b) ez = −1⇔ z = (2k + 1)πi for some k ∈ Z.

(c) ez+α = ez for all z ∈ C⇔ α = 2kπi for some k ∈ Z.

Proof. We prove only (a) as (b) and (c) follow immediately analogously.
Put z = x+ iy. Then

ex+iy = exeiy = ex(cos(y) + i sin(y)) = 1⇔ |ex| = 1 and cos(x) + i sin(y) = 1

⇔ x = 0; cos(y) = 1, and sin(y) = 0

⇔ x = 0 and y = 2kπ, k ∈ Z.

2

Argument Any complex number z ∈ C can be written in the polar form

z = |z|eiθ. Let z ∈ C \ {0}, the argument of z is the set

arg(z) := {θ ∈ R : z = |z|eiθ}.

Note that arg(z) is a countably infinite set consisting of all numbers of the
form θ + 2kπ, k ∈ Z.

Example 12.13 Let z, w ∈ C \ {0}.
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(a) arg(z) = {(4k + 1)π
2

: k ∈ Z}.

(b) arg(zw) = {θ + ϕ : θ ∈ arg(z), ϕ ∈ arg(w)}.

(c) arg(1
z
) = {−θ : θ ∈ arg(z)}.

(d) Let w ∈ C, z ∈ C \ {0}. Put z = ew = eu+iv, u, v ∈ R. Then |z| =
|eueiv| = eu and arg(z) = {v + 2kπ : k ∈ Z}. Thus

ew = z ⇔ w = log |z|+ iθ, θ ∈ arg(z).

Definition 12.14 Let z ∈ C \ {0} and α ∈ C. We use [·]-brackets for a set.

(a) [log z] := {log |z|+ iθ : θ ∈ arg(z)}. For w = u+ iv one gets

[log ew] = {log eu + i(v + 2kπ) : k ∈ Z} = {w + 2kπ : k ∈ Z}.

(b) [zα] := {eα(log |z|+iθ) : θ ∈ arg(z)}.

Example 12.15 (Graphical representation of the n-th roots) Solve z6 =
−1, that is give the six roots zk, k = 0, 1, . . . , 5, with z6

k = −1. Note that
−1 = eiθ = eiπ, i.e. θ = π. Hence,

zk =
(

cos
(θ + 2kπ

6

)
+ i sin

(θ + 2kπ

6

))
, k = 0, 1, . . . , 5.

In figure 53 we get the six roots as the corners of the regular six polygon.

Figure 53: the roots of z6 = −1
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13 Holomorphic functions

In this section holomorphic functions will be defined. The starting point is
Example 11.10(b). The complex conjugation is not differentiable at any point
z ∈ C. We want to understand this. Therefore we assume that the function
f : C→ C, z 7→ f(z) = u(x, y) + iv(x, y) is differentiable at z = x+ iy ∈ C.

We study the following two cases for the limit of the differential quotient.

1.) Let R+ 3 ε > 0 and put h = ε ∈ C, that is h→ 0 means ε→ 0. Then

lim
ε→0

u(x+ ε, y)− u(x, y)

ε
+ i lim

ε→0

v(x+ ε, y)− v(x, y)

ε
=
∂u

∂x
(x, y) + i

∂v

∂x
(x, y).

2.) Let R+ 3 ε > 0 and put h = εi ∈ C, that is h→ 0 means ε→ 0. Then

lim
ε→0

u(x, y + ε)− u(x, y)

iε
+i lim

ε→0

v(x, y + ε)− v(x, y)

iε
= −i∂u

∂y
(x, y)+

∂v

∂y
(x, y).

The function f is differentiable at z = x+ iy and therefore all the limits
of the differential quotients exist and are equal. Thus we get the following
equations

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
. (13.28)

The two equations (13.28) are called the Cauchy-Riemann equations.
We have indicated that a function which is differential at a point z = x+ iy
satisfies the Cauchy-Riemann equations (13.28) at (x, y). The converse is
true only if the partial derivatives of the real and imaginary part of the
function are continuous in a small neighbourhood of that point.

Theorem 13.1 Let f : D → C, D ⊂ C, with f(x + iy) = u(x, y) + iv(x, y)
for x+ iy ∈ D.

(a) If the function f is differentiable at z0 = x0 + iy0 ∈ D, then the partial
derivatives ∂u

∂x
, ∂u
∂y
, ∂v
∂x

and ∂v
∂y

exist at (x0, y0) and satisfy the Cauchy-

Riemann equations (13.28) at the point (x0, y0).
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(b) If the partial derivatives ∂u
∂x
, ∂u
∂y
, ∂v
∂x

and ∂v
∂y

exists and are continuous in

an open ball B((x0, y0), ε), ε > 0, around (x0, y0) such that the corre-
sponding open ball in the complex plane is contained in D (B((x0 +
iy0), ε) ⊂ D) and the Cauchy-Riemann equations hold at (x0, y0), then
the function f is differentiable at z0 = x0 + iy0 ∈ D with

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0) =

∂v

∂y
(x0, y0)− i∂u

∂y
(x0, y0). (13.29)

Proof. (a) This follows as indicated above. (b) Apply the mean value
theorem of real analysis (exercise). 2

Example 13.2 (a) f : C→ C, z 7→ f(z) = z3. The real and imaginary parts
are

f(x+ iy) = (x+ iy)3 = x3 + 3x2iy + 3x(iy)2 + (iy)3

= (x3 − 3xy2) + i(3x2y − y3),

with partial derivatives

∂u

∂x
= 3x2 − 3y2;

∂v

∂y
= 3x2 − 3y2

∂u

∂y
= −6xy;

∂v

∂x
= 6xy.

The Cauchy-Riemann equations are satisfied for all (x, y) ∈ R2 and the
partial derivatives are continuous on R2, hence the function f is differentiable
on C.

(b) f : C → C, z 7→ f(z) = f(x + iy) = x2 + iy2. The partial derivatives of
the real and imaginary part are

∂u

∂x
= 2x;

∂v

∂y
= 2y

∂u

∂y
= 0;

∂v

∂x
= 0,

they are continuous on R2 but the Cauchy-Riemann equations are only
satisfied on {(x, y) ∈ R2 : x = y}. The function f is differentiable on
{z ∈ C : z = x+ ix, x ∈ R}.

The condition in Theorem 13.1 that there is a small ball in the domain of
definition is crucial. In the following we will assume that the domain for any
function has the property that one can find around any point of that domain
a small ball contained in the domain. Such sets have a special name.
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Definition 13.3 (Holomorphic function) (a) Let D ⊂ C. The set D
is called open if for any z ∈ D there is an ε > 0 such that B(z, ε) ⊂ D.

(b) A function f : D → C, D ⊂ C open, is called holomorphic at z0 ∈ D
if f is differentiable at all z ∈ B(z0, ε) ⊂ D for some ε > 0. The
function f is called holomorphic in D if f is holomorphic at all z ∈ D.

Remark 13.4 Differentiability in real analysis is defined at a single point.
Being holomorphic is not a property of a single point, it depends on a whole
neighbourhood of a single point in the complex plane. This is the main dif-
ference, and the notion of holomorphic functions will prove to be the most
useful one.

Lemma 13.5 Let f, g : D → C, D ⊂ C open, be holomorphic in D. Then
the following holds.

(a) f + g, λf and fg are holomorphic in D, where λ ∈ C.

(b) Suppose f(z) 6= 0 for all z ∈ D. Then 1
f

is holomorphic in D with

( 1

f

)′
(z) =

−f ′(z)

f 2(z)
, z ∈ D.

(c) Suppose g(z) 6= 0 for all z ∈ D. Then f
g

is holomorphic in D with

(f
g

)′
(z) =

f ′(z)g(z)− f(z)g′(z)

g2(z)
, z ∈ D.

Proof. Follows analogous to the proofs for real analysis. Exercise. 2

Example 13.6 (a) Let f : C → C be non-constant and holomorphic in C.
Then u = Re(f) is not holomorphic in C. Assume that u is holomorphic.
We conclude from the Cauchy-Riemann equations that ∂u

∂x
(x, y) = 0 and

∂u
∂y

(x, y) = 0 holds for all (x, y) ∈ R2. This implies that u is constant in
contrast to f non-constant. Hence the assumption was wrong and u is not
holomorphic.

(b) Let f : C → C be non-constant and holomorphic in C. Then |f | is
nowhere holomorphic. Denote the real part by ũ = Re(|f |) = |f | and the
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imaginary part ṽ = 0. Assume that |f | is holomorphic. Then the Cauchy-
Riemann equations imply that (u, v are the real and imaginary part of f
respectively)

∂xũ = 0 =
1√

u2 + v2

(
u∂xu+ v∂xv

)
∂yũ = 0 =

1√
u2 + v2

(
u∂yu+ v∂yv

)
.

This gives
u∂xu+ v∂xv = 0 = u∂yu+ v∂yv,

and with the Cauchy-Riemann equations for the function f itself we get,
summing the left and right hand side,

0 = u(∂xu+ ∂yu) + v(∂xu− ∂yu).

This equation can be satisfied only by u constant which contradicts our
assumption that f is non-constant or by the condition that the terms in the
brackets vanish (other choices like u = −v are not possible). The terms in
the brackets vanish if ∂xu + ∂yu = 0 and ∂xu = ∂yu. This implies 2∂yu = 0
and ∂xu = 0, and thus that u is constant again in contradiction to out
assumption. Thus |f | is nowhere holomorphic.

Proposition 13.7 Let f : D → C, D ⊂ C open, be holomorphic in D. Then
any of the following conditions forces the function f to be constant in D.

(a) f ′(z) = 0 for all z ∈ D.

(b) |f | is constant in D.

(c) f(z) ∈ R for all z ∈ D.

Our aim is to apply the theorems of vector analysis for the study of
complex valued functions on C. Let f : C→ C be a holomorphic function on
C with real and imaginary part u respectively v. Define the two-dimensional
vector field

F : R2 → R2, (x, y) 7→ F (x, y) =

(
F1(x, y)
F2(x, y)

)
=

(
u(x, y)
−v(x, y)

)
.

Then

divF =
∂u

∂x
− ∂v

∂y
= 0

curlF =
F2

∂x
− ∂F1

∂y

= −∂v
∂x
− ∂u

∂y
= 0.
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Hence, the theorems of Gauss and Green are useful here. The missing piece is
the notion of integration for complex valued functions defined on the complex
plane. This is the content of the next section.

14 Complex integration

The complex line integral will be defined, the Fundamental Theorem of Cal-
culus will be proved and examples of non-vanishing integrals along closed
paths are studied. A curve (path) C ⊂ C is a set points in the complex plane
for which one can find a one-dimensional parametrisation (i.e. a parametri-
sation that depends only on one real variable). Let a parametrisation for a
curve C in the complex plane C be given, i.e.

γ : [a, b]→ C, t 7→ γ(t) = x(t) + iy(t),

where a ≤ b and where x(t) is the real part Re(γ(t)) and y(t) is the imaginary
part Im(γ(t)) of the curve. Recall that γ is a parametrisation of the curve
C if γ is piecewise C1 and γ([a, b]) = C. The derivative with respect to the
real parameter is γ′(t) = x′(t) + iy′(t), t ∈ [a, b].

Definition 14.1 The line (path) integral of a function f : D → C, D ⊂ C,
along the curve (path) C ⊂ D ⊂ C with parametrisation γ : [a, b] → C is
defined as∫

γ

f =

∫ b

a

f(γ(t))γ′(t) dt

=

∫ b

a

Re(f(γ(t))γ′(t)) dt+ i

∫ b

a

Im(f(γ(t))γ′(t)) dt

(14.30)

Alternative notation:
∫
C f and

∫
γ
f(z) dz.

Example 14.2 Let the function f : C→ C, z 7→ f(z) = f(x+ iy) = x2 + iy2

and the parametrised path γ : [0, 1] → C, t 7→ γ(t) = t(1 + i) be given. γ
parametrises the straight line from the origin to 1 + i, see figure 54.
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Figure 54: path from the origin to 1 + i

As γ′(t) = 1 + i for all t ∈ [0, 1] we get the path integral∫
γ

f =

∫ 1

0

(t2 + it2)(1 + i) dt = 2i

∫ 1

0

t2 dt =
2

3
i.

The following properties are easily proved (compare part I of the lecture).

Lemma 14.3 Let C ⊂ C be a curve in the complex plane with parametri-
sation γ : [a, b] → C (i.e., γ([a, b]) = C) and let f : C → C be a continuous
function.

(a) If γ− : [a, b]→ C, t 7→ γ−(t) = γ(a+ b− t) is the reversed parametrisa-
tion, then ∫

γ−
f = −

∫
γ

f.

(b) Let γ̃ : [ã, b̃] → C and suppose that γ̃ = γ ◦ ψ with γ̃([ã, b̃]) = C and

that the map ψ : [ã, b̃]→ [a, b] is bijective and has a positive continuous
derivative. Then ∫

eγ f =

∫
γ

f.
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In the next example we integrate the complex conjugate along a closed
path. Recall from Example 11.10 that the complex conjugate is not differ-
entiable but continuous.

Example 14.4 Let C = ∂B(i, 2) be the circle line around i with radius 2,
see figure 55.

Figure 55: circle line ∂B(i, 2)

The line integral for the complex conjugate, i.e., for the function f : C→
C, z 7→ f(z) = z, along C is computed as follows. A parametrisation for
the circle line is given by γ(t) = i + 2eit for t ∈ [0, 2π] with derivative
γ′(t) = 2ieit, t ∈ [0, 2π]. Hence,∫

γ

f =

∫ 2π

0

(
i+ 2eit

)
2ieit dt =

∫ 2π

0

(
− i+ 2e−it

)
2ieit dt

=

∫ 2π

0

(
2eit + 4i

)
dt = 2

eit

i

∣∣∣2π
t=0

+ 8πi = 8πi.
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It remains to check that the first term vanishes, that is∫ 2π

0

eit dt =

∫ 2π

0

cos(t) dt+ i

∫ 2π

0

sin(t) dt

= sin(t)
∣∣∣2π
0
− i cos(t)

∣∣∣2π
0

=
[i sin(t) + cos(t)

i

]2π

0

=
eit

i

∣∣∣2π
0

= 0.

Why does the integral in Example 14.4 does not vanish, although we
have a closed path? We will come back to this later. We now study the most
important integral in complex analysis, the so-called Fundamental Integral.

Example 14.5 (Fundamental Integral) Let a ∈ C and r > 0 and con-
sider the circle line ∂B(a, r) around a with radius r and parametrisation
γ(t) = a+ reit, t ∈ [0, 2π]. Then∫

∂B(a,r)

(z − a)n =

{
0 ; n 6= −1

2πi ; n = −1
(14.31)

This can be seen as follows∫ 2π

0

(
reit
)n
rieit dt = irn+1

∫ 2π

0

ei(n+1)t dt

=


irn+1

[
sin((n+1)t)

n+1
− i cos((n+1)t)

n+1

]2π

0
; n 6= −1

i
[
1
]2π

0
; n = −1

We do have examples of line integrals along closed paths which do not
vanish. The integrand functions of these examples are not holomorphic at
points on the curve and/or at points surrounded by the curve. However,
example 14.5 shows that there are cases were the line integral along the
closed circline vanishes although the function is not holomorphic at points
inside the circle line. We therefore expect to have vanishing lines integrals
along closed paths as long the integrand functions are holomorphic. The
next theorem is the first step towards the so-called Cauchy-Theorem which
proves this conjecture.

Theorem 14.6 (Fundamental Theorem of calculus in C) Let the func-
tion f : D → C, D ⊂ C, be holomorphic in D with derivative f ′ and C ⊂ D
be a curve (path) with parametrisation γ : [a, b]→ D. Then
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∫
γ

f ′ = f(γ(b))− f(γ(a)) (14.32)

Proof. ∫
γ

df

dz
=

∫ b

a

df

dz
(γ(t))γ′(t) dt =

∫ b

a

d

dt
(f(γ(t))) dt

=

∫ b

a

d

dt
Re(f(γ(t))) dt+ i

∫ b

a

d

dt
Im(f(γ(t))) dt

= f(γ(b))− f(γ(a)),

where we used the chain rule and the FTC for the real functions Re(f(γ(t)))
and Im(f(γ(t))). 2

15 Cauchy’s theorem

In this section the Cauchy Theorem is proved and analysed. The prove
involves to specify a class of paths/curves. Before we discuss the connection
to Green’s and Gauss’s theorem. Let γ : [a, b] → C, t 7→ γ(t) = x(t) + iy(t)
be a parametrisation of a curve (path) C ⊂ C and let a continuous function
f : C → C, f = u+ iv, be given. We compute∫

γ

f =

∫ b

a

(u(γ(t)) + iv(γ(t))(x′(t) + iy′(t)) dt

=

∫ b

a

(
u(γ(t))x′(t)− v(γ(t))y′(t)

)
dt+ i

∫ b

a

(
u(γ(t))y′(t) + v(γ(t))x′(t)

)
dt

=

∫ b

a

〈( u(γ(t))
−v(γ(t))

)
,

(
x′(t)
y′(t)

)〉
dt+

∫ b

a

〈( u(γ(t))
−v(γ(t))

)
,

(
y′(t)
−x′(t)

)〉
dt

=

∫
γ

〈F, T̂ 〉+ i

∫
γ

〈F, N̂〉,

where T̂ = γ′(t) =

(
x′(t)
y′(t)

)
and N̂ =

(
y′(t)
−x′(t)

)
and F : R2 → R2, (x, y) 7→

F (x, y) =

(
u(x, y)
−v(x, y)

)
. Note that N̂ is orthogonal to T̂ . At the end of

Section 13 we showed that divF = curlF = 0. Hence we can derive easily
the following Cauchy’s theorem from Green’s theorem and Gauss’ theorem.
But before we need to specify the allowed curves (path) for this version

98



of Cauchy’s theorem. The topological properties of the curves (paths) are
linked to the calculus of complex analysis. We only indicate this issue brief
in this lecture and defer a detailed study of this relationship to later courses.
Hence, we will not define properly what deformation in the following defini-
tion means. A deformation of a curve (path) is a continuous transformation
in the complex plane.

Definition 15.1 (a) A subset D ⊂ C is connected if it cannot be ex-
pressed as the union of non-empty open sets D1 ⊂ C and D2 ⊂ C with
D1 ∩D2 = ∅.

(b) A region is a non-empty open connected subset of the complex plane
C.

(c) A region D ⊂ C is called simply connected if every closed curve
(path) in D can be deformed to a single point.

Theorem 15.2 (Cauchy’s theorem) Let the function f : D → C, D ⊂ C
be a simply connected region, be holomorphic and C ⊂ D a closed curve (path)
with parametrisation γ. Then ∫

γ

f = 0. (15.33)

Proof. We sketch the proof ignoring the dependence on the topological
details of the curve C ⊂ D. By Ω we denote the region surrounded by the
curve (path), that is the boundary ∂Ω = C. See figure 56.

99



Figure 56: region D with Ω ∪ ∂Ω

From the calculation we get∫
γ

f =

∫
γ

〈F, T̂ 〉+ i

∫
γ

〈F, N̂〉

=

∫
∂Ω

curl (F ) + i

∫
Ω

div (F ) = 0 + 0,

where the last equality follows from Green’s and Gauss’s theorem respec-
tively. 2

Remark 15.3 The Theorem also holds for more general curves, see figure
57,
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Figure 57: γ union of γ1 ∪ γ2

where the integral
∫
γ
f =

∫
γ1
f +

∫
γ2
f = 0 vanishes because Green’s and

Gauss’s theorem can be applied to Ω1 and Ω2 respectively. But the curve
(path) has to be simple, i.e., it must be possible to contract it to a simple
point. This contraction is not possible in the example of an annulus in figure
58,
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Figure 58: annulus with ∂Ω ⊂ D and Ω 6⊂ D

where γ = ∂Ω but Ω 6⊂ D.

For later purposes we consider the following classes of curves (paths).
Recall the definition of a simple path: a ≤ s < t ≤ b implies that γ(s) 6= γ(t)
unless s = t or s = a and t = b if γ is closed.

Notation 15.4 (a) Let u, v ∈ C. The image C of the parametrisation γ
given by γ : [0, 1] → C, t 7→ γ(t) = (1 − t)u + tv is the line segment
[u, v] traced from u to v.

(b) A circular arc traced (anti-clockwise/clockwise) is the image of the
parametrisation γ : [Θ1,Θ2] → t 7→ γ(t) = a + reit, a ∈ C and r > 0
with Θ1 ≤ Θ2. The circline ∂B(a, r) around a ∈ C with radius r > 0
is parametrised by γ : [0, 2π]→ C, t 7→ γ(t) = a+ reit.

(c) A circline path is a path which is the join of finitely many paths of
type (a) and (b), and a contour is a simple closed circline path.

(d) Given a closed curve (path) C ⊂ C with parametrisation γ : [a, b] → C
and the image by γ∗ = γ([a, b]) = C, the inside I(γ) is the set of points
surrounded by the curve (path) and O(γ) is the complement of I(γ)∪γ∗,
see figure 59.
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(e) The curve (path) parametrised by γ : [0, 2π] → C, t 7→ γ(t) = a + reit

is called the positively oriented circle with centre a and radius r,
and the curve (path) with parametrisation γ : [0, 2π] → C, t 7→ γ(t) =
a+re−it is called the negatively oriented circle. Positively oriented
means anti-clockwise in the following.

Figure 59: I(γ) and O(γ)

Example 15.5 For any 0 < R < π∫
∂B(0,R)

1

ez − 1
dz = 0.

To see this note that for z = x+ iy ∈ C

ez + 1 = 0⇔ ez = −1⇔ x = 0, y = (2n+ 1)π for n ∈ Z.

Hence the function f : C→ C, z 7→ f(z) = 1
ez+1

is holomorphic on and inside
any circle with radius R < π, see figure 60.
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Figure 60: ∂B(0, R)

In the next example we analyse again the complex conjugation as in
Example 14.4.

Example 15.6 In Example 14.4 it is shown that∫
γ

z = 8πi,

where γ is the parametrisation for ∂B(i, 2), a circle line of radius 2 around
i. As 4π is the area of that circle one can guess that the following holds.
Let γ be the parametrisation of any closed curve (path) C. Then∫

γ

z = 2i(area(I(γ))), (15.34)

where I(γ) is the region enclosed by the curve (path). This can be seen as
follows. Recall that for any a, b ∈ C one can prove that Im(ab) = 2(area of
the triangle spanned by a and b).
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Figure 61: z, z + ∆

Consider in figure 61 the triangle spanned by z (vector from the origin to
a point z on γ∗) and the vector z + ∆, where ∆ is a small tangential line
segment attached to the point z on γ∗. Then the area of the triangle spanned
by z and z + ∆ is given by 1

2
Im((z + ∆)z) = 1

2
Im(∆z). The line integral

is approximated by the sum of all these small contributions, that is, the
integral is obtained as a limit ∆ → 0. One might be inclined to think that
the integral of the complex conjugate z never vanishes for a non-trivial closed
curve (path). But this is not true as seen with the curve in figure 62.
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Figure 62: γ = γ1 ∪ γ2

Here γ is the union of γ1 and γ2. Now γ2 is negatively oriented, that is
the integral along γ2 gets a minus sign. As the two areas of the surrounded
regions of γ1 and γ2 are equal, the two contributions cancel out and the
integral along γ vanishes.

One can generalise our fundamental integral in Example 14.5 to arbitrary
positively oriented contours. Let γ be a parametrisation of positively oriented
contour with z0 6∈ γ∗. Then

∫
γ

(z − z0)n =


0 ; if z0 ∈ O(γ)
0 ; if z0 ∈ I(γ) and n 6= −1

2πi ; if z0 ∈ I(γ) and n = −1
(15.35)

The proof follows with the following theorem.

Theorem 15.7 (Deformation) (a) Let γ be a positively oriented contour
and suppose that B(a, r) ⊂ I(γ), a ∈ C, r > 0. Let f be holomorphic
inside and on γ except possibly at a ∈ C. Then

∫
γ

f =

∫
∂B(a,r)

f.
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(b) Suppose that γ, γ̃ are positively oriented contours such that γ̃ lies inside
γ, i.e., γ̃∗ ⊂ I(γ). If f is holomorphic inside and on γ

∫
γ

f =

∫
eγ f.

Example 15.8 Integrate
∫
∂B(0,2)

f , where f : C → C, z 7→ f(z) = 2(4z2 −
1)−1. The function has two singularities inside the circline ∂B(0, 2). We
write

f(z) =
1

2z − 1
− 1

2z + 1
, z ∈ C.

The Deformation Theorem 15.7 implies that∫
∂B(0,2)

f =

∫
∂B(0,2)

1

2z − 1
−
∫
∂B(0,2)

1

2z + 1

=

∫
∂B( 1

2
, 1
4

)

1

2z − 1
−
∫
∂B(− 1

2
, 1
4

)

1

2z + 1

=
1

2
2πi− 1

2
2πi = 0,

where we used the circlines B(1
2
, 1

4
) and B(−1

2
, 1

4
) such that we avoid one of

the singularities respectively, see figure 63 (other circline (paths) would do
the same).
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Figure 63: B(1
2
, 1

4
) and B(−1

2
, 1

4
)

16 Cauchy’s formulae

Armed with Cauchy’s theorem we can prove a host of striking results about
holomorphic functions. In Subsection 16.2 we prove Liouville’s theorem,
Infinite differentiability and Taylor’s theorem.

16.1 Cauchy’s formulae

Cauchy’s integral formula expresses the value of a holomorphic function at a
point in terms of a ’boundary value integral’ taken over a contour encircling
the point. The ingredients at hand are

• The Deformation Theorem 15.7

• ∫
∂B(a,r)

1

w − a
dw = 2πi

• f(w)− f(a)→ 0 as w → a
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Theorem 16.1 (Cauchy’s integral formula) Let the function f be holo-
morphic inside and on a positively oriented contour with parametrisation
γ : [a, b]→ C. Then

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw for z ∈ I(γ). (16.36)

Proof. Pick z ∈ I(γ). Then there is an ε > 0 with B(z, ε) ⊂ I(γ). Then
the Deformation Theorem 15.7 and adding and subtracting an integrand with
numerator f(z) gives∫

γ

f(w)

w − z
dw =

∫
∂B(z,ε)

f(w)

w − z
dw

=

∫
∂B(z,ε)

f(z)

w − z
dw +

∫
∂B(z,ε)

f(w)− f(z)

w − z
dw

=: I + II.

The first term I is the fundamental integral

I = f(z)

∫
∂B(z,ε)

1

w − z
dw = 2πif(z).

To conclude we need to show that the second term II vanishes for ε ↓ 0.

|II| =
∣∣∣ ∫ 2π

0

f(z + εeit)− f(z)

εeit
εieit dt

∣∣∣
≤ 2π sup

t∈[0,2π]

∣∣∣f(z + εeit)− f(z)
∣∣∣→ 0 as ε ↓ 0,

because the function f is continuous at z. Now the expression on the left
hand side is independent of the radius (Deformation Theorem, the first step
above) and so it must be zero. 2

Remark 16.2 Holomorphic function are special: the values of the function
at the boundary of a closed curve γ determine the value at z ∈ I(γ).

Can we get also integral formulae as (16.36) for the derivatives? Let
the function f be holomorphic inside and on a positively oriented contour
parametrised by γ. Cauchy’s formula (16.36) implies

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw for z ∈ I(γ),
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so we may differentiate the expression on the right hand side with respect to
z neglecting the integral. We obtain

f ′(z) =
1

2πi

∫
γ

f(w)

(w − z)2
dw for z ∈ I(γ),

if we can prove that integration and differentiation can be interchanged. We
may proceed further for the second derivatives (and any higher one as well)
but there is one difficulty. The function f is holomorphic implying that f ′

exists. But it is not clear if higher derivatives exist as well. A way out of
this is to apply Cauchy’s integral formula (16.36) to the differential quotient

f ′(z + h)− f(z)

h
.

Iteration of that process gives the existence of f (n)(z) for n = 2, 3, . . ., and
z ∈ I(γ); all given by differentiation under the integral sign. This is the
content of the following theorem.

Theorem 16.3 (Cauchy’s formulae for derivatives) Let the function f
be holomorphic inside and on a positively oriented contour parametrised by
γ and let z ∈ I(γ). Then f (n)(z) exists for n = 1, 2, 3, . . ., and the derivative
is given as

f (n)(z) =
n!

2πi

∫
γ

f(w)

(w − z)n+1
dw for z ∈ I(γ). (16.37)

Proof. Pick ∈ I(γ). Then there is an ε > 0 such that B(z, 2ε) ⊂ I(γ).
Using formula (16.36) for the differential quotient (for h small enough)

f(z + h)− f(z)

h
=

1

2hπi

∫
∂B(z,2ε)

f(w)
( 1

w − z − h
− 1

w − z

)
dw

=
1

2πi

∫
∂B(z,2ε)

f(w)

(w − z − h)(w − z)
dw

=
1

2πi

∫
∂B(z,2ε)

f(w)

(w − z)2
dw

+
1

2πi

∫
∂B(z,2ε)

f(w)
( 1

(w − z − h)(w − z)
− 1

(w − z)2

)
dw

=
1

2πi

∫
∂B(z,2ε)

f(w)

(w − z)2
dw +

1

2πi

∫
∂B(z,2ε)

( hf(w)

(w − z − h)(w − z)2

)
dw.

110



We have to show that the second term on the right hand side vanishes as
h → 0. For that choose h so small that |h| < ε and conclude for all w ∈
∂B(z, 2ε) that |w − z − h| ≥ |w − z| − |h| > ε. As f is continuous there is
a M > 0 with |f(w)| ≤ M for w ∈ ∂B(z, 2ε). Hence the second term on

the right hand side is bounded by |h|M2ε
ε(2ε)2

which converges to zero as h → 0.

The higher derivatives are proved via induction using formula (16.36) for the
difference f (k+1)(z + h)− f (k)(z). 2

The last theorem guarantees that a holomorphic function is infinitely of-
ten differentiable. As in real analysis one is interested to represent such a
function as a power series. If we can interchange differentiation and integra-
tion we get an integral formula for the coefficients of that power series. This
will be the content of the next theorem in Subsection 16.2.

16.2 Taylor’s and Liouville’s theorem

Theorem 16.4 (Taylor’s theorem) Let the function f be holomorphic on
B(a,R), a ∈ C, R > 0. Then there exist unique constants cn ∈ C, n ∈ N0,
such that

f(z) =
∞∑
n=0

cn(z − a)n for z ∈ B(a,R), (16.38)

and the coefficients are given by

cn =
1

2πi

∫
γ

f(w)

(w − a)n+1
dw =

f (n)(a)

n!
, (16.39)

where γ is the parametrisation of a circle line ∂B(a, r), 0 < r < R, or of any
positively oriented contour in B(a,R) enclosing the point a.

Proof. Pick z ∈ B(a,R) and choose r > 0 such that |z − a| < r < R and
let γ be the parametrisation of the circline ∂B(a, r). The formula (16.36)
gives

f(z) =
1

2πi

∫
∂B(a,r)

f(w)

(w − z)
dw. (16.40)

Because of |z−a| < |w−a| = r for all w ∈ ∂B(a, r) we have |z−a|/|w−a| < 1
and can expand (in a geometric series)

1

w − z
=

1

w − a
1(

1− z−a
w−a

) .
Inserting this into the integrand in (16.40) and interchanging summation
and integration (to be justified later in Theorem 18.7) we conclude with
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the existence of the coefficients and their representation by (16.39). The
uniqueness follows from the following. Assume that f(z) =

∑∞
n=0 cn(z − a)n

for all z ∈ B(a, r) for some 0 < r < R. Provided summation and integration
can be interchanged we have for any n ∈ N0∫

∂B(a,r)

f(z)

(z − a)n+1
dz =

∫
∂B(a,r)

( ∞∑
k=0

ck(z − a)k
)

(z − a)−n−1 dz

=
∞∑
k=0

ck

∫
∂B(a,r)

(z − a)k−n−1 dz = 2πicn

because of our fundamental integral in Example 14.5. 2

The following theorem is a striking result from Cauchy’s formula.

Theorem 16.5 (Liouville’s theorem) Let the function f be holomorphic
and bounded on C. Then f is a constant function.

Proof. Suppose |f(w)| ≤ M for all w ∈ C. Pick a, b ∈ C and choose
R > 2 max{|a|, |b|}. Then |w−a| ≥ 1

2
R and |w− b| ≥ 1

2
R whenever |w| = R,

i.e., whenever w ∈ ∂B(0, R). Cauchy’s formula (16.36) gives

f(a)− f(b) =
1

2πi

∫
∂B(0,R)

f(w)
( 1

w − a
− 1

w − b

)
dw

=
(a− b

2πi

)∫
∂B(0,R)

f(w)

(w − a)(w − b)
dw.

Hence

|f(a)− f(b)| ≤ 1

2π

|a− b|2πRM
(1

2
R)2

→ 0 as R→∞,

implying f(a) = f(b). 2

The following example shows how Cauchy’s formulae can be used to eval-
uate integrals.

Example 16.6 (a)∫
∂B(0,1)

( ew

w3

)
dw =

2πi

2!

( d2

dz2
ez
)∣∣∣

z=0
= πi.

(b) ∫
∂B(−1,3)

1

(w − 4)(w + 1)4
dw =

2πi

3!

( d3

dz3

( 1

z − 4

))∣∣∣
z=−1

= −2πi

54
.

112



(c) Let γ be a parametrisation of a positively oriented contour.

∫
γ

(sin(w)

w − i

)
dw =


0 , if i ∈ O(γ)

2πi sin(i) , if i ∈ I(γ)
? , if i ∈ γ∗

,

In the next section the problem when singularities are on the curve is studied.

17 Real Integrals

This section will demonstrate the usefulness of Cauchy’s Theorem for evalu-
ating real integrals. We focus on the following example. What is the integral∫ ∞

−∞

(sin(x)

x

)
dx ?

Real analysis tells us that limx→0
sin(x)
x

= 1, i.e., the integrand is well-defined
for all x ∈ R. In the following we prove that∫ ∞

−∞

(sin(x)

x

)
dx = π. (17.41)

Proof of (17.41). The idea is to consider the complex function

f : C→ C, z 7→ f(z) =
eiz

z
,

which is holomorphic in the punctuated complex plane C \ {0}.
Pick some R > 0, and choose ε > 0 with ε < R. Consider the closed curve
(path) γ in figure 64. It is a union of the curves (paths) γ1, γ2, γ3 and γ4.
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Figure 64: path γ

γ1 is the half-circle of radius R > 0 from (R, 0) to (−R, 0), γ2 is the straight
line from (−R, 0) to (−ε, 0) and γ4 is the straight line from (ε, 0) to (R, 0).
To avoid the singularity at the origin the path γ3 is the small half-circle of
radius ε from (−ε, 0) to (ε, 0). This path is negatively oriented (clockwise).
The function is inside γ and on γ∗ holomorphic. Hence, Cauchy’s theorem
gives ∫

γ

f =

∫
∪4
i=1γi

f = 0. (17.42)

The contributions from the segments on the real axis are evaluated in the
limit ε→ 0.∫

γ2

f +

∫
γ4

f =

∫ −ε
−R

eix

x
dx+

∫ R

ε

eix

x
dx

=

∫ −ε
−R

cos(x) + i sin(x)

x
dx+

∫ R

ε

cos(x) + i sin(x)

x
dx

=

∫ −ε
−R

i sin(x)

x
dx+

∫ R

ε

i sin(x)

x
dx

−→ i

∫ R

−R

sin(x)

x
dx as ε→ 0.
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From (17.42) we will conclude

lim
ε→0

(∫
γ2

f +

∫
γ4

f

)
= i

∫ R

−R

sin(x)

x
dx = − lim

ε→0

(∫
γ3

f +

∫
γ1

f
)
. (17.43)

To prove (17.41) we divide (17.43) by i and take the limit R→∞. For that
we compute the integrals on the right hand side of (17.43).

(1) Adding and subtracting an integrand we get for the first integral on the
right hand side of (17.43)∫

γ3

f =

∫
γ3

1

w
dw +

∫
γ3

eiw − 1

w
dw = −1

2

∫
∂B(0,ε)

1

w
dw +

∫
γ3

eiw − 1

w
dw

= −iπ +

∫
γ3

eiw − 1

w
dw =: −iπ + II,

where the minus sign is due to the negative orientation of γ3 and the 1
2

is
there because we only have the half-circle. It remains to show that the second
term II on the right hand side of the last equation vanishes as ε→ 0.

|II| ≤ 〈length(γ3)〉 max
w∈∂B(0,ε)

∣∣∣eiw − 1

w

∣∣∣ ≤Mπε→ 0 as ε→ 0,

because eiw−1
w

is continuous on ∂B(0, ε) (attains its maximum value because
the circline is closed and bounded). Hence,

lim
ε→0

∫
γ3

f = −iπ. (17.44)

Thus we need to show in (2) that the second integral on the right hand side
of (17.43) vanishes in the limit R→∞. The other term does not depend on
R.

(2) Let γ1 : [0, π] → C, t 7→ γ1(t) = Reit be the parametrisation for the
half-circle. We estimate∣∣∣ ∫

γ1

eiz

z
dz
∣∣∣ =

∣∣∣ ∫ π

0

eiR(cos(t)+i sin(t))

Reit
iReit dt

∣∣∣ ≤ ∫ π

0

∣∣∣eiR(cos(t)+i sin(t))
∣∣∣ dt

=

∫ π

0

e−R sin(t) dt = 2

∫ π/2

0

e−R sin(t) dt ≤ 2

∫ π/2

0

e−
2t
π dt

= 2
[
− π

2R
e−

2Rt
π

]t=π/2
t=0

=
π

R

(
1− e−R

)
≤ π/R→ 0as R→∞.
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The inequality follows from the estimation sin(t) ≥ t
π/2

= 2t
π

for all t ∈
[0, π/2], see figure 65. A proof can be found in Lemma 17.1.

Figure 65: estimation sin(t) on [0, π/2]

This implies e−R sin(t) ≤ e−R
2t
π for al t ∈ [0, π/2]. We conclude from (17.43)

and (17.44)

lim
R→∞

i

∫ R

−R

sin(t)

x
dx = − lim

R→∞
lim
ε→0

(∫
γ3

f +

∫
γ1

f
)

= iπ

to get (17.41). 2

Lemma 17.1 (Jordan’s inequality)

2

π
≤ sin(x)

x
≤ 1 for 0 < x ≤ π

2
.

Proof. It suffices to show that the function sin(x)
x

decreases for x ∈ (0, π
2
],

i.e., to show that

d

dx

(sin(x)

x

)
=
x cos(x)− sin(x)

x2
≤ 0, x ∈ (0,

π

2
].

This follows easily from [x cos(x)− sin(x)]|x=0 = 0 and from

d

dx

(
x cos(x)− sin(x)

)
= −x sin(x) ≤ 0.

2
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18 Power series for Holomorphic functions

This section completes our study of power series and its proofs are based on
Cauchy’s theorem and Cauchy’s formulae.

18.1 Power series representation

Theorem 18.1 Let the power series
∑∞

n=0 cnz
n have radius of convergence

R > 0 and define on the ball B(0, R) the function f : B(0, R)→ C by

f(z) :=
∞∑
n=0

cnz
n, z ∈ B(0, R).

Then the following statements are true:

(a)
∑∞

n=1 ncnz
n−1 has radius of convergence R.

(b) f is holomorphic on B(0, R), and f ′(z) =
∑∞

n=1 ncnz
n−1 for all z ∈

B(), R).

(c) f has derivatives of all orders n ∈ N in the ball B(0, R) and

f (n)(0) = n!cn, n ∈ N0.

Proof. We only sketch the ideas, parts of the proof follow analogously to
the real case. Assume that

∑∞
n=0 cnz

n converges for |z| < R. Pick 0 < ρ < R

and let |z| < ρ and assume z 6= 0. Now |z|
ρ
< 1 implies that

∑∞
n=0 n

( |z|
ρ

)n
converges (Ratio test for example). Hence there is a M > 0 such that

n
( |z|
ρ

)n ≤M for all n ∈ N0.

Thus

|ncnzn−1| ≤ M

|z|
|cnρn| for all n ∈ N0,

gives (a) because the series
∑∞

n=0 |cnρn| converges. To conclude with (b) we
have to show that

(∗) :=
f(z + h)− f(z)

h
−g(z) =

∞∑
n=1

((z + h)n − zn

h
−nzn−1

)
→ 0 as h→ 0,

where g(z) :=
∑∞

n=1 ncnz
n−1. we shall use the binomial expansion

(z + h)n =
n∑
k=0

(
n

k

)
zn−kkk, n ∈ N, z, h ∈ C.
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For z, z + h ∈ B(0, R) we must prove that

(z + h)n − zn

h
− nzn−1 = h

n∑
k=2

(
n

k

)
hk−2zn−k

= h

n−2∑
r=0

n!

(n− (r + 2))!(r + 2)!
hrzn−2−r

(with r = k− 2) vanishes in the limit h→ 0. With the infinite version of the
triangle inequality the estimation and again with the binomial expansion the
following estimate

|(∗)| =
∣∣∣ ∞∑
n=1

cn

(
h

n−2∑
r=0

n!

(n− r − 2)!(r + 2)!
hrzn−2−r

)∣∣∣
≤ |h|

∞∑
n=1

n(n− 1)|cn|
( n−2∑
r=0

(n− 2)!

(n− 2− r)!r!
|h|r|z|n−2−r

)
= |h|

∞∑
n=1

n(n− 1)|cn|(|z|+ |h|)n−2.

Fix z and pick ρ with |z| < ρ < R, so that |z| + |h| < ρ whenever |h| <
ρ− |z|. Using part (a) twice,

∑∞
n=2 n(n− 1)|cn|ρn−2 converges to a constant

independent of h. We conclude that f ′(z) does exist and equals g(z). The
proof of (c) follows wit (16.37). 2

Example 18.2 We know that the geometric series
∑∞

n=0 z
n has radius of

convergence R = 1. Theorem 18.1 implies that

(1− z)−2 =
d

dz
(1− z)−1 =

∞∑
n=1

nzn−1, |z| < 1.

Via induction one can easily see that

1

(1− z)k+1
=
∑
n≥k

(
n

k

)
zn−k, |z| < 1, k ∈ N.

Definition 18.3 A function f is called analytic if it can be expanded into
a power series around every point.

Theorem 18.1 gives

f holomorphic ⇔ f analytic.
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This does not hold in R:

f once differentiable on R 6⇒ f twice differentiable on R
f infinitely many times differentiable on R 6⇒ f has a power series expansion

This can be seen in the following example.

Example 18.4 The real-valued function

f : R→ R, x 7→ f(x) =

{
0 ; if x ≤ 0

e−
1
x ; if x > 0

is infinitely many times differentiable, f ∈ C∞, and dkf
dxk

(0) = 0 for all k ∈ N0.
But the corresponding power series

∞∑
k=0

(dkf

xk
(0)
)xk
k!

= 0

in contrast to f(x) 6= 0 for x > 0.

18.2 Power series representation - further results

Theorem 18.5 (Uniqueness Theorem) Let the function f, g be holomor-
phic on B(a,R), a ∈ C, R > 0, and (zn)n∈N be a sequence in B(a,R) \ {a}
with zn → a as n → ∞ and f(zn) = g(zn) for all n ∈ N. Then f = g on
B(a,R).

Proof. The function h = f − g is holomorphic on B(a,R). Thus

h(z) = c0 + c1(z − a) + c2(z − a)2 + · · ·

for z ∈ B(a,R). From continuity and the assumptions we get h(a) =
limn→∞ h(zn) = 0 which implies that the coefficient c0 = 0. The limit of

h(zn)

(zn − a)
= c1 + c2(zn − a) + · · ·

exists (h is holomorphic) and equals c1 = limn→∞
h(zn)
zn−a = 0. Induction gives

cn = 0 for all n ∈ N0, and from the power series representation of h, Theo-
rem 18.1, we conclude h = 0 on B(a,R), i.e., f = g on B(a,R). 2

The next examples apply this theorem.
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Example 18.6 (a) Let f(z) = sin2(z) + cos2(z) and g(z) = 1 defined for
all z ∈ C, both functions are holomorphic on B(0, R) for all R > 0. As
f(x) = g(x) for all x ∈ R we conclude with Theorem 18.5 that f(z) = g(z)
for all z ∈ C.

(b) Define f( 1
n
) = sin( 1

n
) for any n ∈ N, that is the function f is defined

only on the countable set { 1
n

: n ∈ N}. By Thoerem 18.5 we conclude that
f(z) = sin(z) for all z ∈ C.

We have already used the following theorem when interchanging summa-
tion and integration.

Theorem 18.7 (Interchange theorem) Let γ be a parametrisation for a
curve (path) in C and let the functions U, uk, k ∈ N0, be continuous on γ∗.
Assume that

∑∞
k=0 uk(z) converges to U(z) for all z ∈ γ∗ and that there are

constants Mk, k ∈ N0, such that |uk(z)| ≤Mk for all z ∈ γ∗ and k ∈ N0 and
that

∑∞
k=0Mk converges. Then

∞∑
k=0

∫
γ

uk(z) dz =

∫
γ

∞∑
k=0

uk(z) dz =

∫
γ

U(z) dz.

Proof. The partial sum UN(z) :=
∑N

k=0 uk(z) and U are continuous on γ∗.
Finite sums can be interchanged with integration

∣∣∣ ∫
γ

U(z) dz −
N∑
k=0

∫
γ

uk(z) dz
∣∣∣ =

∣∣∣ ∫
γ

(
U(z)− UN(z)

)
dz
∣∣∣

≤ sup
z∈γ∗

{∣∣∣U(z)− UN(z)
∣∣∣}〈length(γ)〉

≤ sup
z∈γ∗

{ ∞∑
k=N+1

|uk(z)|
}
〈length(γ)〉

≤
( ∞∑
k=N+1

Mk

)
〈length(γ)〉 → 0 as N →∞,

because
∑∞

k=0 Mk converges. 2

The next theorem is the Fundamental Theorem of Algebra which is de-
rived from Liouville’s theorem 16.5.

Theorem 18.8 (Fundamental Theorem of Algebra) Every non-constant
polynomial p on C has a root, i.e., p(z) = 0 for some z ∈ C.
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Proof. Let p(z) = cnz
n + cn−1z

n−1 + · · ·+ c1z+ c0 with c1, . . . , cn ∈ C and
cn 6= 0. Assume that p has no root. Then f : C → C, z 7→ f(z) = 1

p(z)
is

holomorphic on C. As |p(z)| → ∞ as |z| → ∞, there exists R > 0 such that
|f(z)| = | 1

p(z)
| < 1 for |z| > R. Hence, f is bounded and therefore constant

due to Liouville’s theorem 16.5. This gives the required contradiction. 2

Remark 18.9 Let p a polynomial of order n. If p(a) = 0 for a ∈ C then
p(z) = (z − a)q(z). Iterating this (induction) gives: there are z1, . . . , zn ∈ C
and a constant c ∈ C such that

p(z) = c(z − z1)(z − z2) · · · (z − zn), z ∈ C.

Every n-th order polynominal has n roots.

19 Laurent series and Cauchy’s Residue For-

mula

In the first part the Cauchy Theorem will be extended to a larger class
of curves (paths). Before the index of a path is defined which gives the
winding number of a path around a point. Then we study power expansions of
functions around singularities. These power expansions include also negative
powers, the so-called Laurent series.

19.1 Index

Definition 19.1 (Index) Let γ be a parametrisation of a closed path, and
consider the complement Ω := C \ γ∗ (recall that γ∗ = γ([a, b])). The index
of the curve (path) is the function Indγ : Ω→ C defined by

Indγ(z) =
1

2πi

∫
γ

dw

w − z
, z ∈ Ω. (19.45)

Without proof we cite the following theorem about the values of the index
function.

Theorem 19.2 The index function Indγ is an integer-valued function on
Ω and is constant in each component of Ω and is zero in the unbounded
component of Ω, see an example in figure 66.
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Figure 66: components of Ω of a path γ

Example 19.3 (Some index functions) The examples in figure 67 show
an example with index Indγ(z0) = 1, Indγ(z0) = −1 and Indγ(z0) = 2
respectively.
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Figure 67: three index functions

Example 19.4 Consider the parametrisation γ : [0, 4π]→ C, γ(t) = (1+i)+
eit of a circline around (1 + i) with radius 1, see figure 68 around z0 = 1 + i,
see figure 67. The index is

Indγ((1 + i)) =
1

2πi

∫
γ

dw

w − 1− i
=

1

2πi

∫ 4π

0

e−itieit dt = 2.

Hence, we do know that ∫
γ

( 2i

z − 1− i

)
dz = −8π.

Is there a connection with the index? This is indeed the case, and we shall
show it later.
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Figure 68: example with Indγ((1 + i)) = 2

We want to enlarge the class of curves (paths) for Cauchy’s theorem. We
will do this step by step. The following is the first version which extends to
closed curves (paths) without specifying the orientation.

Cauchy Theorem (preliminary version)
Let f : D → C, D ⊂ C a region, be holomorphic and let γ be a parametrisa-
tion of a closed curve (path) in D. If all points of the complement C \D are
lying in the outside O(γ) of the curve (path) Cauchy’s theorem holds, i.e.,∫

γ

f(z) dz = 0.

We shall explore the meaning of the condition that the complement of the
domain of definition lies in the outside of the curve (path). We do this
with a couple of examples. In figure 69 we have two circle lines around the
origin, ∂B(0, R) and ∂B(0, r), r < R , one circle line is lying inside the other
one. Consider the path γ as the union of γ1, the outer circle line in positive
direction, the straight connection of the outer circle with the inner circle γ2,
the inner circle line γ3 with negative orientation and the straight line back
(on the same line as before but in different direction) γ4.
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Figure 69: paths γ1, γ2, γ3, γ4

Let f be a holomorphic function on the annulus of the two circle lines in
figure 68. Then from Theorem 15.7 we get that∫

γ1

f(z) dz =

∫
γ3

f(z) dz,

but inside of the inner circle ∂B(0, r) we have points which do not belong to
the domain of definition and do not belong to the outside of the whole path
γ. A way out of this is the following. Pick ε > 0 and open both circle lines
by a small piece of length ε to get the key-hole path in figure 70.
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Figure 70: key-hole path

The curves (paths) in figure 71 and 72 are encircling both two singularity
points. We color the two components around the two singularities by red (the
upper one) and by blue (the lower one). Let γ be the closed paths enclosing
(surrounding) the two points respectively- one (figure 71) puts the points on
the outside and one (figure 72) encircles the upper point for example in one
movement, see the figure 71 and 72 respectively. Is there a difference in the
methods of encircling? In which components is the index Indγ 6= 0 ? If we
consider the curve (path) as a fence keeping some animals we would see no
difference at all. But there is a difference.
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Figure 71: enclosing two singularities - method (a)

In figure 71 both the red and blue component have zero index but in figure
72 the blue component has a non-zero index. This shows that for the curve
(path) γ in figure 71 the two singularities are lying outside γ.
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Figure 72: enclosing two singularities - method (b)

This discussion shall motivate the following final version of Cauchy’s theorem.

Theorem 19.5 (Cauchy’s theorem - final version) Let D ⊂ C be a re-
gion and the function f : D → C, D ⊂ C, be holomorphic and γ be a closed
curve (path) in D which does not surround a point in the complement C \D,
that is, Indγ(z) = 0 for all z ∈ C \D. Then∫

γ

f = 0.

Theorem 19.6 (Cauchy’s formulae - index version) Let D ⊂ C be a
region and the function f : D → C, D ⊂ C, be holomorphic and γ be a closed
curve (path) in D which does not surround a point in the complement C \D,
that is, Indγ(z) = 0 for all z ∈ C \D. Then

Indγ(z)f (n)(z) =
n!

2πi

∫
γ

f(w)

(w − z)n+1
dw, for all z ∈ D \ γ∗.
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19.2 Laurent series

We study now expansion with negative powers. We start with the following
Binomial expansions derived from the geometric series.

Binomial expansions
For |z| < 1 the geometric series gives the expansion of (1−z)−1 with positive
powers

1

1− z
=
∞∑
n=0

zn.

What about |z| > 1? Because of

|z| > 1⇔
∣∣∣1
z

∣∣∣ < 1

an expansion of (1− 1
z
)−1 is possible.

1

1− z
= −1

z

1(
1− 1

z

) = −
∞∑
n=0

z−n−1 = −
−1∑

m=−∞

zm for |z| > 1.

In the same way we can expand (a− z)−1 as a series in positive powers of z
if |z| < |a| and as a series in negative powers if |z| > |a|.

Definition 19.7 A series
∑∞

n=−∞ an, an ∈ C, converges (to s = s1 + s2) if∑∞
n=0 an converges (to s1) and

∑∞
n=1 a−n converges (to s2). A power series

with negative and positive powers is called a Laurent series.

Suppose the function f is holomorphic in the punctuated ball B(a,R) \
{a}, and at the point a something nasty happens (singularity). If the function
is not holomorphic in a we cannot hope for a power series expansion. But
what about to expand the function f as a Laurent series

∑∞
n=−∞ cn(z − a)n

for 0 < |z − a| < R?

Theorem 19.8 (Laurent’s theorem) Let an annulus A,

A = {z ∈ C : R < |z − a| < S; 0 < R < S ≤ ∞, a ∈ C},

be given and let the function f be holomorphic on A. Then

f(z) =
∞∑

n=−∞

cn(z − a)n for z ∈ A, (19.46)
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where the coefficients are given by

cn =
1

2πi

∫
γ

f(w)

(w − a)n+1
dw, n ∈ Z, (19.47)

with γ∗ = ∂B(a, r) for any r with R < r < S.

Proof. We sketch only the main ideas. W.l.o.g. we set a = 0.

Figure 73: γ̃ and γ̂ in A

Pick z ∈ A and choose R < P < |z| < Q < S and consider the two closed
paths γ̃ and γ̂ in figure 73, where γ̃ is the closed path enclosing z ∈ A and
z ∈ O(γ̂). From (16.36) we get

f(z) =
1

2πi

∫
eγ
f(w)

w − z
dw,

and from Cauchy’s theorem 19.5 we have

0 =
1

2πi

∫
bγ
f(w)

w − z
dw.

The integrals along the line segments connecting the two circlines ∂B(0, Q)
and ∂B(0, P ) in figure 72 cancel out each other and the remaining gives

f(z) =
1

2πi

∫
∂B(0,Q)

f(w)

w − z
dw − 1

2πi

∫
∂B(0,P )

f(w)

w − z
dw. (19.48)
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We can expand the integrands (w − z)−1 in (19.48) in positive powers for
the first integral and in negative powers for the second integral in (19.48)
respectively (see Binomial expansions).

1

w − z
=

1

w

1(
1− z

w

) =
1

w

∞∑
n=0

( z
w

)n
for all w ∈ ∂B(0, Q)

because | z
w
| < 1 for w ∈ ∂B(0, Q).

1

w − z
= −1

z

1(
1− w

z

) = −1

z

∞∑
m=0

(w
z

)m
for all w ∈ ∂B(0, P )

because |w
z
| < 1 for w ∈ ∂B(0, P ). Inserting theses expansions into the

integrands in (19.48) and using Theorem 18.7 we get

f(z) =
∞∑
n=0

( 1

2πi

∫
∂B(0,Q)

f(w)

wn+1

)
zn +

∞∑
m=0

( 1

2πi

∫
∂B(0,P )

f(w)wm dw
)
z−m−1.

Putting n = −m − 1 and an application of the Deformation Theorem 15.7
gives the proof. 2

It is often very difficult to calculate the coefficients of a Laurent expansion.
An easier way is to find Binomial expansions directly as the following example
shows.

Example 19.9 (Laurent expansions of a function) The function

f(z) =
1

z(1− z)2

is holomorphic in A1 = {z ∈ C : 0 < |z− 1| < 1} and A2 = {z ∈ C : |z− 1| >
1}. Hence we have two Laurent expansions. As

f(z) =
1

(z − 1)2

1(
1 + (z − 1)

) ,
we conclude that the Laurent expansion for 0 < |z − 1| < 1 is

f(z) =
∞∑

n=−2

(−1)n(z − 1)n.

For the annulus A2 we write

f(z) =
1

(z − 1)3

1(
1 + 1

z−1

) ,
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and hence the Laurent expansion for |z − 1| > 1 is

f(z) =
−3∑

n=−∞

(−1)n+1(z − 1)n.

The notion singularity becomes clear in the following.

Notation 19.10 Let f : D → C, D ⊂ C, be a function.

(a) A point a ∈ D is a regular point of the function f if f is holomorphic
at a.

(b) A point a ∈ D is a singularity of f if a is not a regular point but a
limit point of regular points, e.g., a is singularity of

1

z − a

because a is limit of the regular points zn = a+ 1
n

.

(c) A singularity of f is said to be isolated if f is holomorphic in the open
punctuated ball B(a,R) \ {a} for some R > 0.

Theorem 19.8 indicates that the isolated singularities are the candidates
for Laurent expansions. We need the following classification of isolated sin-
gularities.

Classification of isolated singularities Suppose that the function f has
an isolated singularity at a, hence f is holomorphic in some annulus

A = {z ∈ C : 0 < |z − a| < r, r > 0}.

Theorem 19.8 gives

f(z) =
−1∑

n=−∞

cn(z − a)n +
∞∑
n=0

cn(z − a)n, z ∈ A. (19.49)

The first term on the right hand side of (19.49) is called the principal part
of the Laurent expansion. The isolated singularity a is said to be

• a removable singularity if cn = 0 for all n < 0.
• a pole of order m (m ≥ 1) if c−m 6= 0 and cn = 0 for all n < −m.
• an essential singularity if there does not exist m such that cn = 0 for
n < −m.

The example 1/(z− 1)2 has at z = 1 a pole of order 2, also called double
pole.
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Definition 19.11 (Residue) Let f : D → C, D ⊂ C, be a function which
has a pole at a ∈ D. The residue of the function f at a is the unique
coefficient c−1 of the term (z − a)−1 of the Laurent expansion of f about a
and it is denoted by res{f ; a}.

We are now able to answer our questions about when integrals of functions
along closed paths vanish or not. If we surround poles of the integrand the
integral does not vanish, because there is a reminder which is given by the
residue of that pole. This is the content of the last theorem.

Theorem 19.12 (Cauchy’s residue theorem) Let the function f be holo-
morphic inside and on a positively oriented contour γ except at a finite num-
ber of poles a1, . . . , aN ∈ I(γ). Then

∫
γ

f(z) dz = 2πi
N∑
k=1

res{f ; ak}. (19.50)

Proof. The N poles give exactly N principal parts

fk(z) =
−1∑

n=−∞

c(k)

n (z − ak)n k = 1, . . . , N.

For any k = 1, . . . , N there is mk ∈ N with c(k)

−mk 6= 0 and c(k)
n = 0 for all

n < −mk. Integration of each principal part gives (see fundamental integral)∫
γ

fk(z) dz =

mk∑
n=1

c(k)

−n

(z − ak)n
= 2πic(k)

−1 = 2πi res{f ; ak}.

The function g : I(γ)→ C, given by g(z) = f(z)−
∑N

k=1 fk(z), is holomorphic
and Theorem 19.5, i.e.,

0 =

∫
γ

g(z) dz =

∫
γ

f(z) dz −
N∑
k=1

∫
γ

fk(z) dz,

and we conclude with the proof. 2

In order to take advantage of the last theorem we provide some simple
rules for calculating the residue of a function.

Lemma 19.13 Let B(a,R) be the open ball around a ∈ C with radius R > 0,
and assume that the function f : B(a,R) → C is holomorphic on B(a,R) \
{a}.
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(a) If a is simple pole (i.e. a pole of order 1), then

res{f ; a} = lim
z→a

(z − a)f(z).

Furthermore, if the function g : B(a,R)→ C is holomorphic and g(a) 6=
0 such that f(z) = g(z)

z−a for all z ∈ B(a,R) \ {a}, then

res{f ; a} = g(a).

(b) Let h, k : B(a,R) → C be holomorphic on the ball B(a,R) such that

f(z) = h(z)
k(z)

or all z ∈ B(a,R) \ {a}. Furthermore, assume that h(a) 6=
0, k(a) = 0, and k′(a) 6= 0, then

res{f ; a} =
h(a)

k′(a)
.

(c) Let f have a pole at a of order m > 1 and let f(z) = g(z)
(z−a)m

, z ∈
B(a,R) \ {a}, with g holomorphic on B(a,R) and g(a) 6= 0. Then

res{f ; a} =
1

(m− 1)!
g(m−1)(a).

Proof. (a) This follows immediately from the the Laurent series expansion
of the function f .
(b)

lim
z→a

(z − a)
h(z)

k(z)
= h(a) lim

z→a

z − a
k(z)− k(a)

=
h(a)

k′(a)
.

(c) Cauchy’s formulae give

g(m−1)(a) =
(m− 1)!

2πi

∫
∂B(a,R/2)

g(z)

(z − a)m
dz =

(m− 1)!

2πi

∫
∂B(a,R/2)

f(z) dz

= (m− 1)! res{f ; a}.

2
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