MA231 Vector Analysis Example Sheet 1: Hints and partial solutions

2009, term 1 Stefan Adams

- A3 (a) (i) $\nabla f = (2y, 2x+2y)$, (ii) $\nabla f = (y\cos(\pi y), x\cos(\pi y) \pi xy\sin(\pi y))$. (b) $D_{(-1,5)}f(2,3) = (6,10) \cdot (-1,5) = 44$.
- A4 (a) $\int_0^1 t\sqrt{4+9t^2} \, dt$. (b) Use parameterisations of the two parts of the curve: $\alpha(t) = (t,0)$, for $t \in [-2,2]$, and $\beta(t) = (2\cos t, 2\sin t)$, for $t \in [0,\pi]$. The line integral along α is zero. The line integral along β gives the answer -32/3.
- A5 (a) $x^2y + x^3 + C$. (b) $x^2yz + xz + y + C$. (c) Later in the course, when we have introduced curls, we see this immediately from the fact that the curl of v is non-zero. For now, argue by integration that it is impossible.
- A6 (a) (-2/3, -2/3, 1/3). (b) $\frac{(4s^2t 2t^3, -st^2, 2t^2 2s^2)}{\sqrt{(4s^2t 2t^3)^2 + s^2t^4 + (2t^2 2s^2)^2}}$.
- A7 (a) $\partial r/\partial s = (1,0,2s)$ and $\partial r/\partial t = (0,1,1)$ gives $\left\| \frac{\partial r}{\partial s} \times \frac{\partial r}{\partial t} \right\| = \sqrt{4s^2 + 2}$. Thus $\int_{\mathcal{S}} x \, dS = \int_0^1 \int_{-1}^1 s \sqrt{4s^2 + 2} \, dt \, ds = \sqrt{6} \sqrt{2}/3$. (b) For example parameterise by $x(s,t) = (s \cos t, s \sin t, s^2)$ over $s \in [0, L^{1/2}], t \in [0, 2\pi]$. The surface area is $\frac{\pi}{6}((1+4L)^{3/2}-1)$.
- B 1- B 4 see details of solutions in supervision classes
 - C1 $\nabla T = (2x, 2y, 1)$ and $D_{(\cos \theta, \sin \theta, 1)}T(1, 1, 0) = (2, 2, 1) \cdot (\cos \theta, \sin \theta, 1) = 1 + 2\cos \theta + 2\sin \theta$. This is maximised at $\theta = \pi/4$.
 - C2 Let C be the straight line joining the origin to the point x_0 . The FCT for gradient vector fields we have $f(x_0) f(0) = \int_C v \cdot \hat{T} \, ds = g(x_0) g(0)$.
 - C3 (b) $u = \nabla \left(\frac{1}{2}\ln(1+g^2(x))\right)$. (c) $\nabla \phi(r^2) = 2\phi'(r^2)x$. Find ϕ so that $2\phi'(r^2) = r^m$, namely $\phi(r^2) = \frac{r^{m+2}}{m+2}$ if $m \neq -2$ and $\phi(r^2) = \log(r)$ if m = -2.
 - C4 The velocity of the tracer particle is u(t, x(t)). Differentiate in t using the chain rule to find the acceleration. To explain the notation, use ∇ as if it were the vector $(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3})$ so that the notation $u \cdot \nabla$ becomes $\sum_{i=1}^{3} u_i \frac{\partial}{\partial x_i}$ which then acts on each component of u.
 - C5 (b) $\nabla f = m$ a constant. (c) $\nabla g = -3x/r^5$. (d) The dipole vector field is $-3r^{-5}(x \cdot m)x + r^{-3}m$.
 - C6 (a) The tangent vector is (1, g'(t)) which has length $\sqrt{1 + g'(t)^2}$. (b) The unit normal vector is given by $\frac{(\partial g/\partial s, \partial g/\partial s, 1)}{\sqrt{1 + (\partial g/\partial s)^2 + (\partial g/\partial t)^2}}$. Hence the area of the desired part of the graph is $\int_0^1 \int_0^1 \sqrt{1 + (\partial g/\partial s)^2 + (\partial g/\partial t)^2} \, ds dt$.