MA231 Vector Analysis

2009, term 1
Example Sheet 1: Hints and partial solutions

A3 (a) (i) $\nabla f=(2 y, 2 x+2 y)$, (ii) $\nabla f=\left(y \cos (\pi y), x \cos (\pi y)-\pi x y \sin (\pi y)\right.$. (b) $D_{(-1,5)} f(2,3)=$ $(6,10) \cdot(-1,5)=44$.

A4 (a) $\int_{0}^{1} t \sqrt{4+9 t^{2}} \mathrm{~d} t$. (b) Use parameterisations of the two parts of the curve: $\alpha(t)=(t, 0)$, for $t \in[-2,2]$, and $\beta(t)=(2 \cos t, 2 \sin t)$, for $t \in[0, \pi]$. The line integral along α is zero. The line integral along β gives the answer $-32 / 3$.

A5 (a) $x^{2} y+x^{3}+C$. (b) $x^{2} y z+x z+y+C$. (c) Later in the course, when we have introduced curls, we see this immediately from the fact that the curl of v is non-zero. For now, argue by integration that it is impossible.
A6 (a) $(-2 / 3,-2 / 3,1 / 3)$. (b) $\frac{\left(4 s^{2} t-2 t^{3},-s t^{2}, 2 t^{2}-2 s^{2}\right)}{\sqrt{\left(4 s^{2} t-2 t^{3}\right)^{2}+s^{2} t^{4}+\left(2 t^{2}-2 s^{2}\right)^{2}}}$.
A7 (a) $\partial r / \partial s=(1,0,2 s)$ and $\partial r / \partial t=(0,1,1)$ gives $\|\partial r / \partial s \times \partial r / \partial t\|=\sqrt{4 s^{2}+2}$. Thus $\int_{\mathcal{S}} x d S=\int_{0}^{1} \int_{-1}^{1} s \sqrt{4 s^{2}+2} \mathrm{~d} t \mathrm{~d} s=\sqrt{6}-\sqrt{2} / 3$. (b) For example parameterise by $x(s, t)=$ $\left(s \cos t, s \sin t, s^{2}\right)$ over $s \in\left[0, L^{1 / 2}\right], t \in[0,2 \pi]$. The surface area is $\frac{\pi}{6}\left((1+4 L)^{3 / 2}-1\right)$.
B 1- B 4 see details of solutions in supervision classes
C1 $\nabla T=(2 x, 2 y, 1)$ and $D_{(\cos \theta, \sin \theta, 1)} T(1,1,0)=(2,2,1) \cdot(\cos \theta, \sin \theta, 1)=1+2 \cos \theta+2 \sin \theta$. This is maximised at $\theta=\pi / 4$.

C2 Let C be the straight line joining the origin to the point x_{0}. The FCT for gradient vector fields we have $f\left(x_{0}\right)-f(0)=\int_{C} v \cdot \hat{T} \mathrm{~d} s=g\left(x_{0}\right)-g(0)$.

C3 (b) $u=\nabla\left(\frac{1}{2} \ln \left(1+g^{2}(x)\right)\right.$. (c) $\nabla \phi\left(r^{2}\right)=2 \phi^{\prime}\left(r^{2}\right) x$. Find ϕ so that $2 \phi^{\prime}\left(r^{2}\right)=r^{m}$, namely $\phi\left(r^{2}\right)=\frac{r^{m+2}}{m+2}$ if $m \neq-2$ and $\phi\left(r^{2}\right)=\log (r)$ if $m=-2$.

C4 The velocity of the tracer particle is $u(t, x(t))$. Differentiate in t using the chain rule to find the acceleration. To explain the notation, use ∇ as if it were the vector $\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right)$ so that the notation $u \cdot \nabla$ becomes $\sum_{i=1}^{3} u_{i} \frac{\partial}{\partial x_{i}}$ which then acts on each component of u.

C5 (b) $\nabla f=m$ a constant. (c) $\nabla g=-3 x / r^{5}$. (d) The dipole vector field is $-3 r^{-5}(x \cdot m) x+$ $r^{-3} m$.

C6 (a) The tangent vector is $\left(1, g^{\prime}(t)\right)$ which has length $\sqrt{1+g^{\prime}(t)^{2}}$. (b) The unit normal vector is given by $\frac{(\partial g / \partial s, \partial g / \partial s, 1)}{\sqrt{1+(\partial g / \partial s)^{2}+(\partial g / \partial t)^{2}}}$. Hence the area of the desired part of the graph is $\int_{0}^{1} \int_{0}^{1} \sqrt{1+(\partial g / \partial s)^{2}+(\partial g / \partial t)^{2}} \mathrm{~d} s \mathrm{~d} t$.

