MA231 Vector Analysis

2009, term 1
Example Sheet 3: Hints and partial solutions

A1 $\nabla \cdot v=4 r \sin \phi-\frac{1}{r^{2}} \tan \phi$ and $\nabla \times v=r \cos \phi \hat{\mathrm{e}}_{\theta}$.
A2 (a) $i: r=1, \theta=\pi / 2 ;-i: r=1, \theta=-\pi / 2 ; 1+i: r=\sqrt{2}, \theta=\pi / 4 ;-\frac{1}{2}+\frac{\sqrt{3}}{2} i: r=$ $1, \theta=2 \pi / 3$. (b) $\frac{3}{20}-\frac{1}{20} i ;-i$; $-\frac{1}{2}+\frac{\sqrt{3}}{2} i$. (c) $1+3 i$ and $-1-3 i .1+(3-\sqrt{8}) i$ and $-1-(3+\sqrt{8}) i$. (d) $\cos \theta+i \sin \theta$ for $\theta=\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4$.

A3 (a) $\bar{z}=x-i y,|\bar{z}|=|z|$ and $\arg (\bar{z})=-\arg (z)$. (b) split into real and imaginary parts.
A4 Since $|z|=z \bar{z}$ the set is the unit circle and we can use $\phi(t)=\mathrm{e}^{2 \pi i t}$.
A5 (a) (i) $R=\infty$, (ii) $R=e$ (recall $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$). (b) The series converges on the set $\{z:|z-4 i|<1 / 5\}$ and nowhere else. (c) $\left|\frac{i^{n}}{i+n^{2}}\right|=\left|\frac{1}{i+n^{2}}\right| \leq \frac{1}{n^{2}}$ and the first series converges absolutely. The real part of $\frac{1}{i+n}$ is $\frac{n}{n^{2}+1}$ so the real part of the second series diverges by comparison with $\sum \frac{1}{2 n}$.
A6 (a) Use the definition of $\exp (z)$ and $\sin (z)$ as power series. (b) Use part (a) or argue (after week 9) that the identity is true for real z and since both sides are holomorphic functions on C the identity must remain true on the whole of C (by Taylor's theorem for holomorphic functions and the uniqueness theorem for power series). (c) Use the representations for $\sin , \cos , \sinh , \cosh$ in terms of the exponential function.

B1 (a) We can choose any surface \mathcal{S} with boundary \mathcal{C}, $\operatorname{simplest}$ is $r(u, v)=(u \cos v, u \sin v, 1-$ $u \cos v-u \sin v)$ for $u \in[0,1], v \in[0,2 \pi]$. Surface normal: $N=\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}=(u, u, u)$ (using a picture we can see that this is the correct orientation of N). $\nabla \times v=\left(0,0,3 u^{2}\right)$, $\int_{\mathcal{C}}\langle v, \hat{T}\rangle=\int_{\mathcal{S}}\langle\nabla \times v, \hat{N}\rangle=3 \pi / 2$.
(b) The relations $\left\|\hat{e}_{r}\right\|=\left\|\hat{e}_{\phi}\right\|=\left\|\hat{e}_{z}\right\|=1$ as well as $\hat{e}_{r} \cdot \hat{e}_{\phi}=\hat{e}_{r} \cdot \hat{e}_{z}=\hat{e}_{\phi} \cdot \hat{e}_{z}=0$ and $\hat{e}_{r} \times \hat{e}_{\phi}=\hat{e}_{z}$ are easily checked by direct calculation.
(c) $\nabla T(r, \phi, \theta)=\frac{\partial T}{\partial r} \hat{e}_{r}$ and $\Delta T(r, \theta, \phi)=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T}{\partial r}\right)$.

B2 (a) Solution: all $z \in \mathbb{C}$ with $\left|z-\left(\frac{1}{3}+\frac{4}{3} i\right)\right|>\frac{\sqrt{8}}{3}$. (b) $z^{7}=8-8 i$.
B3 (a) Convergence inside the circle of radius $1 / 6$ centered at $-i / 3$ and divergence outside this circle (using the ratio test). Checking the Cauchy criterion gives convergence on the boundary. (b) $\left|\frac{1}{z+n^{2}}\right| \leq \frac{1}{\left|\operatorname{Re}\left(z+n^{2}\right)\right|} \leq \frac{1}{n^{2}}$ when z has positive real part. So the series converges absolutley for all such z and, as the uniform limit of continuous functions, it is continuous. (c) (i) $z^{2}=(z-i+i)^{2}=-1(z-i)^{0}+2 i(z-i)^{1}+(z-i)^{2}, R=\infty$. (ii) Use $\frac{1}{z-1}=\frac{1}{i-1+z-i}=\frac{1}{i-1}\left(1+\frac{z-i}{i-1}\right)^{-1}$ and then the geometric series expansion of $(1+w)^{-1}$. $R=\sqrt{2}$. (iii) gometric series, $R=1$.

B4 (a) Either write cos in terms of e^{z} and use the multiplicative property of e^{z}, or argue as in question A6 (b). (c) not continuous (provide a counter example).

C2 The components $\frac{m_{i}}{r}$ of u satisify $\Delta\left(m_{i} / r\right)=0$. Also $\nabla \cdot \frac{m}{r}=\frac{1}{r} m \cdot x$. The identity then shows the result.

C3 (c) $\left|f_{B}(x)\right| \leq \frac{C}{|x|-R} \operatorname{Vol}(B(0, R)) \rightarrow 0$ as $|x| \rightarrow \infty$. (d) $A=\lim _{|x| \rightarrow \infty}-C \int_{B(0, R)} \frac{|x|}{|x-y|} \mathrm{d} V(y)$.
Now take the limit inside the integral.
C 4 (a) Recall that $\overline{z w}=\bar{z} \bar{w}$ so that $\overline{z^{n}}=\bar{z}^{n}$. Since the coefficients are all real we have $0=\overline{p(z)}=p(\bar{z})$. (c) Multiply out $\left(z-z_{j}\right)\left(z-\bar{z}_{j}\right)$ when $z_{j}=a_{j}+i b_{j}$.

