MA231 Vector Analysis Example Sheet 3: Hints and partial solutions

2009, term 1 Stefan Adams

- A1 $\nabla \cdot v = 4r \sin \phi \frac{1}{r^2} \tan \phi$ and $\nabla \times v = r \cos \phi \hat{\mathbf{e}}_{\theta}$.
- A2 (a) $i: r = 1, \theta = \pi/2; -i: r = 1, \theta = -\pi/2; 1 + i: r = \sqrt{2}, \theta = \pi/4; -\frac{1}{2} + \frac{\sqrt{3}}{2}i: r = 1, \theta = 2\pi/3.$ (b) $\frac{3}{20} \frac{1}{20}i; -i; -\frac{1}{2} + \frac{\sqrt{3}}{2}i.$ (c) 1 + 3i and -1 3i. $1 + (3 \sqrt{8})i$ and $-1 (3 + \sqrt{8})i.$ (d) $\cos \theta + i \sin \theta$ for $\theta = \pi/4, 3\pi/4, 5\pi/4, 7\pi/4.$
- A3 (a) $\bar{z} = x iy$, $|\bar{z}| = |z|$ and $\arg(\bar{z}) = -\arg(z)$. (b) split into real and imaginary parts.
- A4 Since $|z| = z\bar{z}$ the set is the unit circle and we can use $\phi(t) = e^{2\pi i t}$.
- A5 (a) (i) $R = \infty$, (ii) R = e (recall $(1 + \frac{1}{n})^n \to e$). (b) The series converges on the set $\{z : |z 4i| < 1/5\}$ and nowhere else. (c) $|\frac{i^n}{i+n^2}| = |\frac{1}{i+n^2}| \le \frac{1}{n^2}$ and the first series converges absolutely. The real part of $\frac{1}{i+n}$ is $\frac{n}{n^2+1}$ so the real part of the second series diverges by comparison with $\sum \frac{1}{2n}$.
- A6 (a) Use the definition of $\exp(z)$ and $\sin(z)$ as power series. (b) Use part (a) or argue (after week 9) that the identity is true for real z and since both sides are holomorphic functions on C the identity must remain true on the whole of C (by Taylor's theorem for holomorphic functions and the uniqueness theorem for power series). (c) Use the representations for sin, cos, sinh, cosh in terms of the exponential function.
- B1 (a) We can choose any surface S with boundary C, simplest is $r(u, v) = (u \cos v, u \sin v, 1 u \cos v u \sin v)$ for $u \in [0, 1], v \in [0, 2\pi]$. Surface normal: $N = \frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v} = (u, u, u)$ (using a picture we can see that this is the correct orientation of N). $\nabla \times v = (0, 0, 3u^2), \int_{\mathcal{C}} \langle v, \hat{T} \rangle = \int_{S} \langle \nabla \times v, \hat{N} \rangle = 3\pi/2.$

(b) The relations $\|\hat{e}_r\| = \|\hat{e}_{\phi}\| = \|\hat{e}_z\| = 1$ as well as $\hat{e}_r \cdot \hat{e}_{\phi} = \hat{e}_r \cdot \hat{e}_z = \hat{e}_{\phi} \cdot \hat{e}_z = 0$ and $\hat{e}_r \times \hat{e}_{\phi} = \hat{e}_z$ are easily checked by direct calculation.

(c)
$$\nabla T(r,\phi,\theta) = \frac{\partial T}{\partial r}\hat{e}_r$$
 and $\Delta T(r,\theta,\phi) = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial T}{\partial r}\right)$.

- B2 (a) Solution: all $z \in \mathbb{C}$ with $|z (\frac{1}{3} + \frac{4}{3}i)| > \frac{\sqrt{8}}{3}$. (b) $z^7 = 8 8i$.
- B3 (a) Convergence inside the circle of radius 1/6 centered at -i/3 and divergence outside this circle (using the ratio test). Checking the Cauchy criterion gives convergence on the boundary. (b) $|\frac{1}{z+n^2}| \leq \frac{1}{|Re(z+n^2)|} \leq \frac{1}{n^2}$ when z has positive real part. So the series converges absolutely for all such z and, as the uniform limit of continuous functions, it is continuous. (c) (i) $z^2 = (z-i+i)^2 = -1(z-i)^0 + 2i(z-i)^1 + (z-i)^2$, $R = \infty$. (ii) Use $\frac{1}{z-1} = \frac{1}{i-1+z-i} = \frac{1}{i-1}(1+\frac{z-i}{i-1})^{-1}$ and then the geometric series expansion of $(1+w)^{-1}$. $R = \sqrt{2}$. (iii) gometric series, R = 1.
- B4 (a) Either write \cos in terms of e^z and use the multiplicative property of e^z , or argue as in question A6 (b). (c) not continuous (provide a counter example).
- C2 The components $\frac{m_i}{r}$ of u satisfy $\Delta(m_i/r) = 0$. Also $\nabla \cdot \frac{m}{r} = \frac{1}{r}m \cdot x$. The identity then shows the result.
- C3 (c) $|f_B(x)| \leq \frac{C}{|x|-R} \operatorname{Vol}(B(0,R)) \to 0$ as $|x| \to \infty$. (d) $A = \lim_{|x|\to\infty} -C \int_{B(0,R)} \frac{|x|}{|x-y|} dV(y)$. Now take the limit inside the integral.
- C4 (a) Recall that $\overline{zw} = \overline{z}\overline{w}$ so that $\overline{z^n} = \overline{z}^n$. Since the coefficients are all real we have $0 = \overline{p(z)} = p(\overline{z})$. (c) Multiply out $(z z_j)(z \overline{z}_j)$ when $z_j = a_j + ib_j$.