
MA231 Vector Analysis
Example Sheet 4: Hints and partial solutions

2009, term 1
Stefan Adams

A1 (b) If f = u(x, y) + iv(x, y) then u = so that vy = ux = 0 and vx = −uy = 0. Hence v is a
constant. (c) uxx = (vy)x = vxy and uyy = (−vx)y = −vxy.

A2 (a) 2i/3. (b) 1.

A3 (a) (i) 2πie. (ii) π. (iii) 0. (b) 2πie
(n−1)! .

A4 (i) 0, (ii) π, (iii) −π, (iv) 0, (v) π.

A5 Integrate around the semicircle γ = γ1 ∪ γ2 where γ1(t) = Reit for t ∈ [0, π] and γ2(t) = t
for t ∈ [−R,R]. (a) |z2 − 2z + 2| ≥ |z2| − |2z| − 2 = R2 − 2R − 2 for z ∈ γ1 by the
triangle inequality. Use this to show |f(z)| ≤ 1/(R2 − 2R− 2) for z ∈ γ1 and hence, using
the estimation lemma, that

∫
γ1
f dz → 0 as R → ∞.

∫
γ2
f(z) dz →

∫∞
−∞

cos(πx)
x2−2x+2 dx +

i
∫∞
−∞

sin(πx)
x2−2x+2 dx. z2−2z+2 = (z− (1+ i))(z− (i− i)) so that f(z) is holomorphic on and

inside γ except at z = 1+ i. Hence by Cauchy’s integral formula
∫
γ

= 2πi eπiz
z−(1−i)

∥∥∥
z=1+i

=

−πe−π. Conclude that
∫∞
−∞

cos(πx)
x2−2x+2 dx = −πe−π and

∫∞
−∞

sin(πx)
x2−2x+2 dx = 0.

B1 (a) (a) f only differentiable at 0 and g only at the points x+iy where 3xy = −1. Neither are
holomorphic anywhere. h is differentiable at the origin and nowhere else. (b) applying
the CR equations to f(x+ iy) = u(y) + iv(x) gives v′(x) = −u′(y) for all x, y ∈ R. Thus u′

and v′ are constant and thus f is of the form f(z) = ay+b+i(cx+d) for some a, b, c, d ∈ R.
Using the condition from the CR equations again gives the claim.

B2 (a) parametrise the three sides of the triangle separately. From 1 to i:
∫
γ1
f = i, from i

to −1:
∫
γ2
f = i, from −1 to 1:

∫
γ3
f = 0. Thus the result is 2i. This can be also derived

from example 15.6 in the lecture where it was shown that
∫
γ
z dz = 2i(area enclosed).

(b) Imitate the proof for
∫
∂B(0,ε)

f(z)/z = 2πif(0) from the lecture. (c) see part (a) and g
is diff. on the circline around the origin with radius 1. (d) see lecture notes.

B3 (a) the integrals are zero . . . (i) by the Cauchy integral formula, (ii) by Cauchy’s theorem,
and (iii) by the fundamental theorem of calculus (−(z − 2)−2/2 is a primitive). (b) (i)
2πi(i3) = −2π + i6π by Cauchy’s integral formula. (ii) Use Cauchy’s representation for
the coefficient c2 = f (2)(1)/2 in the power series of f(z) = ez

2
about z = 1. (iii) poles are

at i and −i, so we can split the integral around the circle line into two integral around
the upper and lower half-circle which each only contain one pole. Result: 2πi(i cos i) +
2πi(−i cos(i)) = 0.

B4 Imitate the calculation from the lecture. Result:
∫∞
−∞ sin2(x)/x2 dx = π.

C1 v(x, y) =
√
|xy| vanishes along the axes so has zero partial derivatives at the origin. The

Cauchy-Riemann equations do hold at the origin. However limr→0
f(reiθ)
reiθ

= i
√
| cos θ sin θ

cos θ+i sin θ

which varies as θ varies so that limz→0
f(z)−f(0)

z does not exist.

C2 If f = u(x, y) + iv(x, y) then u2 + v2 = 0. Differentiate to find uux + vvx = 0 and
uuy + vvy = 0. Combine these with the Cauchy-Riemann equations to show that u and v
are constants.

C2 f ′(z) is also holomorphic on C and so from question A4 we know that f ′(z) is a linear
function and hence that f is a quadratic, namely f(z) = f(0) + zf ′(0) + z2(f ′′(0)/2). The
hypothesis implies that f ′(0) = 0. Also by applying Cauchy’s integral formula to f ′(z) we
have that |f ′′(0)| ≤

∥∥∥ 1
2πi

∫
∂B(0,1)

f ′(z)
z2 dz

∥∥∥ ≤ 1.



C3 (a) Use the quotient rule for differentiating. (b) By the uniqueness theorem (1 + z)k must
have the same power series inside |z| < 1 as the real power series known via the binomial
theorem on R.

C4 (a) |ck| =
∥∥∥ 1

2πi

∫
∂B(0,R)

f(z)
zk+1 dz

∥∥∥ ≤ 1
2π

M
Rk+1 2πR = M

Rk
. Apply this with M = 1 + R and

let R → ∞ to see that ck = 0 whenever k > 1. (b) Apply the bound from part (a) with
M = A+BRL and let R→∞ to see that ck = 0 whenever k > L.

C5 Zeros at ±i, ±2i. The usual semicircle contour therefore has 2 singularities inside it.
Bound the integral around the top of the semicircle using z2

(z2+1)(z2+4) ≤
R2

(R2−1)(R2−4)

when |z| = R is larger than 2. The final integral has value π/3.

C6
∫∞
0

cos2 tdt =
√
π/8. The hard part is to bound

∫
γ2
f(z) dz. By the estimation lemma

this is bounded by
∫ R
0

e−R
2 cos(2t)R dt. Now use the fact that cos(2t) ≥ 1 − (4t/π) for

t ∈ [0, π/4] (draw the two functions on this interval). This implies that
∫
γ2
f(z) dz ≤

R
∫ R
0

e−R
2
e−4R2t/π dt which can be exactly calculated.


