MA231 Vector Analysis Example Sheet 4: Hints and partial solutions

2009, term 1 Stefan Adams

- A1 (b) If f = u(x, y) + iv(x, y) then u = so that $v_y = u_x = 0$ and $v_x = -u_y = 0$. Hence v is a constant. (c) $u_{xx} = (v_y)_x = v_{xy}$ and $u_{yy} = (-v_x)_y = -v_{xy}$.
- A2 (a) 2i/3. (b) 1.
- A3 (a) (i) $2\pi i e.$ (ii) π . (iii) 0. (b) $\frac{2\pi i e}{(n-1)!}$.
- A4 (i) 0, (ii) π , (iii) $-\pi$, (iv) 0, (v) π .
- A5 Integrate around the semicircle $\gamma = \gamma_1 \cup \gamma_2$ where $\gamma_1(t) = Re^{it}$ for $t \in [0, \pi]$ and $\gamma_2(t) = t$ for $t \in [-R, R]$. (a) $|z^2 - 2z + 2| \ge |z^2| - |2z| - 2 = R^2 - 2R - 2$ for $z \in \gamma_1$ by the triangle inequality. Use this to show $|f(z)| \le 1/(R^2 - 2R - 2)$ for $z \in \gamma_1$ and hence, using the estimation lemma, that $\int_{\gamma_1} f \, dz \to 0$ as $R \to \infty$. $\int_{\gamma_2} f(z) \, dz \to \int_{-\infty}^{\infty} \frac{\cos(\pi x)}{x^2 - 2x + 2} \, dx + i \int_{-\infty}^{\infty} \frac{\sin(\pi x)}{x^2 - 2x + 2} \, dx$. $z^2 - 2z + 2 = (z - (1 + i))(z - (i - i))$ so that f(z) is holomorphic on and inside γ except at z = 1 + i. Hence by Cauchy's integral formula $\int_{\gamma} = 2\pi i \frac{e^{\pi}iz}{z - (1 - i)} \Big|_{z = 1 + i} = -\pi e^{-\pi}$. Conclude that $\int_{-\infty}^{\infty} \frac{\cos(\pi x)}{x^2 - 2x + 2} \, dx = -\pi e^{-\pi}$ and $\int_{-\infty}^{\infty} \frac{\sin(\pi x)}{x^2 - 2x + 2} \, dx = 0$.
- B1 (a) (a) f only differentiable at 0 and g only at the points x+iy where 3xy = -1. Neither are holomorphic anywhere. h is differentiable at the origin and nowhere else. (b) applying the CR equations to f(x+iy) = u(y) + iv(x) gives v'(x) = -u'(y) for all $x, y \in \mathbb{R}$. Thus u' and v' are constant and thus f is of the form f(z) = ay + b + i(cx+d) for some $a, b, c, d \in \mathbb{R}$. Using the condition from the CR equations again gives the claim.
- B2 (a) parametrise the three sides of the triangle separately. From 1 to $i: \int_{\gamma_1} f = i$, from i to $-1: \int_{\gamma_2} f = i$, from -1 to $1: \int_{\gamma_3} f = 0$. Thus the result is 2i. This can be also derived from example 15.6 in the lecture where it was shown that $\int_{\gamma} \overline{z} \, dz = 2i$ (area enclosed). (b) Imitate the proof for $\int_{\partial B(0,\epsilon)} f(z)/z = 2\pi i f(0)$ from the lecture. (c) see part (a) and g is diff. on the circline around the origin with radius 1. (d) see lecture notes.
- B3 (a) the integrals are zero ... (i) by the Cauchy integral formula, (ii) by Cauchy's theorem, and (iii) by the fundamental theorem of calculus $(-(z-2)^{-2}/2)$ is a primitive). (b) (i) $2\pi i(i^3) = -2\pi + i6\pi$ by Cauchy's integral formula. (ii) Use Cauchy's representation for the coefficient $c_2 = f^{(2)}(1)/2$ in the power series of $f(z) = e^{z^2}$ about z = 1. (iii) poles are at *i* and -i, so we can split the integral around the circle line into two integral around the upper and lower half-circle which each only contain one pole. Result: $2\pi i(i\cos i) + 2\pi i(-i\cos(i)) = 0$.
- B4 Imitate the calculation from the lecture. Result: $\int_{-\infty}^{\infty} \sin^2(x)/x^2 dx = \pi$.
- C1 $v(x,y) = \sqrt{|xy|}$ vanishes along the axes so has zero partial derivatives at the origin. The Cauchy-Riemann equations do hold at the origin. However $\lim_{r\to 0} \frac{f(re^{i\theta})}{re^{i\theta}} = \frac{i\sqrt{|\cos\theta\sin\theta|}}{\cos\theta+i\sin\theta}$ which varies as θ varies so that $\lim_{z\to 0} \frac{f(z)-f(0)}{z}$ does not exist.
- C2 If f = u(x, y) + iv(x, y) then $u^2 + v^2 = 0$. Differentiate to find $uu_x + vv_x = 0$ and $uu_y + vv_y = 0$. Combine these with the Cauchy-Riemann equations to show that u and v are constants.
- C2 f'(z) is also holomorphic on C and so from question A4 we know that f'(z) is a linear function and hence that f is a quadratic, namely $f(z) = f(0) + zf'(0) + z^2(f''(0)/2)$. The hypothesis implies that f'(0) = 0. Also by applying Cauchy's integral formula to f'(z) we have that $|f''(0)| \leq \left\| \frac{1}{2\pi i} \int_{\partial B(0,1)} \frac{f'(z)}{z^2} dz \right\| \leq 1$.

- C3 (a) Use the quotient rule for differentiating. (b) By the uniqueness theorem $(1 + z)^k$ must have the same power series inside |z| < 1 as the real power series known via the binomial theorem on \mathbb{R} .
- C4 (a) $|c_k| = \left\| \frac{1}{2\pi i} \int_{\partial B(0,R)} \frac{f(z)}{z^{k+1}} dz \right\| \le \frac{1}{2\pi} \frac{M}{R^{k+1}} 2\pi R = \frac{M}{R^k}$. Apply this with M = 1 + R and let $R \to \infty$ to see that $c_k = 0$ whenever k > 1. (b) Apply the bound from part (a) with $M = A + BR^L$ and let $R \to \infty$ to see that $c_k = 0$ whenever k > L.
- C5 Zeros at $\pm i$, $\pm 2i$. The usual semicircle contour therefore has 2 singularities inside it. Bound the integral around the top of the semicircle using $\frac{z^2}{(z^2+1)(z^2+4)} \leq \frac{R^2}{(R^2-1)(R^2-4)}$ when |z| = R is larger than 2. The final integral has value $\pi/3$.
- C6 $\int_0^\infty \cos^2 t \, dt = \sqrt{\pi/8}$. The hard part is to bound $\int_{\gamma_2} f(z) \, dz$. By the estimation lemma this is bounded by $\int_0^R e^{-R^2 \cos(2t)} R \, dt$. Now use the fact that $\cos(2t) \ge 1 (4t/\pi)$ for $t \in [0, \pi/4]$ (draw the two functions on this interval). This implies that $\int_{\gamma_2} f(z) \, dz \le R \int_0^R e^{-R^2} e^{-4R^2 t/\pi} \, dt$ which can be exactly calculated.