MA231 Vector Analysis

2009, term 1
Example Sheet 4: Hints and partial solutions

A1 (b) If $f=u(x, y)+i v(x, y)$ then $u=$ so that $v_{y}=u_{x}=0$ and $v_{x}=-u_{y}=0$. Hence v is a constant. (c) $u_{x x}=\left(v_{y}\right)_{x}=v_{x y}$ and $u_{y y}=\left(-v_{x}\right)_{y}=-v_{x y}$.

A2 (a) $2 i / 3$. (b) 1 .
A3 (a) (i) $2 \pi i e$. (ii) π. (iii) 0 . (b) $\frac{2 \pi i e}{(n-1)!}$.
A4 (i) 0 , (ii) π, (iii) $-\pi$, (iv) 0 , (v) π.
A5 Integrate around the semicircle $\gamma=\gamma_{1} \cup \gamma_{2}$ where $\gamma_{1}(t)=R \mathrm{e}^{i t}$ for $t \in[0, \pi]$ and $\gamma_{2}(t)=t$ for $t \in[-R, R]$. (a) $\left|z^{2}-2 z+2\right| \geq\left|z^{2}\right|-|2 z|-2=R^{2}-2 R-2$ for $z \in \gamma_{1}$ by the triangle inequality. Use this to show $|f(z)| \leq 1 /\left(R^{2}-2 R-2\right)$ for $z \in \gamma_{1}$ and hence, using the estimation lemma, that $\int_{\gamma_{1}} f \mathrm{~d} z \rightarrow 0$ as $R \rightarrow \infty . \int_{\gamma_{2}} f(z) \mathrm{d} z \rightarrow \int_{-\infty}^{\infty} \frac{\cos (\pi x)}{x^{2}-2 x+2} \mathrm{~d} x+$ $i \int_{-\infty}^{\infty} \frac{\sin (\pi x)}{x^{2}-2 x+2} \mathrm{~d} x . z^{2}-2 z+2=(z-(1+i))(z-(i-i))$ so that $f(z)$ is holomorphic on and inside γ except at $z=1+i$. Hence by Cauchy's integral formula $\int_{\gamma}=2 \pi i \frac{\mathrm{e}^{\pi} i z}{z-(1-i)} \|_{z=1+i}=$ $-\pi \mathrm{e}^{-\pi}$. Conclude that $\int_{-\infty}^{\infty} \frac{\cos (\pi x)}{x^{2}-2 x+2} \mathrm{~d} x=-\pi \mathrm{e}^{-\pi}$ and $\int_{-\infty}^{\infty} \frac{\sin (\pi x)}{x^{2}-2 x+2} \mathrm{~d} x=0$.

B1 (a) (a) f only differentiable at 0 and g only at the points $x+i y$ where $3 x y=-1$. Neither are holomorphic anywhere. h is differentiable at the origin and nowhere else. (b) applying the CR equations to $f(x+i y)=u(y)+i v(x)$ gives $v^{\prime}(x)=-u^{\prime}(y)$ for all $x, y \in \mathbb{R}$. Thus u^{\prime} and v^{\prime} are constant and thus f is of the form $f(z)=a y+b+i(c x+d)$ for some $a, b, c, d \in \mathbb{R}$. Using the condition from the CR equations again gives the claim.

B2 (a) parametrise the three sides of the triangle separately. From 1 to i : $\int_{\gamma_{1}} f=i$, from i to -1 : $\int_{\gamma_{2}} f=i$, from -1 to 1 : $\int_{\gamma_{3}} f=0$. Thus the result is $2 i$. This can be also derived from example 15.6 in the lecture where it was shown that $\int_{\gamma} \bar{z} \mathrm{~d} z=2 i$ (area enclosed). (b) Imitate the proof for $\int_{\partial B(0, \epsilon)} f(z) / z=2 \pi i f(0)$ from the lecture. (c) see part (a) and g is diff. on the circline around the origin with radius 1 . (d) see lecture notes.

B3 (a) the integrals are zero ... (i) by the Cauchy integral formula, (ii) by Cauchy's theorem, and (iii) by the fundamental theorem of calculus $\left(-(z-2)^{-2} / 2\right.$ is a primitive). (b) (i) $2 \pi i\left(i^{3}\right)=-2 \pi+i 6 \pi$ by Cauchy's integral formula. (ii) Use Cauchy's representation for the coefficient $c_{2}=f^{(2)}(1) / 2$ in the power series of $f(z)=\mathrm{e}^{z^{2}}$ about $z=1$. (iii) poles are at i and $-i$, so we can split the integral around the circle line into two integral around the upper and lower half-circle which each only contain one pole. Result: $2 \pi i(i \cos i)+$ $2 \pi i(-i \cos (i))=0$.

B4 Imitate the calculation from the lecture. Result: $\int_{-\infty}^{\infty} \sin ^{2}(x) / x^{2} \mathrm{~d} x=\pi$.
C1 $v(x, y)=\sqrt{|x y|}$ vanishes along the axes so has zero partial derivatives at the origin. The Cauchy-Riemann equations do hold at the origin. However $\lim _{r \rightarrow 0} \frac{f\left(r e^{i \theta}\right)}{r \mathrm{e}^{i \theta}}=\frac{i \sqrt{\mid \cos \theta \sin \theta}}{\cos \theta+i \sin \theta}$ which varies as θ varies so that $\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z}$ does not exist.
C2 If $f=u(x, y)+i v(x, y)$ then $u^{2}+v^{2}=0$. Differentiate to find $u u_{x}+v v_{x}=0$ and $u u_{y}+v v_{y}=0$. Combine these with the Cauchy-Riemann equations to show that u and v are constants.

C2 $f^{\prime}(z)$ is also holomorphic on C and so from question A4 we know that $f^{\prime}(z)$ is a linear function and hence that f is a quadratic, namely $f(z)=f(0)+z f^{\prime}(0)+z^{2}\left(f^{\prime \prime}(0) / 2\right)$. The hypothesis implies that $f^{\prime}(0)=0$. Also by applying Cauchy's integral formula to $f^{\prime}(z)$ we have that $\left|f^{\prime \prime}(0)\right| \leq\left\|\frac{1}{2 \pi i} \int_{\partial B(0,1)} \frac{f^{\prime}(z)}{z^{2}} d z\right\| \leq 1$.

C3 (a) Use the quotient rule for differentiating. (b) By the uniqueness theorem $(1+z)^{k}$ must have the same power series inside $|z|<1$ as the real power series known via the binomial theorem on \mathbb{R}.
C 4 (a) $\left|c_{k}\right|=\left\|\frac{1}{2 \pi i} \int_{\partial B(0, R)} \frac{f(z)}{z^{k+1}} \mathrm{~d} z\right\| \leq \frac{1}{2 \pi} \frac{M}{R^{k+1}} 2 \pi R=\frac{M}{R^{k}}$. Apply this with $M=1+R$ and let $R \rightarrow \infty$ to see that $c_{k}=0$ whenever $k>1$. (b) Apply the bound from part (a) with $M=A+B R^{L}$ and let $R \rightarrow \infty$ to see that $c_{k}=0$ whenever $k>L$.

C5 Zeros at $\pm i, \pm 2 i$. The usual semicircle contour therefore has 2 singularities inside it. Bound the integral around the top of the semicircle using $\frac{z^{2}}{\left(z^{2}+1\right)\left(z^{2}+4\right)} \leq \frac{R^{2}}{\left(R^{2}-1\right)\left(R^{2}-4\right)}$ when $|z|=R$ is larger than 2 . The final integral has value $\pi / 3$.

C6 $\int_{0}^{\infty} \cos ^{2} t \mathrm{~d} t=\sqrt{\pi / 8}$. The hard part is to bound $\int_{\gamma_{2}} f(z) \mathrm{d} z$. By the estimation lemma this is bounded by $\int_{0}^{R} \mathrm{e}^{-R^{2} \cos (2 t)} R \mathrm{~d} t$. Now use the fact that $\cos (2 t) \geq 1-(4 t / \pi)$ for $t \in[0, \pi / 4]$ (draw the two functions on this interval). This implies that $\int_{\gamma_{2}} f(z) \mathrm{d} z \leq$ $R \int_{0}^{R} \mathrm{e}^{-R^{2}} \mathrm{e}^{-4 R^{2} t / \pi} \mathrm{d} t$ which can be exactly calculated.

