MA231 Vector Analysis

Students should hand in solutions to questions B1, B2, B3 and B4 by 3pm Monday of week 4 to the maths pigeonloft. Maths students hand in solutions to their supervisors and maths/physics students hand solutions into the slots marked Vector Analysis Maths + Physics.

Corrected version of questions B4 (c):

B4 Line integrals

(a) Evaluate the line integral

$$
\int_{\mathcal{C}}\left(x+y^{2}\right)
$$

where \mathcal{C} is the parabola $y=x^{2}$ in the plane $z=0$ connecting the points $(0,0,0)$ and $(2,4,0)$.
(b) Calculate the tangent line integral of the vector field

$$
v(x, y, z)=((x-1)(z-3), x y z, x+z)
$$

along the straight line from $(1,1,1)$ to $(1,3,9)$.
(c) Consider the half circle $\mathcal{C}=\left\{y^{2}+z^{2}=1, z \geq 0, x=0\right\} \subseteq \mathbb{R}^{3}$ and the vector field $f(x, y, z)=(0, y, 0)$. Use the fundamental theorem of calculus for gradient vector fields to calculate the tangent line integral of f along \mathcal{C} from $(0,-1,0)$ to $(0,1,0)$.

