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A1 (a) 4x (b) y(1 + x2y2z2)−1/2 (c) xyez.

A2 (a) N̂ = x
R on the surface S so that v·N̂ = ‖x‖2/R = R and

∫
S v·N̂ dS = R

∫
S dS = R

(Surface area of S) = 4πR3. (b) Here v·N̂ = 0 so the flux is zero. (c) Here v·N̂ =
1
R (−x2 + y2 + z2). But by symmetry

∫
S x

2 dS =
∫
S y

2 dS =
∫
S z

2 dS. So
∫
S v·N̂dS =

1
R

∫
S z

2 dS = 1
3R

∫
S x

2 + y2 + z2 dS = R
3

∫
S dS = 4πR3

3 . Note that in each case the flux was
calculated without ever having to start in on a parameterisation. Moral — look for symmetry
tricks. The divergences in the three cases are 3, 0, 1 and it is easy to confirm that each flux
integral agrees with the corresponding volume integral given by the divergence theorem.

A3 The divergence of ∇f is 12(x2 + y2 + z2). (a) 12 (b) 48πR5/5 (use polar coordinates).

A4 (a) (0, 0, 2) (b) (0, 0, 0) (c) (2x,−2y, 1).

A6 curl(v) = 1 so that

Area(Ω) =
∫

Ω

Curl(v) dA =
∫
∂Ω

v·T̂ ds =
∫ 2π

0

(0, α cos t) · (−α sin t, β cos t) dt = παβ.

A7 One possibility is to parametrise S by x(u, v) = (u, v, 2−u2−v2) for (u, v) ∈ Ω = {u2 +v2 ≤
2}. Then inward (non-unit) normal vector N̂(u, v) = (−2u,−2v,−1). By parameterising ∂S
by α(t) = (

√
2 cos t,

√
2 sin t, 0) for t ∈ [0, 2π] the tangent vector and normal vector are then

suitably oriented for Stokes’ theorem. Both sides of Stokes’ identity give the value 2π, for
example

∫
S ∇× v·N̂ dS =

∫
Ω

(2u + 2v + 1) dudv =
∫

Ω
dudv = Area of Ω, (using symmetry

to reduce the integrand from 2u+ 2v + 1 to 1).

B1 (a) A parametrisation is α(θ, z) = (r cos θ, r sin θ, z) with r = 4. Result is zero. Why?
Symmetry because of the given vector field (x-dependence and the symmetry of the surface,
flux in and out the volume cancel each other out). (b) Summing the single parts (as in the
lecture), result is 3

2 .

B2 (a) A simple calculation gives div f = 1, integrating this over the disc with radius R gives the
result πR2. (b) Divergence = 4. Flux = 4× Volume of the pyramid with base area 9 and
height 2 = 24.

B3 (a) Use the definitions of the cross product, of the curl and diligence. (b) Use the product rule
(c) Chain rule. (d) Use the function φ(r) = 1

4πr2

∫
∂B(a,r)

f and show that φ is constant. Why

gives this the proof of the statement? Answer: take the limit r ↓ 0.

B4 The expression for div(fv) follows from the product rule, the integration by parts formula can
be derived by applying Gauss’s theorem. Adding IBP for f, g and g, f gives Green’s identity.

C3 (a) Stokes theorem for the vector field v = (f, 0, 0) becomes∫
C
fT̂1 ds =

∫
S

(
∂f

∂z
N2 −

∂f

∂y
N3

)
dS.

Now repeat with v = (0, f, 0) and v = (0, 0, f). (b) Prove each co-ordinate of the identity
separately, each is a case of the divergence theorem.

C4 Since f1 and f2 vanish on ∂Ω, the boundary terms in Green’s identity vanish and we get
λ2

∫
Ω
f1f2 = −

∫
Ω
f1∆f2 = −

∫
Ω
f2∆f1 = λ1

∫
Ω
f1f2. Since λ1 6= λ2 this implies the result.

Marking scheme:

B 1: part (a).
B 2: part (b).
B 3: Part (c) and (d) with 3 points for part (d).
B 4: all parts.


