MA231 Vector Analysis

2010, term 1
Example Sheet 2: Hints and partial solutions

A1 (a) $4 x$ (b) $y\left(1+x^{2} y^{2} z^{2}\right)^{-1 / 2}$ (c) $x y \mathrm{e}^{z}$.
A2 (a) $\hat{N}=\frac{x}{R}$ on the surface \mathcal{S} so that $v \cdot \hat{N}=\|x\|^{2} / R=R$ and $\int_{\mathcal{S}} v \cdot \hat{N} \mathrm{~d} S=R \int_{\mathcal{S}} \mathrm{d} S=R$ (Surface area of \mathcal{S}) $=4 \pi R^{3}$. (b) Here $v \cdot \hat{N}=0$ so the flux is zero. (c) Here $v \cdot \hat{N}=$ $\frac{1}{R}\left(-x^{2}+y^{2}+z^{2}\right)$. But by symmetry $\int_{\mathcal{S}} x^{2} \mathrm{~d} S=\int_{\mathcal{S}} y^{2} \mathrm{~d} S=\int_{\mathcal{S}} z^{2} \mathrm{~d} S$. So $\int_{\mathcal{S}} v \cdot \hat{N} \mathrm{~d} S=$ $\frac{1}{R} \int_{\mathcal{S}} z^{2} \mathrm{~d} S=\frac{1}{3 R} \int_{\mathcal{S}} x^{2}+y^{2}+z^{2} \mathrm{~d} S=\frac{R}{3} \int_{\mathcal{S}} \mathrm{d} S=\frac{4 \pi R^{3}}{3}$. Note that in each case the flux was calculated without ever having to start in on a parameterisation. Moral - look for symmetry tricks. The divergences in the three cases are $3,0,1$ and it is easy to confirm that each flux integral agrees with the corresponding volume integral given by the divergence theorem.

A3 The divergence of ∇f is $12\left(x^{2}+y^{2}+z^{2}\right)$. (a) 12 (b) $48 \pi R^{5} / 5$ (use polar coordinates).
A4 (a) $(0,0,2)$
(b) $(0,0,0)$
(c) $(2 x,-2 y, 1)$.

A6 $\operatorname{curl}(v)=1$ so that

$$
\operatorname{Area}(\Omega)=\int_{\Omega} \operatorname{Curl}(v) \mathrm{d} A=\int_{\partial \Omega} v \cdot \hat{T} \mathrm{~d} s=\int_{0}^{2 \pi}(0, \alpha \cos t) \cdot(-\alpha \sin t, \beta \cos t) \mathrm{d} t=\pi \alpha \beta .
$$

A7 One possibility is to parametrise \mathcal{S} by $x(u, v)=\left(u, v, 2-u^{2}-v^{2}\right)$ for $(u, v) \in \Omega=\left\{u^{2}+v^{2} \leq\right.$ $2\}$. Then inward (non-unit) normal vector $\hat{N}(u, v)=(-2 u,-2 v,-1)$. By parameterising $\partial \mathcal{S}$ by $\alpha(t)=(\sqrt{2} \cos t, \sqrt{2} \sin t, 0)$ for $t \in[0,2 \pi]$ the tangent vector and normal vector are then suitably oriented for Stokes' theorem. Both sides of Stokes' identity give the value 2π, for example $\int_{\mathcal{S}} \nabla \times v \cdot \hat{N} \mathrm{~d} S=\int_{\Omega}(2 u+2 v+1) \mathrm{d} u \mathrm{~d} v=\int_{\Omega} \mathrm{d} u \mathrm{~d} v=$ Area of Ω, (using symmetry to reduce the integrand from $2 u+2 v+1$ to 1).

B1 (a) A parametrisation is $\alpha(\theta, z)=(r \cos \theta, r \sin \theta, z)$ with $r=4$. Result is zero. Why? Symmetry because of the given vector field (x-dependence and the symmetry of the surface, flux in and out the volume cancel each other out). (b) Summing the single parts (as in the lecture), result is $\frac{3}{2}$.
B2 (a) A simple calculation gives $\operatorname{div} f=1$, integrating this over the disc with radius R gives the result πR^{2}. (b) Divergence $=4$. Flux $=4 \times$ Volume of the pyramid with base area 9 and height $2=24$.

B3 (a) Use the definitions of the cross product, of the curl and diligence. (b) Use the product rule (c) Chain rule. (d) Use the function $\phi(r)=\frac{1}{4 \pi r^{2}} \int_{\partial \overline{B(a, r)}} f$ and show that ϕ is constant. Why gives this the proof of the statement? Answer: take the limit $r \downarrow 0$.

B4 The expression for $\operatorname{div}(f v)$ follows from the product rule, the integration by parts formula can be derived by applying Gauss's theorem. Adding IBP for f, g and g, f gives Green's identity.

C3 (a) Stokes theorem for the vector field $\underline{v}=(f, 0,0)$ becomes

$$
\int_{\mathcal{C}} f \hat{T}_{1} \mathrm{~d} s=\int_{\mathcal{S}}\left(\frac{\partial f}{\partial z} N_{2}-\frac{\partial f}{\partial y} N_{3}\right) \mathrm{d} S .
$$

Now repeat with $\underline{v}=(0, f, 0)$ and $\underline{v}=(0,0, f)$. (b) Prove each co-ordinate of the identity separately, each is a case of the divergence theorem.

C4 Since f_{1} and f_{2} vanish on $\partial \Omega$, the boundary terms in Green's identity vanish and we get $\lambda_{2} \int_{\Omega} f_{1} f_{2}=-\int_{\Omega} f_{1} \Delta f_{2}=-\int_{\Omega} f_{2} \Delta f_{1}=\lambda_{1} \int_{\Omega} f_{1} f_{2}$. Since $\lambda_{1} \neq \lambda_{2}$ this implies the result.

Marking scheme:

B 1: part (a).
B 2: part (b).
B 3: Part (c) and (d) with 3 points for part (d).
B 4: all parts.

