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A1 ∇ · v = 4r sinφ− 1
r2 tanφ and ∇× v = r cosφêθ.

A2 (a) i : r = 1, θ = π/2; −i : r = 1, θ = −π/2; 1 + i : r =
√

2, θ = π/4; − 1
2 +

√
3

2 i : r = 1, θ =
2π/3. (b) 3

20−
1
20 i; −i; −

1
2 +

√
3

2 i. (c) 1+3i and −1−3i. 1+(3−
√

8)i and −1−(3+
√

8)i.
(d) cos θ + i sin θ for θ = π/4, 3π/4, 5π/4, 7π/4.

A3 (a) z̄ = x− iy, |z̄| = |z| and arg(z̄) = −arg(z). (b) split into real and imaginary parts.

A4 Since |z| = zz̄ the set is the unit circle and we can use φ(t) = e2πit.

A5 (a) (i) R = ∞, (ii) R = e (recall (1 + 1
n )n → e). (b) The series converges on the set

{z : |z − 4i| < 1/5} and nowhere else. (c) | i
n

i+n2 | = | 1
i+n2 | ≤ 1

n2 and the first series converges

absolutely. The real part of 1
i+n is n

n2+1 so the real part of the second series diverges by

comparison with
∑

1
2n .

A6 (a) Use the definition of exp(z) and sin(z) as power series. (b) Use part (a) or argue (after
week 9) that the identity is true for real z and since both sides are holomorphic functions
on C the identity must remain true on the whole of C (by Taylor’s theorem for holomor-
phic functions and the uniqueness theorem for power series). (c) Use the representations for
sin, cos, sinh, cosh in terms of the exponential function.

B1 (a) We can choose any surface S with boundary C, simplest is r(u, v) = (u cos v, u sin v, 1 −
u cos v − u sin v) for u ∈ [0, 1], v ∈ [0, 2π]. Surface normal: N = ∂r

∂u ×
∂r
∂v = (u, u, u)

(using a picture we can see that this is the correct orientation of N). ∇ × v = (0, 0, 3u2),∫
C〈v, T̂ 〉 =

∫
S〈∇ × v, N̂〉 = 3π/2.

(b) The relations ‖êr‖ = ‖êφ‖ = ‖êz‖ = 1 as well as êr · êφ = êr · êz = êφ · êz = 0 and
êr × êφ = êz are easily checked by direct calculation.

(c) ∇T (r, φ, θ) = ∂T
∂r êr and ∆T (r, θ, φ) = 1

r2
∂
∂r

(
r2 ∂T∂r

)
.

B2 (a) Solution: all z ∈ C with |z − ( 1
3 + 4

3 i)| >
√

8
3 . (b) z7 = 8− 8i.

B3 (a) Convergence inside the circle of radius 1/6 centered at −i/3 and divergence outside this
circle (using the ratio test). Checking the Cauchy criterion gives convergence on the boundary.
(b) | 1

z+n2 | ≤ 1
|Re(z+n2)| ≤

1
n2 when z has positive real part. So the series converges absolutley

for all such z and, as the uniform limit of continuous functions, it is continuous. (c) (i)
z2 = (z − i + i)2 = −1(z − i)0 + 2i(z − i)1 + (z − i)2, R = ∞. (ii) Use 1

z−1 = 1
i−1+z−i =

1
i−1 (1 + z−i

i−1 )−1 and then the geometric series expansion of (1 +w)−1. R =
√

2. (d) Write
a quadratic equation in ez and get z as the corresponding complex logarithm.

B4 (a) Use the rewriting of sin and cos via the exponential function. (b) Use properties of Möbius
transformations (see lecture). In particular you may use the following fact: If f maps the circle
|z − a| = r onto the circle |z − b| = ρ, then f maps the closed disk |z − a| ≤ r to either
|z − b| ≤ ρ or |z − b| ≥ ρ.

C2 The components mi

r of u satisify ∆(mi/r) = 0. Also ∇· mr = 1
rm ·x. The identity then shows

the result.

C3 (c) |fB(x)| ≤ C
|x|−RVol(B(0, R)) → 0 as |x| → ∞. (d) A = lim

|x|→∞
−C

∫
B(0,R)

|x|
|x−y| dV (y).

Now take the limit inside the integral.

C4 (a) Recall that zw = z̄w̄ so that zn = zn. Since the coefficients are all real we have 0 =
p(z) = p(z). (c) Multiply out (z − zj)(z − z̄j) when zj = aj + ibj .


