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A1 (b) If f = u(x, y) + iv(x, y) then u = so that vy = ux = 0 and vx = −uy = 0. Hence v is a
constant. (c) uxx = (vy)x = vxy and uyy = (−vx)y = −vxy.

A2 (a) 2i/3. (b) 1.

A3 (a) (i) 2πie. (ii) π. (iii) 0. (b) 2πie
(n−1)! .

A4 (i) 0, (ii) π, (iii) −π, (iv) 0, (v) π.

A5 Integrate around the semicircle γ = γ1 ∪ γ2 where γ1(t) = Reit for t ∈ [0, π] and γ2(t) = t
for t ∈ [−R,R]. (a) |z2 − 2z + 2| ≥ |z2| − |2z| − 2 = R2 − 2R− 2 for z ∈ γ1 by the triangle
inequality. Use this to show |f(z)| ≤ 1/(R2−2R−2) for z ∈ γ1 and hence, using the estimation

lemma, that
∫
γ1
f dz → 0 as R → ∞.

∫
γ2
f(z) dz →

∫∞
−∞

cos(πx)
x2−2x+2 dx + i

∫∞
−∞

sin(πx)
x2−2x+2 dx.

z2 − 2z + 2 = (z − (1 + i))(z − (i− i)) so that f(z) is holomorphic on and inside γ except at

z = 1 + i. Hence by Cauchy’s integral formula
∫
γ

= 2πi eπiz
z−(1−i)

∥∥∥
z=1+i

= −πe−π. Conclude

that
∫∞
−∞

cos(πx)
x2−2x+2 dx = −πe−π and

∫∞
−∞

sin(πx)
x2−2x+2 dx = 0.

B1 (a) Applying the CR equations to f(x + iy) = u(y) + iv(x) gives v′(x) = −u′(y) for all
x, y ∈ R. Thus u′ and v′ are constant and thus f is of the form f(z) = ay+ b+ i(cx+ d) for
some a, b, c, d ∈ R. Using the condition from the CR equations again gives the claim. (b)
f is differentiable at the origin and nowhere else. g is differentiable on the circline around
the origin with radius 1. Both functions are nowhere holomorphic. (c) Only a = b = −1
guarantees that the function is complex differentiable on C. f−1,−1(z) = eiz.

B2 (a) parametrise the three sides of the triangle separately. From 1 to i:
∫
γ1
f = i, from i to

−1:
∫
γ2
f = i, from −1 to 1:

∫
γ3
f = 0. Thus the result is 2i. This can be also derived

from example 15.6 in the lecture where it was shown that
∫
γ
z dz = 2i(area enclosed). (b)

Imitate the proof for
∫
∂B(0,ε)

f(z)/z = 2πif(0) from the lecture. (c) (i) 2πi(i3) = −2π+ i6π
by Cauchy’s integral formula. (ii) Use Cauchy’s representation for the coefficient c2 = f (2)(1)/2
in the power series of f(z) = ez

2
about z = 1.

B3 (a) the integrals are zero . . . (i) by the Cauchy integral formula, (ii) by Cauchy’s theorem, and
(iii) by the fundamental theorem of calculus (−(z − 2)−2/2 is a primitive). (b) Integrals are
zero for b < π/2 respectively a < 1 . For b > π/2 resp. a > 1 one gets

∫
C

ez

(z−iπ/2)2 dz = −2π

and
∫
C
z3−4z2+sin z

(z−1)3 dz = −iπ(2 + sin 1).

B4 Imitate the calculation from the lecture. Result:
∫∞
−∞ sin2(x)/x2 dx = π.

C1 v(x, y) =
√
|xy| vanishes along the axes so has zero partial derivatives at the origin. The

Cauchy-Riemann equations do hold at the origin. However limr→0
f(reiθ)
reiθ

= i
√
| cos θ sin θ

cos θ+i sin θ

which varies as θ varies so that limz→0
f(z)−f(0)

z does not exist.

C2 If f = u(x, y)+iv(x, y) then u2+v2 = 0. Differentiate to find uux+vvx = 0 and uuy+vvy = 0.
Combine these with the Cauchy-Riemann equations to show that u and v are constants.

C2 f ′(z) is also holomorphic on C and so from question A4 we know that f ′(z) is a linear function
and hence that f is a quadratic, namely f(z) = f(0) + zf ′(0) + z2(f ′′(0)/2). The hypothesis
implies that f ′(0) = 0. Also by applying Cauchy’s integral formula to f ′(z) we have that

|f ′′(0)| ≤
∥∥∥ 1

2πi

∫
∂B(0,1)

f ′(z)
z2 dz

∥∥∥ ≤ 1.

C3 (a) Use the quotient rule for differentiating. (b) By the uniqueness theorem (1+z)k must have
the same power series inside |z| < 1 as the real power series known via the binomial theorem
on R.



C4 (a) |ck| =
∥∥∥ 1

2πi

∫
∂B(0,R)

f(z)
zk+1 dz

∥∥∥ ≤ 1
2π

M
Rk+1 2πR = M

Rk
. Apply this with M = 1 + R and

let R → ∞ to see that ck = 0 whenever k > 1. (b) Apply the bound from part (a) with
M = A+BRL and let R→∞ to see that ck = 0 whenever k > L.

C5 Zeros at ±i, ±2i. The usual semicircle contour therefore has 2 singularities inside it. Bound

the integral around the top of the semicircle using z2

(z2+1)(z2+4) ≤
R2

(R2−1)(R2−4) when |z| = R

is larger than 2. The final integral has value π/3.

C6
∫∞
0

cos2 tdt =
√
π/8. The hard part is to bound

∫
γ2
f(z) dz. By the estimation lemma

this is bounded by
∫ R
0

e−R
2 cos(2t)R dt. Now use the fact that cos(2t) ≥ 1 − (4t/π) for

t ∈ [0, π/4] (draw the two functions on this interval). This implies that
∫
γ2
f(z) dz ≤

R
∫ R
0

e−R
2
e−4R2t/π dt which can be exactly calculated.


