MA231 Vector Analysis 2010, term 1

Example Sheet 2

Stefan Adams

Hand in solutions to questions B1, B2, B3 and B4 by 3pm Monday of week 6.
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Calculating divergences

Calculate the divergence divv = V-v for the following vector fields v: R3 — R3 with:

(a) v(z,y,2) = (x2,o:y,9:z) (b) v(z,y,2) = (cos(xy), /1 + x2y222, zy sin(zy))
(¢) v(z,y,2) = Vf(r,y,z) where f: R =R, (z,y,2) — f(z,y,2) = vye*.

Examples of the divergence theorem

For each of the following vector fields v: R® — R3 calculate the flux integral fs v-N dS out
of the sphere S given by 22 +y? + 22 = R?. Calculate them first as surface integrals and then
confirm that your answer agrees with the volume integral given by the divergence theorem.

(a) v(z,y,2) = (z,9,2) (b) v(z,y,2) = (=y,2,0) (c) v(z,y,2) = (=¥, 2).

Using the divergence theorem

Let f: R® = R, (z,9,2) — f(x,y,2) = 2*+y* + 2% Use the divergence theorem to calculate
the outward flux of V f through the following surfaces:

(a) The boundary of the cube 0 < z,y,2 <1, (b) The sphere 2% + 3 + 22 = R2.

Calculating curls

For each of the following vector fields v: R? — R3 calculate the curl V x v:
1
() v(@,y,2) = (=y,2,1)  (b) v(z,y,2) = (2y +2,52° + 2929 + 7)

(c) v(z,y,2) = (v2,y2,0)
Identities

(a) For v: R?® — R3 show that V+(V x v) = 0.
(b) For f: R? - R and v: R® — R? show that V x (fv) = f Vx v+ Vf xv.

Stokes’s theorem in the plane

2

Let v: R? — R2 (x,%) — v(z,y) = (0,z). Calculate curl(v). Apply Stokes's theorem to v on
the region € bounded by the ellipse 2—2 + % = 1. Hence prove that the area of Q2 is ma0.

Stokes’s theorem in R?

Sketch the surface S given by the portion of a paraboloid z = 2 — 22 — y2 where z > 0.
Using an inward facing normal vector field, explain how to parameterise the boundary 0S so
that the unit tangent vector T and the unit normal vector N are correctly oriented for Stokes’
theorem. For the vector field v: R3 — R3, (z,y, 2) — v(z,y,2) = (y, 2,7) calculate both the
surface flux [V x v-N dS and the tangential line integral Jos v-T'ds and verify that Stokes's
Theorem holds.



B1 The flux integral

(a) Calculate the flux of the vector field f: R3 — R3, (x,y,2) — f(z,9,2) = (2,7, —3y%2)
across the surface of the cylinder {(z,y,2) € R3|2? + y* = 16, 2 € [0,5]}.

(b) Calculate the flux of the vector field
f: RS - R37 (xaywz) = f('r7yaz) = (4$Za _yQ,yz)

across the surface of the unit cube bounded by the planesx =0,z =1,y =0,y =1,z =
0 and z = 1. (the unit cube is the set {(z,y,2) € R? | 0<z<1,0<y<1,0<z<1})

B2 The divergence theorem

Use the divergence theorem to calculate the following flux integrals.
(a) The outward flux of the two dimensional vector field
FiR? = R (z,y) = fl2,9) = (@/2 + yva? + 4%, y/2 — a/2? +4?)

through the boundary of the ball © = {(z,y) € R? | 2> + y? < R?} C R?, R > 0.
(b) The outward flux of the vector field

fl ]RS i RS? (.’E,y,Z) = f(x,y,z) = (2x,—y,3z)

through the boundary of the pyramid €2 bounded by the planes x + 2y 4+ 3z =6, z = 0,
y=0and z = 0. (Hint: you may quote a formula for the volume of a pyramid).

B3 Identities and harmonic functions
(a) For three dimensional vector fields u: R® — R3 and v: R?® — R3 show that
V-(u xv)=v(V xu) —u(V xv).
(b) For three dimensional scalar fields f: R®> — R and g: R® — R show that
A(fg) = fAg+2Vf-Vg+gAf.
(c) For the scalar field ¢: R?* — R and the vector field u: R?* — R3 show that
Ve(pu) = (Vo)-u+ o(V-u).

(d) Give a sketch of the proof of the following statement: Let f: D — R,D C R3, be
harmonic (that is Af(z) = 0 for all z € D). Then for any closed ball B(a,r) C D
(recall B(a,r) = {x = (z1,22,23) € R3||z — a|| < r}) having radius r > 0 and origin
a € D with surface S = 9B(a,r) = {x = (71,22,73) € R3|||x — a|| = r} it holds that
the value of the function at the origin of the ball is the mean value of the function over

the surface of that ball, i.e.
1
fla) = W/Sf-
B4 Integration by parts formulae
For a function f: R™ — R and a vector field v: R™ — R™ show that

V-(fv)=Vfw+ fV-w.

Deduce the integration by parts formula, for a region Q C R3,
/ fVoodV = —/ VfvdV+ [ fo-NdS.
Q Q aQ
Write out the formula in the special case where v = Vg for some g: R? — R. Deduce that
/ fAgdV = / gAde+/ fVg-NdS —/ g Vf-NdS.
Q Q 20 20

This final identity is called Green's identity, named after George Green who was the son of a
Nottinghamshire baker and a self taught mathematician. See question C4 for an application
of this identity.
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Area and volume of the n-dimensional sphere and ball

Consider the ball B(0,R) = {z € R™ | ||| < R} in R™ with its boundary, the sphere
OB(0,R) = {z € R" | |lz| = R}. Apply the divergence theorem with the vector field
v: R" - R", z+— f(z) =z, to conclude

n Volume(B(0, R)) = R Surface Area (0B(0, R)).

Check that this indeed is true in dimensions n = 2, 3.

Identities

For the vector field v: R? — R? (z,y,2) — v(x,y,2) = (v1(x,y,2),v2(2, 9, 2),v3(z, ¥, 2))
define Av by Av = (Avy, Avg, Avs). This is used in the equations for viscous fluid flow. Show
that

V x (V xv) =V(V-v) — Av.

Deduce that if v is divergence free and also curl free then Av = 0.

Vector versions of the Stokes and the divergence theorems

The following disguised versions of these theorems are vector identities — so one way is to try
and prove them one co-ordinate at a time.

(a) Show, for a properly oriented surface S,0S, N, T in R? and f: R® — R, that
/foNdS=— fTds.
s as

(Hint: You might start by considering the vector field v = (f,0,0) in the usual statements of
Stokes's theorem.)

(b) Show for an outward unit normal N

/VXUdVZ v x NdS.
Q o0

An application of Green’s identity

The resonant frequencies of small oscillations of a drum with shape 2 C R? are given by the
eigenvalues A corresponding to eigenfunctions f(x) solving

—Af(z) = Af(x) for x € Q and f(z) =0 for z € 9.

Suppose A1 # Ay are two eigenvalues corresponding to two eigenfunctions fi(x) and fa(z).
Apply Green's identity to show that fQ f1f2dA = 0. (The argument works in any dimension.

For dimension n = 1 this yields the familiar result that fozﬂ sin(kz) sin(lx) de = 0 when k # 1.)



