
MA231 Vector Analysis
Example Sheet 2

2010, term 1
Stefan Adams

Hand in solutions to questions B1, B2, B3 and B4 by 3pm Monday of week 6.

A1 Calculating divergences

Calculate the divergence div v = ∇·v for the following vector fields v : R3 → R3 with:

(a) v(x, y, z) = (x2, xy, xz) (b) v(x, y, z) = (cos(xy),
√

1 + x2y2z2, zy sin(xy))

(c) v(x, y, z) = ∇f(x, y, z) where f : R3 → R, (x, y, z) 7→ f(x, y, z) = xyez.

A2 Examples of the divergence theorem

For each of the following vector fields v : R3 → R3 calculate the flux integral
∫
S v·N̂ dS out

of the sphere S given by x2 + y2 + z2 = R2. Calculate them first as surface integrals and then
confirm that your answer agrees with the volume integral given by the divergence theorem.

(a) v(x, y, z) = (x, y, z) (b) v(x, y, z) = (−y, x, 0) (c) v(x, y, z) = (−x, y, z).

A3 Using the divergence theorem

Let f : R3 → R, (x, y, z) 7→ f(x, y, z) = x4 +y4 +z4. Use the divergence theorem to calculate
the outward flux of ∇f through the following surfaces:

(a) The boundary of the cube 0 ≤ x, y, z ≤ 1, (b) The sphere x2 + y2 + z2 = R2.

A4 Calculating curls

For each of the following vector fields v : R3 → R3 calculate the curl ∇× v:

(a) v(x, y, z) = (−y, x, 1) (b) v(x, y, z) = (xy + z,
1
2
x2 + 2yz, y2 + x)

(c) v(x, y, z) = (xz, yz, 0)

A5 Identities

(a) For v : R3 → R3 show that ∇·(∇× v) = 0.

(b) For f : R3 → R and v : R3 → R3 show that ∇× (fv) = f ∇× v +∇f × v.

A6 Stokes’s theorem in the plane

Let v : R2 → R2, (x, y) 7→ v(x, y) = (0, x). Calculate curl(v). Apply Stokes’s theorem to v on

the region Ω bounded by the ellipse x2

α2 + y2

β2 = 1. Hence prove that the area of Ω is παβ.

A7 Stokes’s theorem in R3

Sketch the surface S given by the portion of a paraboloid z = 2 − x2 − y2 where z ≥ 0.
Using an inward facing normal vector field, explain how to parameterise the boundary ∂S so
that the unit tangent vector T̂ and the unit normal vector N̂ are correctly oriented for Stokes’
theorem. For the vector field v : R3 → R3, (x, y, z) 7→ v(x, y, z) = (y, z, x) calculate both the
surface flux

∫
S ∇× v·N̂ dS and the tangential line integral

∫
∂S v·T̂ ds and verify that Stokes’s

Theorem holds.



B1 The flux integral

(a) Calculate the flux of the vector field f : R3 → R3, (x, y, z) 7→ f(x, y, z) = (z, x,−3y2z)
across the surface of the cylinder {(x, y, z) ∈ R3

∣∣x2 + y2 = 16, z ∈ [0, 5]}.
(b) Calculate the flux of the vector field

f : R3 → R3, (x, y, z) 7→ f(x, y, z) = (4xz,−y2, yz)

across the surface of the unit cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z =
0 and z = 1. (the unit cube is the set {(x, y, z) ∈ R3

∣∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1})

B2 The divergence theorem

Use the divergence theorem to calculate the following flux integrals.

(a) The outward flux of the two dimensional vector field

f : R2 → R2, (x, y) 7→ f(x, y) = (x/2 + y
√
x2 + y2, y/2− x

√
x2 + y2)

through the boundary of the ball Ω = {(x, y) ∈ R2
∣∣ x2 + y2 ≤ R2} ⊂ R2, R > 0.

(b) The outward flux of the vector field

f : R3 → R3, (x, y, z) 7→ f(x, y, z) = (2x,−y, 3z)

through the boundary of the pyramid Ω bounded by the planes x+ 2y + 3z = 6, x = 0,
y = 0 and z = 0. (Hint: you may quote a formula for the volume of a pyramid).

B3 Identities and harmonic functions

(a) For three dimensional vector fields u : R3 → R3 and v : R3 → R3 show that

∇·(u× v) = v·(∇× u)− u·(∇× v).

(b) For three dimensional scalar fields f : R3 → R and g : R3 → R show that

∆(fg) = f ∆g + 2∇f ·∇g + g∆f.

(c) For the scalar field ϕ : R3 → R and the vector field u : R3 → R3 show that

∇·(ϕu) = (∇ϕ)·u+ ϕ(∇·u).

(d) Give a sketch of the proof of the following statement: Let f : D → R, D ⊂ R3, be
harmonic (that is ∆f(x) = 0 for all x ∈ D). Then for any closed ball B(a, r) ⊂ D
(recall B(a, r) = {x = (x1, x2, x3) ∈ R3|‖x − a‖ ≤ r}) having radius r > 0 and origin
a ∈ D with surface S = ∂B(a, r) = {x = (x1, x2, x3) ∈ R3|‖x − a‖ = r} it holds that
the value of the function at the origin of the ball is the mean value of the function over
the surface of that ball, i.e.

f(a) =
1

4πr2

∫
S
f.

B4 Integration by parts formulae

For a function f : Rn → R and a vector field v : Rn → Rn show that

∇·(fv) = ∇f ·v + f ∇·v.

Deduce the integration by parts formula, for a region Ω ⊆ R3,∫
Ω

f ∇·v dV = −
∫

Ω

∇f ·v dV +
∫
∂Ω

f v·N̂ dS.

Write out the formula in the special case where v = ∇g for some g : R3 → R. Deduce that∫
Ω

f∆g dV =
∫

Ω

g∆f dV +
∫
∂Ω

f ∇g·N̂ dS −
∫
∂Ω

g ∇f ·N̂ dS.

This final identity is called Green’s identity, named after George Green who was the son of a
Nottinghamshire baker and a self taught mathematician. See question C4 for an application
of this identity.



C1 Area and volume of the n-dimensional sphere and ball

Consider the ball B(0, R) = {x ∈ Rn | ‖x‖ ≤ R} in Rn with its boundary, the sphere
∂B(0, R) =

{
x ∈ Rn

∣∣ ‖x‖ = R
}

. Apply the divergence theorem with the vector field
v : Rn → Rn, x 7→ f(x) = x, to conclude

n Volume(B(0, R)) = R Surface Area (∂B(0, R)).

Check that this indeed is true in dimensions n = 2, 3.

C2 Identities

For the vector field v : R3 → R3, (x, y, z) 7→ v(x, y, z) = (v1(x, y, z), v2(x, y, z), v3(x, y, z))
define ∆v by ∆v = (∆v1,∆v2,∆v3). This is used in the equations for viscous fluid flow. Show
that

∇× (∇× v) = ∇(∇·v)−∆v.

Deduce that if v is divergence free and also curl free then ∆v = 0.

C3 Vector versions of the Stokes and the divergence theorems

The following disguised versions of these theorems are vector identities — so one way is to try
and prove them one co-ordinate at a time.

(a) Show, for a properly oriented surface S, ∂S, N̂ , T̂ in R3 and f : R3 → R, that∫
S
∇f × N̂ dS = −

∫
∂S
fT̂ ds.

(Hint: You might start by considering the vector field v = (f, 0, 0) in the usual statements of
Stokes’s theorem.)

(b) Show for an outward unit normal N̂∫
Ω

∇× v dV =
∫
∂Ω

v × N̂ dS.

C4 An application of Green’s identity

The resonant frequencies of small oscillations of a drum with shape Ω ⊂ R2 are given by the
eigenvalues λ corresponding to eigenfunctions f(x) solving

−∆f(x) = λf(x) for x ∈ Ω and f(x) = 0 for x ∈ ∂Ω.

Suppose λ1 6= λ2 are two eigenvalues corresponding to two eigenfunctions f1(x) and f2(x).
Apply Green’s identity to show that

∫
Ω
f1f2 dA = 0. (The argument works in any dimension.

For dimension n = 1 this yields the familiar result that
∫ 2π

0
sin(kx) sin(lx) dx = 0 when k 6= l.)


