MA231 Vector Analysis Example Sheet 2

Hand in solutions to questions B1, B2, B3 and B4 by 3pm Monday of week 6 .

A1 Calculating divergences

Calculate the divergence $\operatorname{div} v=\nabla \cdot v$ for the following vector fields $v: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with:
(a) $v(x, y, z)=\left(x^{2}, x y, x z\right)$
(b) $v(x, y, z)=\left(\cos (x y), \sqrt{1+x^{2} y^{2} z^{2}}, z y \sin (x y)\right)$
(c) $v(x, y, z)=\nabla f(x, y, z)$ where $f: \mathbb{R}^{3} \rightarrow \mathbb{R},(x, y, z) \mapsto f(x, y, z)=x y \mathrm{e}^{z}$.

A2 Examples of the divergence theorem

For each of the following vector fields $v: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ calculate the flux integral $\int_{\mathcal{S}} v \cdot \hat{N} \mathrm{~d} S$ out of the sphere \mathcal{S} given by $x^{2}+y^{2}+z^{2}=R^{2}$. Calculate them first as surface integrals and then confirm that your answer agrees with the volume integral given by the divergence theorem.
(a) $v(x, y, z)=(x, y, z)$
(b) $v(x, y, z)=(-y, x, 0)$
(c) $v(x, y, z)=(-x, y, z)$.

A3 Using the divergence theorem
Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R},(x, y, z) \mapsto f(x, y, z)=x^{4}+y^{4}+z^{4}$. Use the divergence theorem to calculate the outward flux of ∇f through the following surfaces:
(a) The boundary of the cube $0 \leq x, y, z \leq 1$,
(b) The sphere $x^{2}+y^{2}+z^{2}=R^{2}$.

A4 Calculating curls

For each of the following vector fields $v: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ calculate the curl $\nabla \times v$:
(a) $v(x, y, z)=(-y, x, 1)$
(b) $v(x, y, z)=\left(x y+z, \frac{1}{2} x^{2}+2 y z, y^{2}+x\right)$
(c) $v(x, y, z)=(x z, y z, 0)$

A5 Identities

(a) For $v: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ show that $\nabla \cdot(\nabla \times v)=0$.
(b) For $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $v: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ show that $\nabla \times(f v)=f \nabla \times v+\nabla f \times v$.

A6 Stokes's theorem in the plane

Let $v: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto v(x, y)=(0, x)$. Calculate curl (v). Apply Stokes's theorem to v on the region Ω bounded by the ellipse $\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}}=1$. Hence prove that the area of Ω is $\pi \alpha \beta$.

A7 Stokes's theorem in \mathbb{R}^{3}

Sketch the surface \mathcal{S} given by the portion of a paraboloid $z=2-x^{2}-y^{2}$ where $z \geq 0$. Using an inward facing normal vector field, explain how to parameterise the boundary $\partial \mathcal{S}$ so that the unit tangent vector \hat{T} and the unit normal vector \hat{N} are correctly oriented for Stokes' theorem. For the vector field $v: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},(x, y, z) \mapsto v(x, y, z)=(y, z, x)$ calculate both the surface flux $\int_{\mathcal{S}} \nabla \times v \cdot \hat{N} \mathrm{~d} S$ and the tangential line integral $\int_{\partial \mathcal{S}} v \cdot \hat{T} \mathrm{~d} s$ and verify that Stokes's Theorem holds.

B1 The flux integral

(a) Calculate the flux of the vector field $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},(x, y, z) \mapsto f(x, y, z)=\left(z, x,-3 y^{2} z\right)$ across the surface of the cylinder $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=16, z \in[0,5]\right\}$.
(b) Calculate the flux of the vector field

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},(x, y, z) \mapsto f(x, y, z)=\left(4 x z,-y^{2}, y z\right)
$$

across the surface of the unit cube bounded by the planes $x=0, x=1, y=0, y=1, z=$ 0 and $z=1$. (the unit cube is the set $\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1\right\}$)

B2 The divergence theorem

Use the divergence theorem to calculate the following flux integrals.
(a) The outward flux of the two dimensional vector field

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto f(x, y)=\left(x / 2+y \sqrt{x^{2}+y^{2}}, y / 2-x \sqrt{x^{2}+y^{2}}\right)
$$

through the boundary of the ball $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq R^{2}\right\} \subset \mathbb{R}^{2}, R>0$.
(b) The outward flux of the vector field

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},(x, y, z) \mapsto f(x, y, z)=(2 x,-y, 3 z)
$$

through the boundary of the pyramid Ω bounded by the planes $x+2 y+3 z=6, x=0$, $y=0$ and $z=0$. (Hint: you may quote a formula for the volume of a pyramid).

B3 Identities and harmonic functions

(a) For three dimensional vector fields $u: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $v: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ show that

$$
\nabla \cdot(u \times v)=v \cdot(\nabla \times u)-u \cdot(\nabla \times v) .
$$

(b) For three dimensional scalar fields $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ show that

$$
\Delta(f g)=f \Delta g+2 \nabla f \cdot \nabla g+g \Delta f
$$

(c) For the scalar field $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the vector field $u: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ show that

$$
\nabla \cdot(\varphi u)=(\nabla \varphi) \cdot u+\varphi(\nabla \cdot u) .
$$

(d) Give a sketch of the proof of the following statement: Let $f: D \rightarrow \mathbb{R}, D \subset \mathbb{R}^{3}$, be harmonic (that is $\Delta f(x)=0$ for all $x \in D$). Then for any closed ball $\overline{B(a, r)} \subset D$ (recall $\overline{B(a, r)}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid\|x-a\| \leq r\right\}$) having radius $r>0$ and origin $a \in D$ with surface $\mathcal{S}=\partial \overline{B(a, r)}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid\|x-a\|=r\right\}$ it holds that the value of the function at the origin of the ball is the mean value of the function over the surface of that ball, i.e.

$$
f(a)=\frac{1}{4 \pi r^{2}} \int_{\mathcal{S}} f
$$

B4 Integration by parts formulae

For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a vector field $v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ show that

$$
\nabla \cdot(f v)=\nabla f \cdot v+f \nabla \cdot \boldsymbol{v}
$$

Deduce the integration by parts formula, for a region $\Omega \subseteq \mathbb{R}^{3}$,

$$
\int_{\Omega} f \nabla \cdot v \mathrm{~d} V=-\int_{\Omega} \nabla f \cdot v \mathrm{~d} V+\int_{\partial \Omega} f v \cdot \hat{N} \mathrm{~d} S .
$$

Write out the formula in the special case where $v=\nabla g$ for some $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$. Deduce that

$$
\int_{\Omega} f \Delta g \mathrm{~d} V=\int_{\Omega} g \Delta f \mathrm{~d} V+\int_{\partial \Omega} f \nabla g \cdot \hat{N} \mathrm{~d} S-\int_{\partial \Omega} g \nabla f \cdot \hat{N} \mathrm{~d} S .
$$

This final identity is called Green's identity, named after George Green who was the son of a Nottinghamshire baker and a self taught mathematician. See question C4 for an application of this identity.

C1 Area and volume of the \mathbf{n}-dimensional sphere and ball

Consider the ball $B(0, R)=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq R\right\}$ in \mathbb{R}^{n} with its boundary, the sphere $\partial B(0, R)=\left\{x \in \mathbb{R}^{n} \mid\|x\|=R\right\}$. Apply the divergence theorem with the vector field $v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, x \mapsto f(x)=x$, to conclude

$$
n \operatorname{Volume}(B(0, R))=R \text { Surface Area }(\partial B(0, R))
$$

Check that this indeed is true in dimensions $n=2,3$.

C2 Identities

For the vector field $v: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},(x, y, z) \mapsto v(x, y, z)=\left(v_{1}(x, y, z), v_{2}(x, y, z), v_{3}(x, y, z)\right)$ define Δv by $\Delta v=\left(\Delta v_{1}, \Delta v_{2}, \Delta v_{3}\right)$. This is used in the equations for viscous fluid flow. Show that

$$
\nabla \times(\nabla \times v)=\nabla(\nabla \cdot v)-\Delta v .
$$

Deduce that if v is divergence free and also curl free then $\Delta v=0$.
C3 Vector versions of the Stokes and the divergence theorems
The following disguised versions of these theorems are vector identities - so one way is to try and prove them one co-ordinate at a time.
(a) Show, for a properly oriented surface $\mathcal{S}, \partial \mathcal{S}, \hat{N}, \hat{T}$ in \mathbb{R}^{3} and $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, that

$$
\int_{\mathcal{S}} \nabla f \times \hat{N} \mathrm{~d} S=-\int_{\partial \mathcal{S}} f \hat{T} \mathrm{~d} s
$$

(Hint: You might start by considering the vector field $v=(f, 0,0)$ in the usual statements of Stokes's theorem.)
(b) Show for an outward unit normal \hat{N}

$$
\int_{\Omega} \nabla \times v \mathrm{~d} V=\int_{\partial \Omega} v \times \hat{N} \mathrm{~d} S
$$

C4 An application of Green's identity

The resonant frequencies of small oscillations of a drum with shape $\Omega \subset \mathbb{R}^{2}$ are given by the eigenvalues λ corresponding to eigenfunctions $f(x)$ solving

$$
-\Delta f(x)=\lambda f(x) \text { for } x \in \Omega \text { and } f(x)=0 \text { for } x \in \partial \Omega .
$$

Suppose $\lambda_{1} \neq \lambda_{2}$ are two eigenvalues corresponding to two eigenfunctions $f_{1}(x)$ and $f_{2}(x)$. Apply Green's identity to show that $\int_{\Omega} f_{1} f_{2} \mathrm{~d} A=0$. (The argument works in any dimension. For dimension $n=1$ this yields the familiar result that $\int_{0}^{2 \pi} \sin (k x) \sin (l x) \mathrm{d} x=0$ when $k \neq l$.)

