Interacting Stochastic Processes

Problem sheet 1

1. Let W_{1}, W_{2}, \ldots be a sequence of independent exponential random variables $W_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right)$.
(a) Show that $\mathbb{E}\left(W_{i}\right)=1 / \lambda_{i}$ and that

$$
\min \left\{W_{1}, \ldots, W_{n}\right\} \sim \operatorname{Exp}\left(\sum_{i=1}^{n} \lambda_{i}\right) .
$$

(b) The sum of iid exponentials with $\lambda_{i}=\lambda$ is Γ-distributed, i.e.

$$
\sum_{i=1}^{n} W_{i} \sim \Gamma(n, \lambda) \quad \text { with pdf } \frac{\lambda^{n} w^{n-1}}{(n-1)!} e^{-\lambda w}
$$

2. The Poisson process $\left(N_{t}: t \geq 0\right)$ with rate $\lambda>0$ is a Markov chain with $X=\mathbb{N}=\{0,1, \ldots\}, N_{0}=0$ and rates $c(n, m)=\lambda \delta_{n+1, m}$.
(a) Show that $N_{t} \sim \operatorname{Poi}(\lambda t)$ has a Poisson distribution for all $t>0$.
(b) Show that $\left(N_{t}: t \geq 0\right) \sim P P(\lambda)$ if and only if it has stationary, independent increments, i.e.

$$
N_{t+s}-N_{s} \sim N_{t}-N_{0} \quad \text { and } \quad N_{t+s}-N_{s} \quad \text { independent of } \quad\left(N_{u}: u \leq s\right)
$$ and for each $t, N_{t} \sim \operatorname{Poi}(\lambda t)$.

(c) Show that for independent Poisson variables Y_{1}, Y_{2}, \ldots with $Y_{i} \sim \operatorname{Poi}\left(\lambda_{i}\right)$ we have $\mathbb{E}\left(Y_{i}\right)=$ $\operatorname{Var}\left(Y_{i}\right)=\lambda_{i}$ and

$$
\sum_{i=1}^{n} Y_{i} \sim \operatorname{Poi}\left(\sum_{i=1}^{n} \lambda_{i}\right)
$$

3. The single server queue (M/M/1)

Let $\left(\eta_{t}: t \geq 0\right)$ be a continuous time Markov chain with state space $\mathbb{N}=\{0,1, \ldots\}$ and jump rates

$$
c(\eta, \eta+1)=\alpha, \quad c(\eta, \eta-1)=\beta\left(1-\delta_{0, \eta}\right) .
$$

η_{t} can be interpreted as the number of customers at time t, arriving at rate $\alpha>0$ and being served at rate $\beta>0$.
(a) Write down the master equation for this process.
(b) Show that for $\alpha>\beta$ the process is transient, i.e. $\eta_{t} \rightarrow \infty$ a.s. as $t \rightarrow \infty$.

Hint: Compare to an asymmetric random walk and use the strong law of large numbers.
(c) Show that for $\alpha<\beta$ the process is positive recurrent by giving its stationary distribution μ. Is the distribution reversible?
(d) What do you think happens for $\alpha=\beta$?
(e) Let $A \sim P P(\alpha)$ be the arrival process of customers. Show that for $\alpha<\beta$ the departure process D is also Poisson $D \sim P P(\alpha)$ given that the process is stationary (this is called Burke's theorem). Hint: There is an elegant proof using reversibility. Alternatively, condition on the value of η_{t} and show that

$$
\mathbb{P}(\text { at least one departure in }[t, t+\Delta t))=1-e^{-\alpha \Delta t}
$$

What do you think happens for $\alpha \geq \beta$?
4. Give a graphical construction for the linear voter model on $\Lambda=\mathbb{Z}$ with nearest neighbour interaction $p(x, y)=\delta_{x, y+1}+\delta_{x, y-1}$. Look at the sample path in reversed time. How does it look like?
5. Resolve the following 'paradox':

A single continuous-time random walker on \mathbb{Z} does not have a stationary distribution, but an IPS of many random walkers has!
6. A generic algorithm to simulate continuous-time IPS is called random sequential update.

Consider the TASEP with $p=1, q=0$ on $\Lambda_{L}=\mathbb{Z} / L \mathbb{Z}$ (periodic boundary conditions).
Claim: To simulate (or construct a sample path of) the process do the following:

- Pick a site $x \in \Lambda_{L}$ uniformly at random;
- update your time counter $t \mapsto t+\Delta t$ by $\Delta t \sim \operatorname{Exp}(L) \quad$ (independently each time);
- if $\eta(x)=1$ and $\eta(x+1)=0$ move the particle, i.e. put $\eta(x)=0, \eta(x+1)=1$ (+ to be understood modulo L for periodic boundary conditions);
then start over again.
(a) Show that the number of timesteps k it takes for a given particle to attempt a jump is a geometric random variable $k \sim \operatorname{Geo}(1 / L)$ with mean L.
(b) Show that the waiting time until a jump attempt $t=\sum_{i=1}^{k} \Delta t_{i}$ is exponential $t \sim \operatorname{Exp}(1)$, where the Δt_{i} are iid realizations of Δt for each time step.
(c) For large system size L, time increments are often replaced by their mean for simplicity, i.e. $\Delta t=$ $1 / L$. Show that in this case the waiting time $t=k * \Delta t$ is still exponential in the limit $L \rightarrow \infty$.
(d) How does this algorithm have to be modified to simulate the ASEP with $p, q>0$?

7. (Hard) part of the first exam question 2008/09:

We have seen that the condition on the jump rates

$$
\sup _{y \in \Lambda} \sum_{x \in \Lambda} \sup _{\eta \in X} c(x, y, \eta)<\infty
$$

implies (but is not equivalent to) $\mathcal{L} f$ being a convergent sum for all cylinder functions f.
(a) Which of the following conditions
(i) $\sup _{y \in \Lambda} \sup _{x \in \Lambda} \sup _{\eta \in X} c(x, y, \eta)<\infty$
(ii) $\sum_{y \in \Lambda} \sum_{x \in \Lambda} \sup _{\eta \in X} c(x, y, \eta)<\infty$
has the same implication, i.e. $\mathcal{L} f$ converges for all cylinder functions f.
Justify your answer by using the above result or by giving an example such that $\mathcal{L} f$ diverges.
(b) Suppose that the rates are translation invariant and of finite range $R>0$, i.e. for all $x, y \in \mathbb{Z}$

$$
c(x, y, \eta)=c\left(0, y-x, \tau_{-x} \eta\right), \quad c(x, y, \eta)=0 \text { if }|x-y|>R
$$

and $\quad c\left(x, y, \eta^{z}\right)=c(x, y, \eta) \quad$ for all $z \in \mathbb{Z}$ such that $|x-z|,|y-z|>R$.
Show that $\mathcal{L} f$ converges for all cylinder functions f.

