Interacting Stochastic Processes

Problem sheet 1

- **1.** Let W_1, W_2, \ldots be a sequence of independent exponential random variables $W_i \sim Exp(\lambda_i)$.
 - (a) Show that $\mathbb{E}(W_i) = 1/\lambda_i$ and that

$$\min\{W_1,\ldots,W_n\}\sim Exp\Big(\sum_{i=1}^n\lambda_i\Big)\ .$$

(b) The sum of iid exponentials with $\lambda_i = \lambda$ is Γ -distributed, i.e.

$$\sum_{i=1}^n W_i \sim \Gamma(n,\lambda) \quad \text{with pdf} \quad \frac{\lambda^n w^{n-1}}{(n-1)!} \, e^{-\lambda w} \; .$$

- **2.** The Poisson process $(N_t : t \ge 0)$ with rate $\lambda > 0$ is a Markov chain with $X = \mathbb{N} = \{0, 1, \ldots\}$, $N_0 = 0$ and rates $c(n, m) = \lambda \delta_{n+1,m}$.
 - (a) Show that $N_t \sim Poi(\lambda t)$ has a Poisson distribution for all t > 0.
 - (b) Show that $(N_t : t \ge 0) \sim PP(\lambda)$ if and only if it has stationary, independent increments, i.e.

 $N_{t+s} - N_s \sim N_t - N_0 \quad \text{and} \quad N_{t+s} - N_s \quad \text{independent of} \quad \left(N_u: u \leq s\right),$

and for each $t, N_t \sim Poi(\lambda t)$.

(c) Show that for independent Poisson variables Y_1, Y_2, \ldots with $Y_i \sim Poi(\lambda_i)$ we have $\mathbb{E}(Y_i) = Var(Y_i) = \lambda_i$ and

$$\sum_{i=1}^{n} Y_i \sim Poi\left(\sum_{i=1}^{n} \lambda_i\right).$$

- 3. The single server queue (M/M/1)
 - Let $(\eta_t : t \ge 0)$ be a continuous time Markov chain with state space $\mathbb{N} = \{0, 1, \ldots\}$ and jump rates

$$c(\eta, \eta + 1) = \alpha$$
, $c(\eta, \eta - 1) = \beta(1 - \delta_{0,\eta})$.

 η_t can be interpreted as the number of customers at time t, arriving at rate $\alpha > 0$ and being served at rate $\beta > 0$.

- (a) Write down the master equation for this process.
- (b) Show that for α > β the process is transient, i.e. η_t → ∞ a.s. as t → ∞. Hint: Compare to an asymmetric random walk and use the strong law of large numbers.
- (c) Show that for $\alpha < \beta$ the process is positive recurrent by giving its stationary distribution μ . Is the distribution reversible?
- (d) What do you think happens for $\alpha = \beta$?
- (e) Let A ~ PP(α) be the arrival process of customers. Show that for α < β the departure process D is also Poisson D ~ PP(α) given that the process is stationary (this is called **Burke's theorem**). Hint: There is an elegant proof using reversibility. Alternatively, condition on the value of η_t and show that

 $\mathbb{P}(\text{at least one departure in } [t, t + \Delta t)) = 1 - e^{-\alpha \Delta t}$.

What do you think happens for $\alpha \geq \beta$?

- 4. Give a graphical construction for the linear voter model on $\Lambda = \mathbb{Z}$ with nearest neighbour interaction $p(x, y) = \delta_{x,y+1} + \delta_{x,y-1}$. Look at the sample path in reversed time. How does it look like?
- **5.** Resolve the following 'paradox':
 - A single continuous-time random walker on \mathbb{Z} does not have a stationary distribution, but an IPS of many random walkers has!
- 6. A generic algorithm to simulate continuous-time IPS is called **random sequential update**. Consider the TASEP with p = 1, q = 0 on $\Lambda_L = \mathbb{Z}/L\mathbb{Z}$ (periodic boundary conditions). Claim: To simulate (or construct a sample path of) the process do the following:
 - Pick a site $x \in \Lambda_L$ uniformly at random;
 - update your time counter $t \mapsto t + \Delta t$ by $\Delta t \sim Exp(L)$ (independently each time);
 - if η(x) = 1 and η(x + 1) = 0 move the particle, i.e. put η(x) = 0, η(x + 1) = 1 (+ to be understood modulo L for periodic boundary conditions);

then start over again.

- (a) Show that the number of timesteps k it takes for a given particle to attempt a jump is a geometric random variable $k \sim Geo(1/L)$ with mean L.
- (b) Show that the waiting time until a jump attempt $t = \sum_{i=1}^{k} \Delta t_i$ is exponential $t \sim Exp(1)$, where the Δt_i are iid realizations of Δt for each time step.
- (c) For large system size L, time increments are often replaced by their mean for simplicity, i.e. $\Delta t = 1/L$. Show that in this case the waiting time $t = k * \Delta t$ is still exponential in the limit $L \to \infty$.
- (d) How does this algorithm have to be modified to simulate the ASEP with p, q > 0?
- 7. (Hard) part of the first exam question 2008/09: We have seen that the condition on the jump rates

$$\sup_{y\in\Lambda}\sum_{x\in\Lambda}\sup_{\eta\in X}c(x,y,\eta)<\infty$$

implies (but is not equivalent to) $\mathcal{L}f$ being a convergent sum for all cylinder functions f.

(a) Which of the following conditions

(i)
$$\sup_{y \in \Lambda} \sup_{x \in \Lambda} \sup_{\eta \in X} c(x, y, \eta) < \infty$$
 (ii) $\sum_{y \in \Lambda} \sum_{x \in \Lambda} \sup_{\eta \in X} c(x, y, \eta) < \infty$

has the same implication, i.e. $\mathcal{L}f$ converges for all cylinder functions f. Justify your answer by using the above result or by giving an example such that $\mathcal{L}f$ diverges.

(b) Suppose that the rates are translation invariant and of finite range R > 0, i.e. for all $x, y \in \mathbb{Z}$

$$c(x, y, \eta) = c(0, y - x, \tau_{-x}\eta), \quad c(x, y, \eta) = 0 \text{ if } |x - y| > R$$

and $c(x, y, \eta^z) = c(x, y, \eta)$ for all $z \in \mathbb{Z}$ such that |x - z|, |y - z| > R. Show that $\mathcal{L}f$ converges for all cylinder functions f.