Interacting Stochastic Processes

Problem sheet 2

1. Convex combinations of measures (mixtures)

Let ν_0 and ν_1 be the product measures on $X=\{0,1\}^\Lambda$ with densities 0 and 1, respectively. Is it true that for each $\rho\in(0,1)$ the product measure ν_ρ is given by

$$\nu_{\rho} = \rho \nu_1 + (1 - \rho) \nu_0$$
 ?

2. On $X = \{0,1\}^{\mathbb{Z}}$ let ν_{ρ} be the blocking measure with density

$$\rho(x) = \frac{(p/q)^x}{1 + (p/q)^x} \quad \text{with} \quad p > q \ .$$

Use the first Borel Cantelli Lemma to prove that almost surely under ν_{ρ}

$$\sum_{x < 0} \eta(x) < \infty \quad \text{and} \quad \sum_{x > 0} \left(1 - \eta(x)\right) < \infty \;.$$

(You can find the BC Lemma on Wikipedia or in any book on probability theory.)

3. CP-invariance

On $X = \{0,1\}^{\Lambda}$ with $\Lambda = \mathbb{Z}$ consider a transformation $\tau : X \to X$ which flips occupation numbers and inverts space at the same time.

- (a) Write down a formula for τ . Is τ a bijection on X?
- (b) Show that τ is a (simple) symmetry for the ASEP on X (also called CP-invariance). Is this also true on the finite lattice $\Lambda_L = \mathbb{Z}/L\mathbb{Z}$?
- (c) In general: Do symmetries commute, i.e. does $T_1, T_2 \in \mathcal{S}$ imply that $T_1T_2 = T_2T_1$?

4. Exam question from last year.

Consider the ASEP on the finite lattice $\Lambda_L = \{1, \dots, L\}$ with closed boundary conditions, i.e. for p, q > 0 the boundary rates are given by

$$\begin{array}{rcl} c(1,2,\eta) &=& p\eta(1)\big(1-\eta(2)\big)\;, & c(2,1,\eta) = q\eta(2)\big(1-\eta(1)\big)\;, \\ c(L-1,L,\eta) &=& p\eta(L-1)\big(1-\eta(L)\big)\;, & c(L,L-1,\eta) = q\eta(L)\big(1-\eta(L-1)\big)\;. \end{array}$$

- (a) Write down the generator for this process.
- (b) Find a family of stationary product measures ν_{ρ} and give the corresponding density profile $\rho(x)$. You may use any result from the course, provided that it is clearly stated. (Hint: Consider first a simple random walker on Λ_L .)
- (c) Sketch the density profiles $\rho(x)$ you found in (b) for $p>q, \, p< q$ and p=q. Are the measures you found in (b) reversible? (Justify your answer.)
- (d) Identify at least one simple symmetry τ for the process. Justify your answer by showing that the jump rates are invariant under τ .
- **5.** Show that a bounded linear operator $T: C(X) \to C(X)$ is a symmetry if and only if $\mathcal{L}T = T\mathcal{L}$. (Hint: Look at the proof of Prop. 1.8 on stationarity iff $\mu(\mathcal{L}f) = 0$.)

- **6.** Are there dynamical phase transitions for ZRPs analogous to the ones for the ASEP? Justify your answer.
- 7. Consider the totally asymmetric simple exclusion process (TASEP) $(\eta_t: t \geq 0)$ on the finite periodic lattice $\tilde{\Lambda}_L = \mathbb{Z}/L\mathbb{Z}$ with jump rates p=1 and q=0. Suppose that one of the particles is special, i.e. it jumps with rate $\alpha>0$.
 - (a) Explain how a TASEP configuration η can be mapped onto a configuration ζ of a zero-range process (ZRP) with a special site in the origin.
 - Define the ZRP $(\zeta_t:t\geq 0)$ corresponding to the TASEP $(\eta_t:t\geq 0)$ by giving the lattice Λ , the state space and the generator.
 - (b) Compute the grand-canonical stationary product measures ν_{ϕ} of the ZRP and give the marginals on site 0 and any other site $x \neq 0$.
 - (c) Compute the stationary density $\rho_x(\phi) = \nu_\phi(\eta(x))$ as a function of the fugacity for x = 0 and $x \neq 0$.
 - (d) The total density is given by

$$\rho(\phi) = \frac{1}{|\Lambda|} \sum_{x \in \Lambda} \rho_x(\phi) .$$

Use this to derive the current-density relation $j(\rho)$, i.e. the stationary current as a function of ρ . Do not attempt to solve the quadratic equation yourself but use something like MATLAB or MAPLE, then plot the function $j(\rho)$ for L=100 and $\alpha=0.5$ and 2.

(e) Explain why the total density ρ in the ZRP is related to the TASEP density $\tilde{\rho}$ via

$$\rho = \frac{1 - \tilde{\rho}}{\tilde{\rho}} \; ,$$

and the stationary currents are related via $\tilde{j} = \tilde{\rho} j$.

Use this to plot the current-density relation $\tilde{j}(\tilde{\rho})$ of the TASEP for L=100 and $\alpha=0.5$ and 2. Interpret your results.

- 8. (a) Consider a general ZRP and define $p_x(\phi) = \log z_x(\phi)$ (called pressure in statistical mechanics). Show that you can write $\rho_x(\phi) = \phi \frac{\partial}{\partial \phi} p_x(\phi)$. Use this to show that $\rho_x(\phi)$ is monotone increasing, which is equivalent to $p_x(\phi)$ being convex. To do this, compute the derivative of $\rho_x(\phi)$ and write it as the variance of $\eta(x)$ (which is positive).
 - (b) Consider now a ZRP on $\Lambda_L = \mathbb{Z}/L\mathbb{Z}$ with $g_x(k) = \alpha k$ and translation invariant jump probabilities p(x,y) = p(x-y). Show that the stationary measure is homogeneous and Poisson and compute $\rho(\phi)$ and the current.
- 9. Suppose the stationary current of a lattice gas on $\Lambda = \mathbb{Z}$ is given by $j(\rho) = -\rho \log \rho$ and its density obeys the macroscopic conservation law

$$\frac{\partial}{\partial t}\rho(x,t) + \frac{\partial}{\partial t}j\big(\rho(x,t)\big) = 0 \ .$$

(a) Starting with a step initial measure

$$\mu = \nu_{\rho_l,\rho_r} \quad \text{product measure with} \quad \nu_{\rho_l,\rho_r}(1_x) = \left\{ \begin{array}{l} \rho_l \;\;,\; x \leq 10000 \\ \rho_r \;\;,\; x > 10000 \end{array} \right. \;,$$

what density $\mu_t(1_0)$ do you expect in the origin as $t \to \infty$?

- (b) Summarize your results in a phase diagram for the corresponding dynamic phase transition.
- (c) What density $\mu_t(1_{[t]})$ do you expect to see at site [t] as $t \to \infty$?