Dynamical Processes on Complex Networks

Lecture 1:

- Introduction to Networks:
 - Applications, examples of dynamical processes on networks.
- Basic Concepts:
 - Representation of networks: matrices, lists, and sparse matrices.
 - Degree-related measures: degree, average nearest neighborhood degree, concentric degree.
 - Degree distribution, statistical moments of degree distribution.
 - \circ $\;$ Special cases: Power law distribution and Poisson distribution.

Lecture 2:

- Measure for network characterization
 - Distance: the Dijkstra algorithm
 - Clustering coefficient.
 - Hierarchical networks.
 - Shannon entropy of degree distribution, complexity measure.

Lecture 3:

- Network Centrality
 - Degree centrality, betweenness centrality, closeness centrality, kcore, random walk accessibility, PageRank, eigenvector centrality.
 - Localization: nonbacktracking matrix.
 - Applications.

Lecture 4:

- Correlation in networks
 - Assortative mixing.
 - Degree-degree correlation.
- Community detection
 - Modularity
 - Methods: Based on betweenness centrality, Walktrap, eigenvector of matrices, Fast greedy.

Lecture 5:

- Models of network formation I:
 - Random graphs
 - Small-world networks
 - o Barabási-Albert model

Lecture 6:

- Models of network formation:
 - Nonlinear BA model
 - Spatial models
 - $\circ \quad \text{Other models} \quad$

Lecture 7:

- Percolation and resilience on networks
 - Percolation.
 - Random failures and attacks.
 - Cascade failure.
 - \circ Applications.

Lecture 8:

- Epidemic spreading on networks
 - \circ $\:$ SIR and SIS on homogeneous networks.
 - Epidemics on scale-free networks
 - Heterogeneous mean-field approximation.
 - Monte Carlo simulation.
 - Continuous time simulation.
 - Rumor spreading on networks.

Lecture 9:

- Synchronization of coupled oscillators.
 - Collective behavior and phase transition.
 - The Kuramoto model on homogeneous networks.
 - Mean-field approximation.
 - \circ $\;$ The Kuramoto model on complex networks.
 - Mathematical analysis and simulation.
 - Explosive synchronization.

Lecture 10:

- Additional topics:
 - Epidemic spreading with awareness.
 - Multilayer networks.
 - \circ $\;$ Temporal networks.