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Introduction

Interacting particle systems (IPS) are mathematical models of complex phenomena involving a
large number of interrelated components. There are numerous examples within all areas of nat-
ural and social sciences, such as traffic flow on motorways or communication networks, opinion
dynamics, spread of epidemics or fires, genetic evolution, reaction diffusion systems, crystal sur-
face growth, financial markets, etc. The central question is to understand and predict emergent
behaviour on macroscopic scales, as a result of the microscopic dynamics and interactions of in-
dividual components. Qualitative changes in this behaviour depending on the system parameters
are known as collective phenomena or phase transitions and are of particular interest.

In IPS the components are modeled as particles confined to a lattice or some discrete geome-
try. But applications are not limited to systems endowed with such a geometry, since continuous
degrees of freedom can often be discretized without changing the main features. So depending on
the specific case, the particles can represent cars on a motorway, molecules in ionic channels, or
prices of asset orders in financial markets, to name just a few examples. In principle such systems
often evolve according to well-known laws, but in many cases microscopic details of motion are
not fully accessible. Due to the large system size these influences on the dynamics can be approx-
imated as effective random noise with a certain postulated distribution. The actual origin of the
noise, which may be related to chaotic motion or thermal interactions, is usually ignored. On this
level the statistical description in terms of a random process where particles move and interact
according to local stochastic rules is an appropriate mathematical model. It is neither possible nor
required to keep track of every single particle. One is rather interested in predicting measurable
quantities which correspond to expected values of certain observables, such as the growth rate
of the crystalline surface or the flux of cars on the motorway. Although describing the system
only on a mesoscopic level as explained above, stochastic particle systems are usually referred
to as microscopic models and we stick to this convention. On a macroscopic scale, a continuum
description of systems with a large number of particles is given by coarse-grained density fields,
evolving in time according to a partial differential equation. The form of this equation depends on
the particular application, and its mathematical connection to microscopic particle models is one
of the fundamental questions in applied probability and statistical mechanics.

The main references for the module are:

• Chapters 3 and 4 in: T.M. Liggett: Continuous Time Markov Processes. AMS Graduate
Studes in Mathematics 113 (2010)

• R. Chetrite, H. Touchette: Nonequilibrium Markov processes conditioned on large devia-
tions. Ann. Inst. H. Poincare 16, 2005 (2015)

• L. Bertini, A. Faggionato, D. Gabrielli: Large deviations of the empirical flow for continu-
ous time Markov chains. Ann. Inst. H. Poincare 51, 867 (2015)

• L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim: Macroscopic Fluctuation
Theory. Reviews of Modern Physics 87, 593-636 (2015)
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1 Basic theory

1.1 Markov processes

The material in this section follows closely the presentation in [31], Chapter 3.

1.1.1 Path space characterization

We will study several continuous-time stochastic processes and introduce the basic general setting
now. The state space E is a complete, separable1 metric space. We denote byM(E) the set of
measures andM1(E) the set of normalized probability measures on E. The measurable structure
on E is given by the Borel σ-algebra B(E). If E is a countable set we will usually use the discrete
topology which is simply the powerset of P(E), as is the corresponding Borel σ-algebra.

A continuous time stochastic process on E is denoted by (Xt : t ≥ 0), i.e. a family of
random variables Xt. The probability space Ω for the process is given by the path space of E-
valued, right-continuous functions with left limits (also called càdlàg), denoted by

Ω = DE [0,∞) :=
{
ω : [0,∞)→ E

∣∣ t 7→ ωt càdlàg
}
. (1.1)

The explicit construction of the random variables is then simply Xt(ω) = ωt. We will often also
restrict ourselves to compact time intervals [0, T ] with associated paths DE [0, T ]. The σ-algebra
F on Ω is the smallest such that the mapping ω 7→ Xt(ω) is measurable for all t ≥ 0.

In general, the process (Xt : t ≥ 0) is then characterized by a probability measure P on
(Ω,F), with associated expectation denoted by E. With ω drawn from this measure, the function
t 7→ Xt(ω) is called sample path. In the following we restrict ourselves to Markov processes,
where given the present state, the future time evolution is independent of the past. To be able to
consider different initial conditions for a given Markov process, we use the following definition.

Definition 1.1 A (homogeneous) Markov process on E consists of a collection (Px : x ∈ E) of
probability measures on (DE [0,∞),F) and a right-continuous filtration (Ft : t ≥ 0) on Ω with
respect to which the random variablesXt are adapted. We further impose the following properties:

(a) Px
[
X0 = x

]
= 1 for all x ∈ E ,

i.e. Px is normalized on all paths with initial condition X0 = x.

(b) The mapping x 7→ Px(A) is measurable for every A ∈ F .

(c) For all x ∈ E, t > 0 and all bounded measurable Y on Ω we have

Ex
[
Y ◦ θt

∣∣Ft] = EXt [Y ] Px − a.s. ,

where θtω = ωt+. denotes a time shift. (homogeneous Markov property)

Note that the Markov property as formulated in (c) implies that the process is (time-)homogeneous,
excluding an explicit time dependence in the law Px. Markov processes can be generalized to be
inhomogeneous (see e.g. [12]), but we will concentrate only on homogeneous processes. The
condition in (b) allows to consider processes with general initial distributions µ ∈M1(E) via

Pµ :=

∫
E
Pxµ(dx) . (1.2)

1i.e. contains a countable, dense set
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When we do not want to specify the initial condition for the process we will often only write P.
Unless specified otherwise, we will always use the natural filtration generated by the process

with

Ft = σ
{
X−1
s (A)

∣∣ s ≤ t, A ∈ B(E)
}
, (1.3)

accumulating the information concerning the process over time, and only that information.

1.1.2 Semigroups and resolvents

Using the homogeneous Markov property, it is easy to see that the transition kernel

Pt(x, dy) := Px[Xt ∈ dy] (1.4)

fulfills the Chapman-Kolmogorov equation

Pt+s(x,A) =

∫
z∈E

Pt(x, dz)Ps(z,A) for all A ∈ B(E) . (1.5)

As usual, it is practical to use a weak characterization of the measure Pt(x, .) in terms of expec-
tations of test functions. The suitable space of test functions in general depends on the process at
hand, but there is a large class of processes fitting in the following framework. If the state space
is compact C(E) denotes the space of continuous real-valued functions on E (which are also
bounded by compactness). If E is locally compact1, C(E) denotes the space of continuous real-
valued functions vanishing at infinity. Together with the sup-norm ‖f‖ = ‖f‖∞ = supx∈E f(x)
this is a Banach space in both cases. For each t ≥ 0 we define the operator Pt : C(E) → C(E)
by

(Ptf)(x) = Ptf(x) = Ex
[
f(Xt)

]
=

∫
E
Pt(x, dy)f(y) for all x ∈ E . (1.6)

While Pt is well defined for all f ∈ C(E), in general it is not guaranteed that the range of the
operator is also C(E). Processes which fulfill that property are called Feller processes. We will
focus on this large class for now, and will see processes later where this approach has to be adapted.
A (trivial) example of a non-Feller process is given by the translation semigroup on E = [0,∞)
with c > 0,

Ptf(x) = f(x+ ct), x > 0 , Ptf(0) = f(0) . (1.7)

The corresponding process moves deterministically to the right with finite speed or is stuck in 0.
The Chapman-Kolmogorov equations imply that (Pt : t ≥ 0) has a semigroup structure, we

summarize this and some further properties in the next result.

Proposition 1.1 Markov semigroups
Let (Xt : t ≥ 0) be a Feller process on E. Then the family

(
Pt : t ≥ 0

)
is a Markov semigroup,

i.e.

(a) P0f = f for all f ∈ C(E) (identity at t = 0)

1i.e. every point x ∈ E has a compact neighbourhood, such as Rn or Nn, n fixed. Other examples: {0, 1}Z is
compact w.r.t. product topology due to Tychonoff’s theorem, NZ is not locally compact.
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(b) limt↘0 Ptf = f for all f ∈ C(E), (strong continuity)

(c) Pt+sf = PtPsf for all f ∈ C(E), s, t ≥ 0, (semigroup/Markov property)

(d) Ptf ≥ 0 for all non-negative f ∈ C(E) . (positivity)

(e) If E is compact, Pt 1 = 1 for all t ≥ 0. If E is not compact, there exist fn ∈ C(E) so that
supn ‖fn‖ <∞ and Ptfn(x)→ 1 for all x ∈ E and t ≥ 0.

(conservation of probability)

Proof. (a) P0f(x) = Ex
(
f(X0)

)
= f(x) since X0 = x which is equivalent to (a) of Def. 1.1.

(b) pointwise convergence follows immediately from right-continuity of paths and continuity of
f . The required uniform convergence will be checked later making use of the resolvent which is
introduced below.
(c) follows from the Markov property of Xt (Def. 1.1(c))

Pt+sf(x) = Ex
[
f(Xt+s)

]
= Ex

[
Ex
[
f(Xt+s)

∣∣Ft]] = Ex
[
EXt

[
f(Xs)

]]
=

= Ex
[
(Psf)(Xt)

]
= PtPsf(x) . (1.8)

(d) is immediate by definition.
(e) Pt 1 = Ex[1] = Ex

[
1Xt(E)

]
= 1 since Xt ∈ E for all t ≥ 0. For non-compact E, 1 6∈ C(E),

but we can use pointwise converging indicator functions fn = 1An for a sequence of compact sets
An → E as n→∞. 2

Remarks. One consequence of the semigroup property (c) is that Ps and Pt commute. Using (d)
and (e), Pt is also contractive, i.e. for all f ∈ C(E) with compact E∥∥Ptf∥∥ ≤ ∥∥Pt|f |∥∥ ≤ ‖f‖∥∥Pt1∥∥ = ‖f‖ . (1.9)

Strong continuity and contractivity imply that t 7→ Ptf is actually uniformly strongly continuous
for all t > 0. Using also the semigroup property (c) we have for all t > ε > 0 and f ∈ C(E)∥∥Ptf − Pt−εf∥∥ =

∥∥Pt−ε(Pεf − f)∥∥ ≤ ∥∥Pεf − f∥∥ , (1.10)

which vanishes for ε↘ 0 and implies left-continuity. Right-continuity works analogously.

An important tool to study Markov semigroups is their Laplace transform, which is called the
resolvent and given by

Rλf :=

∫ ∞
0

e−λtPtf dt for all λ > 0 . (1.11)

The integral is well defined since t 7→ e−λtPtf is continuous and ‖e−λtPtf‖ ≤ e−λt‖f‖ by the
contraction property. Rλ is a linear operator on C(E) with

‖Rλf‖ ≤
1

λ
‖f‖ and lim

λ→∞
λRλf(x) = f(x) for all x ∈ E .

The semigroup property translates into the resolvent equation

Rλ −Rα = (λ− α)RλRα for all λ, α > 0 . (1.12)
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To see this write

RλRαf =

∫ ∞
0

e−λt
∫ ∞

0
e−αsPtPsf ds dt =

=

∫ ∞
0

e−λt
∫ ∞

0
e−αsPs+tf ds dt

=

∫ ∞
0

Prf

∫ r

0
e−λt−α(r−t)dt dr =

∫ ∞
0

Prf
e−λr − e−αr

λ− α
.

One consequence of (1.12) is that Rλ and Rα commute, and that the range R(Rλ) ⊆ C(E) is
independent of λ.

Remaining proof of Prop. 1.1(b). If f = Rλg ∈ R(Rλ) then we can write

Ptf =

∫ ∞
0

e−λsPs+tg ds =

∫ ∞
t

e−λ(r−t)Prg dr , (1.13)

which converges uniformly to f as t ↘ 0. To justify the interchanges of integration, note that
Ptf(x) is uniformly bouunded, continuous in t for each x and continuous in x for each t, so
jointly measurable in x and t. Therefore, ‖Ptf − f‖ → 0 for all f in the strong closure ofR(Rλ),
which is equal to the weak closure (see Corollary A.7 in [31]). Since λRλf converges pointwise
to f as λ→∞ for every f ∈ C(E), this can be used to define a weakly approximating sequence
of f and the weak closure ofR(Rλ) is the full space C(E). 2

The semigroup (Pt : t ≥ 0) describes the time evolution of expected values of observables f
on X for a given Markov process. In fact it weakly characterizes all finite-dimensional distri-
butions (Xt1 , . . . , Xtn) of the process for all n ≥ 1 and 0 ≤ t1 < . . . < tn. For example, one
dimensional distributions are given by the definition (1.6), and for two-dimensional distributions
consider for s < t

Ex
[
f(Xs)g(Xt)

]
= Ex

[
f(Xs)EXs [g(Xt−s)]

]
= Ps

(
f Pt−sg

)
(x) . (1.14)

With Proposition 1.1 and the following result, semigroups indeed provide a full characterization
of the process.

Theorem 1.2 Suppose (Pt : t ≥ 0) is a Markov semigroup on C(E). Then there exists a unique
(Feller) Markov process (Xt : t ≥ 0) on E such that

Exf(Xt) = Ptf(x) for all f ∈ C(E), x ∈ E and t ≥ 0 . (1.15)

Proof. Denote by µt1,...,tn the finite dimensional distributions on En generated by the semigroup.
The family of all these for n ≥ 1 is consistent, in the sense that

µt1,...,tn+1(A× E) = µt1,...,tn(A) (1.16)

for all Borel sets A ⊆ En. (In the compact case this simply follows from Pt1 = 1.) Then Kol-
mogorov’s extension theorem guarantees the existence of a unique measure P̄ on Ω̄ := E[0,∞) so
that the induced measure generated by the projection ω̄ 7→ (ω̄t1 , . . . , ω̄tn) from Ω̄ to En is equal
to µt1,...,tn for each n ≥ 1 and 0 ≤ t1 < . . . < tn.
The main work is to show that there exists a right-continuous version1 of the process P̄ with paths
in Ω = D[0,∞) ⊆ Ω̄. This is slightly technical, and can be found in [31] Theorem 3.26. 2

1(Xt : t ≥ 0) and (Yt : t ≥ 0) are versions, if for all t ≥ 0, P̄[Xt = Yt] = 1.
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1.1.3 Generators and semigroups

Markov semigroups can be characterized by an infinitesimal generator, which is defined as

Lf := lim
t↘0

Ptf − f
t

for all f ∈ DL , (1.17)

where the domain is given by

DL =
{
f ∈ C(E) : the (strong) limit in (1.17) exists

}
. (1.18)

In most cases of interest this is a proper subset of C(E) and is related to the range of the resolvent.
For any fixed λ > 0 the range R(Rλ) is equal to the domain DL of the generator and we have
Rλ = (λI− L)−1. The inverse exists for all λ > 0 since the spectrum of L is non-positive, as we
will come back to later. We summarize this and further important properties of the generator in
the next result.

Proposition 1.3 With operator L as defined in (1.17) we have for any g ∈ C(E) and λ > 0

f = λRλg if and only if f ∈ DL and satisfies f − λ−1Lf = g . (1.19)

Furthermore, L is a Markov generator, i.e. it is a linear operator with the following properties:

(a) DL is dense in C(E).

(b) For f ∈ DL, λ ≥ 0: infx∈E f(x) ≥ infx∈E(f − λLf)(x) . (positivity)

(c) The rangeR(I− λL) = C(E) for sufficiently small λ > 0.

(d) If E is compact, 1 ∈ DL and L1 = 0. If E is not compact, then there exist fn ∈ DL so that
gn = fn − λLfn satisfies supn ‖gn‖ <∞ and fn, gn → 1 pointwise.

(conservation of probability)

Remarks. Note that with property (b)

f ∈ DL, λ ≥ 0 and f − λLf = g imply ‖f‖ ≤ ‖g‖ . (1.20)

So for sufficiently small λ > 0, (I−λL)−1 is in fact an everywhere defined contraction that maps
non-negative functions to non-negative functions, which is related to positivity of the semigroup.
Property (d) ensures that Pt1 = 1 as we will see below (in the compact case).

Proof. Suppose f = λRλg for some λ > 0 and g ∈ C(E). Using the semigroup property and a
change of variables as in the remaining proof of Prop. 1.1(b) we get

Ptf − f
t

= λ
eλt − 1

t

∫ ∞
t

e−λsPsg ds−
λ

t

∫ t

0
e−λsPsg ds

→ λ2Rλg − λg = λ(f − g) as t↘ 0 . (1.21)

Property (b) in Prop. 1.1 is used in the passage to the limit. This proves one direction in (1.19) as
well as (c). Since λRλg ∈ DL and λRλg → g as λ→∞, DL is dense in C(E) proving (a).
For t > 0 and f ∈ DL put

gt :=
(

1 +
λ

t

)
f − λ

t
Ptf = f − λPtf − f

t
.
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Then, as t↘ 0, gt → f − λLf and(
1 + λ

t

)
inf
x
f(x) ≥ λ

t inf
x
Ptf(x) + inf

x
gt(x) ≥ λ

t inf
x
f(x) + inf

x
gt(x) ,

which implies (b).
Now suppose f − λ−1Lf = g for some f ∈ DL and λ > 0. By the direction of (1.19) already
proved, h = λRλg satisfies h−λ−1Lh = g, so that f = h by (1.20), finishing the proof of (1.19).
(d) is immediate from the definition (1.17) and Pt 1 = 1 for compact E, with similar modification
as before for non-compact E. 2

Theorem 1.4 (Hille-Yosida) There is a one-to-one correspondence between Markov generators
and semigroups on C(E), given by (1.17) and

Ptf := lim
n→∞

(
I− t

n
L
)−n

f for f ∈ C(E), t ≥ 0 . (1.22)

Furthermore, if f ∈ DL then Ptf ∈ DL for all t ≥ 0, is a continuously differentiable function of
t, and satisfies

d

dt
Ptf = PtLf = LPtf . (1.23)

These are called the Kolmogorov forward and backward equation, respectively.

Proof. To show (1.23), note that

d

dt
Ptf = lim

s↘0

Pt+sf − Ptf
s

= lim
s↘0

Pt
Psf − f

s
= lim

s↘0

Ps(Ptf)− Ptf
s

(1.24)

provided that any of the limits exists, since the expressions inside the limits are identical. The
middle limit exists, since f ∈ DL and Pt is a contraction, and therefore the others do as well. Due
to the third limit Ptf ∈ DL and (1.23) holds. The middle expression in (1.23) is continuous in t,
so Ptf is continuously differentiable.
For (1.22), iterate (1.19) and (1.11) to get

(I− λ−1L)−nf = λnRnλf =

∫ ∞
0

λnsn−1

(n− 1)!
e−λsTsf ds .

Therefore, (
I− t

n
L
)−n

= E
[
Pt(ξ1+...+ξn)/nf

]
where ξ1, ξ2, . . . are auxiliary i.i.d. exponential random variables with mean 1 (and corresponding
expectation E). If f ∈ DL,

‖Ptf − Psf‖ ≤ ‖Lf‖ |t− s|

by (1.23), so ∥∥∥∥(I− t

n
L
)−n

f − Ptf
∥∥∥∥ ≤ t‖Lf‖E∣∣∣ξ1 + . . .+ ξn

n
− 1
∣∣∣ .

For f ∈ DL the result now follows from the law of large numbers. Since DL is dense in C(E)
and all operators involved are contractions, it holds for all f ∈ C(E). 2
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Remarks. Ptf is the unique solution to the backward equation

d

dt
u(t) = Lu(t) with initial condition u(0) = f , (1.25)

so formally Pt = exp(Lt). So solutions to differential equations of the type (1.25) can be written
as expectations of a stochastic process, u(t, x) = Ptf(x) = Ex[f(Xt)], provided that the operator
on the right-hand side is a Markov generator. We will see a more general version of this idea later
in the Feynman-Kac formula.

When L is bounded (e.g. for finite E where L is simply a matrix as discussed later), there are
at least three ways of defining this exponential:

∞∑
n=0

(tL)n

n!
, lim

n→∞

(
I +

t

n
L
)n

and lim
n→∞

(
I− t

n
L
)−n

.

The last of these is the only one that makes sense also in case L is unbounded.

Examples. A jump process on E with transition rates c(x, dy) is given by the generator

Lf(x) =

∫
E
c(x, dy)

(
f(y)− f(x)

)
(1.26)

defined (at least) for all f ∈ C(E) with compact support. A special case is the Poisson process
PP (λ) with E = N0, c(x, y) = λδy,x+1 with rate λ > 0, which we discuss later in the context of
Markov chains.
On E = R the operator Lf = bf ′ for b ∈ R is a Markov generator with domain

DL =
{
f ∈ C(R) : f ′ ∈ C(R)

}
.

The corresponding semigroup is the (deterministic) translation Ptf(x) = f(x+ bt).
Standard Brownian motion on E = R is given by the generator Lf = 1

2f
′′ with domain

DL =
{
f ∈ C(R) : f ′, f ′′ ∈ C(R)

}
. (1.27)

The corresponding semigroup is given by the heat kernel

Ptf(x) =

∫
R
pt(x, y)f(y) dy , where pt(x, y) =

1√
2πt

e(y−x)2/(2t) (1.28)

is the pdf of the Gaussian N (x, t).
More generally, a diffusion process onE = R is a (Feller) Markov process with continuous paths.
It is given by the generator

Lf(x) = b(x)f ′(x) +
1

2
σ2(x)f ′′(x) (1.29)

with the same domain (1.27), provided that b, σ ∈ C(E). There is no Markov generator whose
restriction to smooth functions is given by Lf = f ′′′, since the positivity property (b) in Prop. 1.3
is not fulfilled. The process can also be represented as a solution to the stochastic differential
equation dXt = b(Xt) dt+ σ(Xt) dBt, which we will not discuss in further detail.
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Remark on domains. The domain of the generator is of great importance, and is not only a
technical detail. For example, boundary conditions for processes are encoded in a restriction of
the domain, not the action of the operator. For Brownian motion on E = [0,∞) with absorbing
boundary condition in 0 has generator Laf = 1

2f
′′ for functions in the restricted domain

DL =
{
f ∈ C([0,∞)) : f ′, f ′′ ∈ C([0,∞)), f ′′(0) = 0

}
.

For reflecting boundary conditions, the domain would be

DL =
{
f ∈ C([0,∞)) : f ′, f ′′ ∈ C([0,∞)), f ′(0) = 0

}
.

In general by taking closures1, a bounded linear operator is uniquely determined by its values on
a dense set. But generators are usually unbounded such as the differential operators above, and
there are simple counter examples related to Brownian motion with boundary conditions (see [31],
Remark 3.57). But in general it is hard to fully characterize the domain of a generator, and it is
desirable to uniquely define them on a suitable smaller set. We say that D ⊆ DL is a core for L if
the closure of L|D = L. Therefore L is determined by its values on D.
For example, f ∈ C(E) with compact support are a core for the generator (1.26), or f ∈ C2(R)
with compact support for Brownian motion.

1.1.4 Martingale characterization

Recall that the conditional expectation E[X|G] of a random variable X on the probability space
(Ω,F ,P) w.r.t. the sub-σ-algebra G is a G-measurable random variable which satisfies

E
[
1GE[X|G]

]
=

∫
G
E[X|G]dP =

∫
G
XdP = E[X1G] for all G ∈ G . (1.30)

A martingale w.r.t. a filtration (Ft : t ≥ 0) is a real-valued stochastic process (Mt : t ≥ 0) adapted
to that filtration with

E[|Mt|] <∞ and E[Mt|Fs] = Ms for all t ≥ s ≥ 0 . (1.31)

Martingales have constant expectation and therefore no drift. In general, stochastic processes can
be decomposed into a drift term and fluctuations around that, which are given by a martingale.
The size of the fluctuations is characterized by the quadratic variation process of a martingale Mt

written as [M ]t, which is the unique right-continuous and increasing process such that M2
t − [M ]t

is a local martingale.

Definition 1.2 Let L be a linear operator on C(E) with domain D. A measure P on D[0,∞) is a
solution to the martingale problem for L with initial condition x ∈ E, if

(a) P[X0 = x] = 1, and

(b) for all f ∈ D, the process

Mf
t := f(Xt)− f(x)−

∫ t

0
Lf(Xs) ds (1.32)

is a martingale w.r.t. P and the natural filtration (Ft : t ≥ 0).
1A linear operator L on C(E) is closed if its graph

{
(f,Lf) : f ∈ DL

}
is a closed subset of C(E)× C(E).
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Theorem 1.5 Let L be a Markov generator and let (Px : x ∈ E) be the corresponding unique
Feller process. Then for each x ∈ E, Px is the unique solution to the martingale problem for L
with initial condition x.
On the other hand, suppose that for each x ∈ E the solution to the martingale problem for a linear
operator L on C(E) with initial condition x is unique. Then (Px : x ∈ E) is a Feller process on
E whose generator is L.

’Proof’. (for details see [6], Sections I.5 and I.6, and [31], Section 3.4.2.)
Let (Xt : t ≥ 0) be a Markov process with generator L. Then for all s ≤ t we can write

Mf
t = f(Xs)− f(X0) +

∫ s

0
Lf(Xu) du︸ ︷︷ ︸

Mf
s

+f(Xt)− f(Xs) +

∫ t

s
Lf(Xu) du . (1.33)

The forward equation (1.23) implies

E
[
f(Xt)− f(Xs)

∣∣Fs] = E
[ ∫ t

s
Lf(Xu)du

∣∣∣Fs] (1.34)

which leads to (1.31),

E
[
Mf
t

∣∣Fs] = Mf
s +E

[
f(Xt)−f(Xs)+

∫ t

s
Lf(Xu) du

]
= Mf

s . (1.35)

Also, for f ∈ C(E) it can be shown that E(|Mf
t |) <∞ for all t ≥ 0.

On the other hand, if (1.32) is a martingale, this implies

d

dt
E[Mf

t ] =
d

dt
E
[
f(Xt)

]
− E

[
Lf(Xs)

]
= 0 (1.36)

for all f , which uniquely identifies L as the generator of the process using Theorem 1.4. 2

Uniqueness of the solution to the martingale problem is often hard to show, we will see a suf-
ficient condition on the generator for a particular class of processes later. The quadratic variation
of the martingale (1.32) is

[Mf ]t =

∫ t

0

(
Lf2(Xs)− 2f(Xs)Lf(Xs)

)
ds . (1.37)

Note that (f(Xt) : t ≥ 0) itself is a martingale if and only if Lf = 0.

Examples. Let (Nt : t ≥ 0) be a Poisson process PP (λ) with generator Lf(x) = λ
(
f(x+ 1)−

f(x)
)
. Then we have Lx = λ, Lx2 = λ(2x+ 1) and with Theorem 1.5 we get that

Mt = Nt − λt is a martingale with quadratic variation [M ]t = λt . (1.38)

Therefore (Nt − λt)2 − λt is also a martingale.
For standard Brownian motion (Bt : t ≥ 0) with generator Lf = 1

2f
′′ we have with Theorem 1.5

f(x) = x ⇒ Bt itself is a martingale with quadratic variation t ,

f(x) = x2 ⇒ B2
t − t is a martingale . (1.39)

11



In fact, for both processes the reverse is also true, i.e. on the given respective state space the
Poisson process and Brownian motion are characterized by the above martingale properties.

For a diffusion process (Xt : t ≥ 0) with generator (1.29) we have Lx = b(x) and Lx2 =
2xb(x) + σ2(x), so we get with Theorem 1.5,

Mt = Xt −X0 −
∫ t

0
b(Xs) ds =

∫ t

0
σ(Xs) dBs (1.40)

is a martingale, with quadratic variation
∫ t

0 σ
2(Xs) ds. The stochastic (Itô) integral on the r.h.s. is

a result of the SDE representation of the process. (Xt : t ≥ 0) is itself a martingale if and only if
b(x) ≡ 0.

1.2 Markov chains

1.2.1 Analytic description

Throughout this section let E be a countable set with the discrete topology P(E), so that every
function f : E → R is continuous. Markov processes (Xt : t ≥ 0) on E are called (continuous-
time) Markov chains. The transition kernel is now simply a function in pt(x, y) = Px[Xt = y],
and the associated semigroup can be interpreted as a (possibly infinite) matrix

Pt =
(
pt(x, y) : x, y ∈ E

)
with p0(x, y) = δx,y . (1.41)

The Chapman-Kolmogorov equations can by written as Pt+s = PtPs and they imply in particular

ps+t(x, x) ≥ ps(x, x) pt(x, x) for all x ∈ E and s, t ≥ 0 .

By strong continuity (Prop.1.1(b)), this in turn implies that pt(x, x) > 0 for all t ≥ 0 and x ∈ E.
Furthermore, f(t) := − log pt(x, x) is a sub-additive function1 with f(0) = 0, and therefore the
derivative

c(x, x) :=
d

dt
pt(x, x) = lim

t↘0

pt(x, x)− 1

t
= lim

t↘0

− log pt(x, x)

t
∈ [−∞, 0] (1.42)

exists. A state x ∈ E is called instantaneous if |c(x, x)| = ∞, and absorbing if c(x, x) = 0.
See e.g. [31] Section 2.4 for an example by Blackwell where all states of a Markov chain are
instantaneous. If |c(x, x)| <∞ it can be shown that (cf. Theorem 2.14 in [31])

c(x, y) :=
d

dt
pt(x, y)

∣∣∣
t=0
∈ [0,∞) (1.43)

exists for all y 6= x, and∑
y∈E

c(x, y) ≤ 0 . (1.44)

c(x, y) is called the transition rate from state x to y, and c(x, x) = 0 implies c(x, y) = 0 also for
all x 6= y. For a given process (Px : x ∈ E) the rates can be identified via

Px[Xt = y] = c(x, y) t+ o(t) as t↘ 0 for x 6= y , (1.45)

1i.e. f(t+ s) ≤ f(t) + f(s)
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and represent probabilities per unit time.
If strict inequality holds in (1.44) the chain is called explosive, and if equality holds we have

c(x) := −c(x, x) =
∑
y 6=x

c(x, y) ,

which corresponds to the total exit rate from state x. With the definition (1.17) this yields for the
generator of the Markov chain

Lf(x) = lim
t↘0

Ptf − f
t

=
∑
y∈E

c(x, y)
(
f(y)− f(x)

)
, (1.46)

for all f ∈ C(E) such that the sum converges. Note that for Markov chains the generator is often
written in terms of the Q-matrix (see e.g. [11] Section 2.1)

Q :=
(
c(x, y) : x, y ∈ E

)
so that Lf(x) = Q|f〉(x) ,

where Q|f〉 denotes the standard matrix product with a column vector |f〉.

Example. For the simple random walk with state space E = Z we have

c(x, x+ 1) = p and c(x, x− 1) = q , (1.47)

while all other transition rates vanish. The generator is given by

Lf(x) = p
(
f(x+ 1)− f(x)

)
+ q
(
f(x− 1)− f(x)

)
, (1.48)

and in the symmetric case p = q it is proportional to the discrete Laplacian.

All Markov chains with non-instantaneous states have a generator (1.46), and the correspond-
ing semigroup Ptf = eLtf is given by a solution of the backward equation (1.25). If the chain is
explosive, this solution is sub-stochastic, i.e.∑

y∈E
pt(x, y) < 1 for such x ∈ E where inequality is strict in (1.44),

and sample paths can leave the state space after a finite amount of time (disappear at infinity), as
is discussed in the next subsection.

Note that Markov chains are Feller processes in the sense of the previous subsection, such that
the equivalence of generators, semigroups and the process fully applies, if and only if there are no
instantaneous states and the chain is not explosive. One sufficient condition for this is for E to be
finite and therefore compact, in which case the domain of the generator is the full set DL = C(E)
of all functions f : E → R. The same holds for infinite E, provided that the rates are uniformly
bounded, i.e.

c̄ := sup
x∈E

c(x) <∞ . (1.49)

This follows from the uniform bound since for every f ∈ C(E)

‖Lf‖ = sup
x∈E
Lf(x) ≤ 2‖f‖ sup

x∈E

∑
y∈E

c(x, y) = 2‖f‖c̄ <∞ . (1.50)

13



In particular, indicator functions f = 1x : E → {0, 1} are always in C(E) (since we use the
discrete topology) and we have∫

E
Pt1xdµ =

∑
y∈E

(Pt1x)(y)µ(y) = Pµ[Xt = x] =: µt(x) (1.51)

for the distribution at time t with µ0(x) = µ(x). Using this and (1.46) we get for the right-hand
side of the backward equation (1.25) for all x ∈ E∫

E
LPt1xdµ =

∑
y∈E

µ(y)
∑
z∈E

c(y, z)
(
Pt1x(z)− Pt1x(y)

)
=

=
∑
y∈E

µt(y)
(
c(y, x)− 1x(y)

∑
z∈E

c(y, z)
)

=

=
∑
y∈E

µt(y)
(
c(y, x)− µt(x)

∑
z∈E

c(x, z)
)
, (1.52)

where in this particular computation only we use the convention c(x, x) = 0, x ∈ E for simplicity.
In summary, we get

d

dt
µt(x) =

∑
y 6=x

(
µt(y) c(y, x)− µt(x) c(x, y)

)
, µ0(x) = µ(x) . (1.53)

This is called the master equation, with intuitive gain and loss terms into state x on the right-hand
side. It makes sense only for countable E, and in that case it is actually equivalent to (1.25), since
the indicator functions form a basis of C(E).

If the state space is finite, the semigroup is simply given by the standard matrix exponential

Pt = etQ =

∞∑
k=0

tk

k!
Qk .

Let λi ∈ C, i = 1, . . . , |E| be the eigenvalues of Q with corresponding left and right eigenvectors
〈vi| and |wi〉, respectively. Assume that all λi are distinct, then eigenvectors are orthogonal and
we can normalize them such that they form an orthonormal basis with 〈vi|wj〉 = δij . Then

Q =

|E|∑
i=1

λi|wi〉〈vi| , and Pt =

|E|∑
i=1

eλit |wi〉〈vi| ,

with matrices |wi〉〈vi| projecting on the eigenspace of λi. This also provides a solution to the
master equation (1.53) written as a row vector 〈µt| = (µt(x) : x ∈ E),

〈µt| = 〈µ0|Pt =

|E|∑
i=1

〈µ0|wi〉 eλit〈vi| . (1.54)

Since Q|1〉 = |0〉, we know that λ1 = 0 is an eigenvalue with |w1〉 = |1〉. The Perron-Frobenius
theorem then implies that 〈v1| has positive entries, and all other non-zero eigenvalues have negative
real part Re(λi) < 0. Therefore, using 〈µ0|w1〉 = 1,

〈µt| → 〈v1| as t→∞ , (1.55)

which is the stationary distribution of the Markov chain. We will get back to stationary distribu-
tions in Section 2.
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1.2.2 Probabilistic construction

Now we would like to get an understanding of the time evolution of a sample path and the role of
the transition rates. For a process with X0 = x, we denote by

Wx := inf{t ≥ 0 : Xt 6= x} (1.56)

the holding time in state x. Its distribution is related to the total exit rate out of state x, c(x) =∑
y 6=x c(x, y), which we assume to be uniformly bounded (1.49). If c(x) = 0, x is an absorbing

state and Wx =∞ a.s. .

Proposition 1.6 If c(x) ∈ (0,∞), Wx ∼ Exp(c(x)) and Px(XWx = y) = c(x, y)/c(x) .

Proof. Wx has the ’loss of memory’ property

Px(Wx > s+ t|Wx > s) = Px(Wx > s+ t|Xs = x) = Px(Wx > t) , (1.57)

the distribution of the holding timeWx does not depend on how much time the process has already
spent in state x. Thus

Px(Wx > s+ t, Wx > s) = Px(Wx > s+ t) = Px(Wx > s)Px(Wx > t) . (1.58)

Analogous to the Chapman-Kolmogorov equations, this is is solved by an exponential (using also
continuity in time) and implies that

Px(Wx > t) = eλt (with initial condition Px(Wx > 0) = 1) . (1.59)

The exponent is given by

λ =
d

dt
Px(Wx > t)

∣∣
t=0

= lim
t↘0

Px(Wx > t)− 1

t
= −c(x) , (1.60)

since with (1.45)

Px(Wx > 0) = 1− Px(Xt 6= x) + o(t) = 1− c(x)t+ o(t) . (1.61)

Now, conditioned on a jump occurring in the time interval [t, t+ h) we have

Px(Xt+h = y|t ≤Wx < t+ h) = Px(Xh = y|Wx < h) =
Px(Xh = y)

Px(Wx < h)
→ c(x, y)

c(x)
(1.62)

as h ↘ 0, using the Markov property and L’Hopital’s rule with (1.45) and (1.60). With right-
continuity of paths, this implies the second statement. 2

It can be shown that every Feller process and every Markov chain fulfils the strong Markov
property. That is, if Ys(ω) is jointly measurable on [0,∞) × Ω, and τ is a stopping time1, then
for all x ∈ E

Ex[Yτ ◦ θτ |Fτ ] = EXτ [Yτ ] Px − a.s. on {τ <∞} .
1i.e. {τ(ω) ≤ t} ∈ Ft)
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W0

W1

W2

time t0

1

2

3

Nt

Figure 1: Sample path (càdlàg) of a Poisson process with holding times W0, W1, . . ..

For a proof see e.g. [31], Theorem 1.68 (as well as Theorem 2.16 and Theorem 3.3). This enables
us to construct sample paths of Markov chains iteratively, as is illustrated in Figure 1. Paths are
piecewise constant, right-continuous functions, and jumps occur at jump times, defined recur-
sively as

J0 = 0 and Jn+1 = inf{t > Jn : Xt 6= XJn} .
Note that jump times are stopping times due to right-continuity of paths.

We summarize some important properties of exponential random variables, the proof of which
can be found in any standard textbook. LetW1,W2, . . . be a sequence of independent exponentials
Wi ∼ Exp(λi). Then E(Wi) = 1/λi and

min{W1, . . . ,Wn} ∼ Exp
( n∑
i=1

λi

)
. (1.63)

The sum of iid exponentials with λi = λ is Γ-distributed, i.e.
n∑
i=1

Wi ∼ Γ(n, λ) with PDF
λnwn−1

(n− 1)!
e−λw . (1.64)

Example. The Poisson process (Nt : t ≥ 0) with rate λ > 0 (short PP (λ)) is a Markov chain
with X = N = {0, 1, . . .}, N0 = 0 and c(n,m) = λ δn+1,m.

For the Poisson process (Nt : t ≥ 0) ∼ PP (λ) the holding times are iidrv’s Wi ∼ Exp(λ) and
we can write Nt = max{n :

∑n
i=1Wi ≤ t}. This implies

P[Nt = n] = P
[ n∑
i=1

Wi ≤ t <
n+1∑
i=1

Wi

]
=

∫ t

0
P
[ n∑
i=1

Wi ∈ ds
]
P(Wn+1 > t−s) =

=

∫ t

0

λnsn−1

(n− 1)!
e−λs e−λ(t−s) ds =

(λt)n

n!
e−λt , (1.65)

so Nt ∼ Poi(λt) has a Poisson distribution. Alternatively a Poisson process can be characterized
by the following.

Proposition 1.7 (Nt : t ≥ 0) ∼ PP (λ) if and only if it has stationary, independent increments,
i.e.

Nt+s −Ns ∼ Nt −N0 and Nt+s −Ns independent of (Nu : u ≤ s) , (1.66)

and for each t, Nt ∼ Poi(λt).
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Proof. By the loss of memory property and (1.65) increments have the distribution

Nt+s −Ns ∼ Poi(λt) for all s ≥ 0 , (1.67)

and are independent of Ns which is enough together with the Markov property.
The other direction follows by deriving the jump rates from the properties in (1.66) using (1.45).
2

Remember that for independent Poisson variables Y1, Y2, . . . with Yi ∼ Poi(λi) we have
E[Yi] = V ar[Yi] = λi and

n∑
i=1

Yi ∼ Poi
( n∑
i=1

λi

)
. (1.68)

With Prop. 1.7 this immediately implies that adding a finite number of independent Poisson pro-
cesses (N i

t : t ≥ 0) ∼ PP (λi), i = 1, . . . , n results in a Poisson process, i.e.

Nt =

n∑
i=1

N i
t ⇒ (Nt : t ≥ 0) ∼ PP

( n∑
i=1

λi

)
. (1.69)

In the following we will identify a sample path of the Poisson process t 7→ (Nt(ω)) with the set of
jump times {Jn(ω) : n ∈ N} which is a locally finite subset of [0,∞). This second interpretation
can be generalized to higher dimensions in the form of Poisson point processes.

Example. A continuous-time simple random walk (Xt : t ≥ 0) on E = Z with jump rates p to
the right and q to the left is given by

Xt = Rt − Lt where (Rt : t ≥ 0) ∼ PP (p), (Lt : t ≥ 0) ∼ PP (q) . (1.70)

The process can be constructed by the following graphical representation:

X=Z

time

0 21−1−2−3−4 3 4
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In each column the arrows →∼ PP (p) and ←∼ PP (q) are independent Poisson (point) pro-
cesses. Together with the initial condition, the trajectory of the process shown in red is then
uniquely determined. An analogous construction is possible for a general Markov chain, which is
a continuous time random walk on E with jump rates c(x, y). In this way we can also construct
interacting random walks and more general stochastic particle systems, as is shown in the next
section.

Note that the graphical construction provides a sample ω ∈ D[0,∞) of a path with distribution
Px for each initial condition x ∈ E. It can also be used to construct a coupling of paths with
different initial distributions. For the construction and the process to be well defined on a countably
infinite state spaceE, a sufficient condition are uniformly bounded jump rates c̄ <∞ (1.49) which
also guarantee the Feller property of the process.

For unbounded rates the Markov chain may explode, i.e. sample paths leave the state space
after exhibiting infinitely many jumps within finite time (see e.g. [11], Section 2.7). The explosion
time is then given by the limit of jump times

J∞ := lim
n→∞

Jn ∈ [0,∞] ,

where J∞ = ∞ corresponds to no explosion. A standard example is a pure birth process on
E = N0 with rates c(x, y) = δy,x+1(x + 1)α, α > 0. We can compute the expected explosion
time

E0[J∞] = E0
[ ∞∑
n=0

Wn

]
=
∞∑
n=0

(n+ 1)−α ,

which is finite if and only if α > 1. In that case J∞ <∞ P0 − a.s. and the process explodes.

1.3 Stochastic particle systems

1.3.1 Simple examples of IPS

For the stochastic particle systems (IPS for interacting particle systems) (ηt : t ≥ 0) introduced in
this section the state space is of the form E = {0, 1}Λ, with particle configurations η = (η(i) :
i ∈ Λ). η(i) = 1 means that there is a particle at site i and if η(i) = 0 site i is empty. The lattice
Λ can be any countable set, typical examples we have in mind are regular lattices Λ = Zd, subsets
of those, or the vertex set of a given graph.

If Λ is infinite E is uncountable, so we are not necessarily dealing with Markov chains in this
section. But for the processes we consider the particles move/interact only locally and one at a
time, so a description with jump rates still makes sense. More specifically, for a given η ∈ E there
are only countably many η′ for which c(η, η′) > 0. Define the configurations ηi and ηij ∈ E for
i 6= j ∈ Λ by

ηi(k) =

{
η(k) , k 6= i

1− η(k) , k = i
and ηij(k) =


η(k) , k 6= i, j

η(k)− 1 , k = i
η(k) + 1 , k = j

, (1.71)

so that ηi corresponds to creation/annihilation of a particle at site i, and ηij to motion of a particle
from i to j. Then following standard notation we write for the corresponding jump rates

c(i, η) = c(η, ηi) and c(i, j, η) = c(η, ηij) . (1.72)
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All other jump rates including e.g. multi-particle interactions or simultaneous motion are zero.
In the following, let p(i, j) ≥ 0, i, j ∈ Λ, be transition rates of an irreducible continuous-time
random walk on Λ.

Definition 1.3 The exclusion process (EP) on E is characterized by the jump rates

c(i, j, η) = p(i, j)η(i)
(
1− η(j)

)
, i, j ∈ Λ (1.73)

where particles only jump to empty sites (exclusion interaction). If Λ is a regular lattice and
p(i, j) > 0 only if i and j are nearest neighbours, the process is called simple EP (SEP). If
in addition p(i, j) = p(j, i) for all i, j ∈ Λ it is called symmetric SEP (SSEP) and otherwise
asymmetric SEP (ASEP).

Note that the presence of a direct connection (or directed edge) (i, j) is characterized by p(i, j) >
0, and irreducibility of p(i, j) is equivalent to

(
Λ, (p(i, j) : i, j ∈ Λ)

)
being strongly connected

graph. Particles only move and are not created or annihilated, therefore the number of particles in
the system is conserved in time. In general such IPS are called lattice gases. The ASEP in one
dimension d = 1 is one of the most basic and most studied models in IPS and nonequilibrium
statistical mechanics (see e.g. [27] and references therein), and a common quick way of defining
it is

10
p−→ 01 , 01

q−→ 10 (1.74)

where particles jump to the right (left) with rate p (q).

X=Z

time

0 21−1−2−3−4 3 4

The graphical construction is analogous to the single particle process given above, with the addi-
tional constraint of the exclusion interaction.
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Definition 1.4 The contact process (CP) on E is characterized by the jump rates

c(i, η) = η(i) +
(
1− η(i)

)∑
j∈E

p(j, i)η(j) (1.75)

Particles can be interpreted as infected sites which recover with rate 1 and are infected indepen-
dently with rate p(j, i) > 0 by an infected neighbour.

In contrast to the EP the CP does not have a conserved quantity like the number of particles, but it
does have an absorbing state η ≡ 0, since there is no spontaneous infection. Often p(i, j) ∈ {0, λ}
with constant infection rate λ > 0 in case to individuals are connected. A compact notation for
the CP is then

1
1−→ 0 , 01

λ−→ 11 . (1.76)

The graphical construction below contains now a third independent Poisson process × ∼ PP (1)
on each line marking the recovery events. The infection events are marked by the independent
PP (λ) Poisson processes→ and←.

X=Z

time

0 21−1−2−3−4 3 4

Systems with flip dynamics as above are often called spin systems, further examples include
kinetic Ising models or voter models (see e.g. [31], Section 4).

1.3.2 General facts on IPS

For general IPS the local state space {0, 1} is replace by a general subset S ⊆ N. Note that the
state space E = SΛ is uncountable if Λ is countably infinite, but compact, provided that the local
state space S ⊆ N is finite as in the two examples above, which will be useful later. The discrete
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topology on the local state space S is simply given by the power set P(S), i.e. all subsets are open.
The product topology σ on E is then given by the smallest topology such that all the canonical
projections η(x) : E → S (occupation at a site x for a given configuration η) are continuous. That
means that σ is generated by sets

η(i)−1(U) = {η : η(i) ∈ U} , U ⊆ S , (1.77)

which are called open cylinders. Finite intersections of these sets

{η : η(i1) ∈ U1, . . . , η(in) ∈ Un} , n ∈ N, Ui ⊆ S (1.78)

are called cylinder sets, and any open set on E is a (finite or infinite) union of cylinder sets.
Clearly if S is compact (i.e. finite), by Tychonoff’s theorem any product of compact topological
spaces is compact (w.r.t. the product topology). This holds for any countable lattice or vertex set
Λ.

We can formally write down expressions for the generator similar to Markov chains (1.46).
For a lattice gas with S = {0, 1} (e.g. SEP) we have

Lf(η) =
∑
x,y∈Λ

c(x, y, η)
(
f(ηxy)− f(η)

)
, (1.79)

and for spin systems like the CP

Lf(η) =
∑
x∈Λ

c(x, η)
(
f(ηx)− f(η)

)
. (1.80)

For infinite lattices Λ convergence of the sums is an issue and we have to find a proper domain DL
of functions f for which they are finite.

Definition 1.5 For E = SΛ with S ⊆ N, f ∈ C(E) is a cylinder function if there exists a finite
subset ∆f ⊆ Λ such that

f(η) = f(ζ) for all η, ζ ∈ E with η(i) = ζ(i) for all i ∈ ∆f , (1.81)

i.e. f depends only on a finite set of coordinates of a configuration (i.e. it is constant on particular
cylinder sets). We write C0(E) ⊆ C(E) for the set of all cylinder functions.

Examples. The indicator function 1η is in general not a cylinder function (only on finite lattices,
where it is also continuous), whereas the local particle number η(i) or the product η(i)η(j) are.
These functions are important observables, and their expectations correspond to local densities

ρ(t, i) := Eµ
(
ηt(i)

)
(1.82)

and two-point correlation functions

θ(t, i, j) := Eµ
(
ηt(i)ηt(j)

)
. (1.83)

For f ∈ C0(E) the sum (1.80) contains only finitely many non-zero terms, so converges for any
given η. However, we need Lf to be finite w.r.t. the sup-norm of our Banach space

(
C(E), ‖.‖

)
.

To assure this, we also need to impose some regularity conditions on the jump rates. For sim-
plicity we will assume them to be of finite range as explained below. This is much more than is
necessary, but it is easy to work with and fulfilled by all the examples we consider. In general,
the independence of cylinder functions f and jump rates c on coordinates i outside a finite range
∆ ⊆ Λ can be replaced by a weak dependence on coordinates i 6∈ ∆ decaying with increasing ∆
(see e.g. [6] Sections I.3 and VIII.0 for a more general discussion).
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Definition 1.6 The jump rates of an IPS on E = {0, 1}Λ are said to be of finite range R > 0 if
for all i ∈ Λ there exists a finite ∆ ⊆ Λ with |∆| ≤ R such that

c(i, ηk) = c(i, η) for all η ∈ E and k 6∈ ∆ . (1.84)

in case of a spin system. For a lattice gas the same should hold for the rates c(i, j, η) for all j ∈ Λ,
with the additional requirement∣∣∣{j ∈ Λ : c(i, j, η) > 0

}∣∣∣ ≤ R for all η ∈ E and x ∈ Λ . (1.85)

Proposition 1.8 Under the condition of finite range jump rates, ‖Lf‖ < ∞ for all f ∈ C0(E).
Furthermore, C0(E) is a core for the operators L defined in (1.79) and (1.80), and their unique
extensions are Markov generators in the sense of Prop. 1.3.

Proof. Consider a spin system with rates c(i, η) of finite range R. Then for each i ∈ Λ, c(i, η)
assumes only a finite number of values (at most 2R), and therefore c̄(i) = supη∈E c(i, η) < ∞.
Then we have for f ∈ C0(E), depending on coordinates in ∆f ⊆ Λ,

‖Lf‖ ≤ 2‖f‖ sup
η∈E

∑
i∈∆f

c(i, η) ≤ 2‖f‖
∑
i∈∆f

sup
η∈E

c(i, η) ≤

≤ 2‖f‖
∑
i∈∆f

c̄(i) <∞ , (1.86)

since the last sum is finite with finite summands. A similar computation works for lattice gases.
The proof of the second statement is more involved, see e.g. [6], Theorem I.3.9. Among other
points, this involves choosing a proper metric such that C0(E) is dense in C(E), which is not the
case for the one induced by the sup-norm. Details can also be found in Section 4.2 of [31]. 2

Generators are linear operators and Prop. 1.3 then implies that the sum of two or more generators
is again a Markov generator, modulo technicalities regarding domains, which can be substantial
on infinite lattices or for general Feller processes (see e.g. [10]). In that way we can define more
general processes, e.g. a sum of (1.79) and (1.80) could define a contact process with nearest-
neighbour particle motion. As mentioned before, on finite lattices with compact S we have a finite
state space E, and the domain of all generators is simply C(E).
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2 Stationary measures, symmetries and time reversal

2.1 Stationary and reversible measures, currents

We are back to general Markov processes (Xt : t ≥ 0) on complete separable metric spaces E.

Definition 2.1 For a process (Pt : t ≥ 0) with initial distribution µ we denote by µt or µPt ∈
M1(E) the distribution at time t (previously µt), which is uniquely determined by∫

E
f d[µPt] :=

∫
E
Ptf dµ for all f ∈ C(E) . (2.1)

The notation µPt is a convention from functional analysis, where one often writes

(µ, Ptf) :=

∫
E
Ptf dµ = (P †t µ, f) = (µPt, f) . (2.2)

The distribution µ is in fact evolved by the adjoint operator P †t , and we usually denote it by
P †t µ = µPt which is also reminiscent of the notation for Markov chains in (1.54). The fact that
µPt is uniquely specified by (2.1) is due to the standard duality of measures and functions C(E)
and the Riesz representation theorem (see e.g. [13], Theorem 2.14).

Definition 2.2 A measure µ ∈M1(E) is stationary or invariant if µPt = µ or, equivalently,∫
E
Ptf dµ =

∫
E
f dµ or shorter µ

(
Ptf
)

= µ(f) for all f ∈ C(E) . (2.3)

The set of all invariant measures of a process is denoted by I. A measure µ is called reversible if

µ
(
fPtg

)
= µ

(
gPtf

)
for all f, g ∈ C(E) . (2.4)

To simplify notation here and in the following we use the standard notation µ(f) =
∫
E f dµ for

integration, which is the expected value w.r.t. the measure µ on state space E. We use the symbol
E only for expectations on path space w.r.t. the measure P.
Taking g = 1 in (2.4) we see that every reversible measure is also stationary.

Proposition 2.1 Consider a Feller process on state space E with generator L. Then

µ ∈ I ⇔ µ(Lf) = 0 for all f ∈ DL (or a suitable core) , (2.5)

and similarly

µ is reversible ⇔ µ(fLg) = µ(gLf) for all f, g ∈ DL . (2.6)

Proof. The correspondence between semigroups and generators in the is given Hille-Yosida theo-
rem in terms of limits in (1.17) and (1.22). By strong continuity of Pt in t = 0 and restricting to
f ∈ DL we can re-write the conditions as

Lf := lim
n→∞

P1/nf − f
1/n︸ ︷︷ ︸
:=hn

and Ptf := lim
n→∞

(
Id− t

n
L
)−n

f . (2.7)

23



Now µ ∈ I implies that for all n ∈ N

µ
(
P1/nf

)
= µ(f) ⇒ µ(hn) = 0 . (2.8)

Then we have

µ(Lf) = µ
(

lim
n→∞

hn

)
= lim

n→∞
µ(hn) = 0 , (2.9)

by bounded (or dominated) convergence, since hn converges in
(
C(E), ‖.‖

)
as long as f ∈ DL,

and we have µ(E) = 1.
On the other hand, if µ(Lf) = 0 for f ∈ DL and we write h = f − λLf then µ(f) = µ(h).
Rewriting this we have

µ
(
(I− λL)−1h

)
= µ(h) , for all h ∈ DL and λ ≥ 0 .

Iterating this n times with λ = 1/n and taking n→∞ implies µ ∈ I, since for all t ≥ 0

µ
(
Pth
)

= lim
n→∞

µ
((

I− tL/n
)−n)

= µ(h) .

This finishes the proof of (2.5), a completely analogous argument works for the equivalence (2.6)
on reversibility. 2

It is well known for Markov chains that on a finite state space there exists at least one stationary
distribution, namely the left eigenvector 〈v1|Q = 〈0| in (1.55). For IPS compactness of the state
spaces E ensures a similar result.

Theorem 2.2 For every Feller process with compact state space E we have:

(a) I is non-empty, (weakly) compact and convex.

(b) Suppose the weak limit µ = lim
t→∞

πPt exists for some initial distribution π ∈M1(E), i.e.

πPt(f) =

∫
E
Ptf dπ → µ(f) for all f ∈ C(E) , (2.10)

then µ ∈ I.

Proof. (a) Convexity of I follows directly from two basic facts. Firstly, a convex combination of
two probability measures µ1, µ2 ∈M1(E) is again a probability measure, i.e.

ν := λµ1 + (1− λ)µ2 ∈M1(E) for all λ ∈ [0, 1] . (2.11)

Secondly, the stationarity condition (2.5) is linear, i.e. if µ1, µ2 ∈ I then so is ν since

ν(Lf) = λµ1(Lf) + (1− λ)µ2(Lf) = 0 for all f ∈ C(E) . (2.12)

I is a weakly closed subset ofM1(E) if we have

µ1, µ2, . . . ∈ I, µn → µ weakly, implies µ ∈ I . (2.13)

But this is immediate by weak convergence, since for all f ∈ C(E)

µn(Lf) = 0 for all n ∈ N ⇒ µ(Lf) = lim
n→∞

µn(Lf) = 0 . (2.14)
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Under the topology of weak convergenceM1(E) is compact since E is compact1, and therefore
also I ⊆M1(E) is compact since it is a closed subset of a convex set.
Non-emptyness: Define

πn =
1

n

∫ n

0
πTsds for some π ∈M1(E) .

Then we can show analogously to (b) below that

πn(f)− πn(Ttf)→ 0 as n→∞ . (2.15)

Then by Prohorov’s theorem, there exists a subsequence nk such that πnk ⇒ µ for some µ ∈
M1(E). Since Ttf ∈ C(E) we can pass to the limit in (2.15) along the subsequence to get
µ(f) = µ(Ttf) so that ν ∈ I.
(b) Let µ := limt→∞ πPt. Then µ ∈ I since for all f ∈ C(E),

µ(Psf) = lim
t→∞

∫
E
Psf d[πPt] = lim

t→∞

∫
E
PtPsf dπ =

= lim
t→∞

∫
E
Pt+sf dπ = lim

t→∞

∫
E
Ptf dπ = lim

t→∞

∫
E
f d[πPt] = µ(f) . (2.16)

2

Remarks. Note that we need to take a Césaro average in (2.15), since we only have convergence
along a subsequence, and the limit of a weakly convergent subsequence πPtk with tknearrow∞
need not be stationary.
By the Krein Milman theorem (see e.g. [14], Theorem 3.23), compactness and convexity of
I ⊆ M1(E) implies that I is the closed convex hull of its extreme points Ie, which are called
extremal invariant measures. Every invariant measure can therefore be written as a convex com-
bination of members of Ie, so the extremal measures are the ones we need to find for a given
process.

Definition 2.3 A Markov process with semigroup (Pt : t ≥ 0) is ergodic if

(a) I = {µ} is a singleton, and (unique stationary measure)

(b) lim
t→∞

πPt = µ for all π ∈M1(E) . (convergence to equilibrium)

Phase transitions are related to the breakdown of ergodicity and in particular to non-uniqueness
of stationary measures. This can be the result of the presence of absorbing states (e.g. CP), or of
spontaneous symmetry breaking/breaking of conservation laws (e.g. SEP or VM) as is discussed
later. On finite lattices, IPS are Markov chains which are known to have a unique stationary
distribution under reasonable assumptions of non-degeneracy. Therefore, mathematically phase
transitions occur only in infinite systems. Infinite systems are often interpreted/studied as limits of
finite systems, which show traces of a phase transition by divergence or non-analytic behaviour of
certain observables. In terms of applications, infinite systems are approximations or idealizations
of real systems which may be large but are always finite, so results have to interpreted with care.
There is a well developed mathematical theory of phase transitions for reversible systems pro-
vided by the framework of Gibbs measures (see e.g. [7]). But for IPS which are in general

1For more details on weak convergence see e.g. [20], Section 2.
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non-reversible, the notion of phase transitions is not unambiguous.

Example for IPS. Consider an IPS with state space E = {0, 1}Λ.

Definition 2.4 For a function ρ : Λ → [0, 1], νρ is a Bernoulli product measure on E if for all
k ∈ N, x1, . . . , xk ∈ Λ mutually different and n1, . . . , nk ∈ {0, 1}

νρ
[
η(i1) = n1, . . . , η(ik) = nk

]
=

k∏
l=1

ν1
ρ(il)

[
η(il) = nl

]
, (2.17)

where the single-site marginals are given by

ν1
ρ(i)

[
η(i) = 1

]
= ρ(i) and ν1

ρ(i)

[
η(i) = 0

]
= 1− ρ(i) . (2.18)

Remark. In other words, under νρ the η(i) are independent Bernoulli random variables η(i) ∼
Be
(
ρ(i)

)
with local density ρ(i) = ν

(
η(i)

)
. The above definition can readily be generalized to

non-Bernoulli product measures.

Now, consider the TASEP on the lattice Λ = Z with generator

Lf(η) =
∑
i∈Λ

η(i)
(
1− η(i+ 1)

)(
f(ηi,i+1)− f(η)

)
.

It can be shown (see e.g. [15], Theorem 2.1) that the homogeneous product measures νρ for all
ρ ∈ [0, 1] are invariant for the process. In addition, there are absorbing states of the form ηk(i) =
1{k,k+1,...}(i) for all k ∈ Z, where ηk(i) = 0 for i < k and ηk(i) = 1 for i ≥ k. Then all measures
δηk ∈M1(E) concentrating on those absorbing states are also invariant. It can be shown (see e.g.
[31], Section 4.5) that these are all extremal measures for the TASEP

Ie =
{
νρ : ρ ∈ [0, 1]

}
∪
{
δηk : k ∈ Z

}
.

This is also true for the partially asymmetric exclusion process (PASEP), for the SSEP only the
homogeneous product measures are invariant. The fact that I is not a singleton is related to the
conservation of mass, as explained in the next section.

2.2 Conservation laws and symmetries

Definition 2.5 For a given Feller process
(
Pt : t ≥ 0

)
a bounded1 linear operator T : C(E) →

C(E) is called a symmetry, if it commutes with the semigroup. So for all t ≥ 0 we have PtT =
T Pt, i.e.

Pt(T f)(x) = T
(
Ptf
)
(x) , for all f ∈ C(E), x ∈ E . (2.19)

Proposition 2.3 For a Feller process with generator L, a bounded linear operator T : C(E) →
C(E) is a symmetry iff LT = T L, i.e.

L(T f)(x) = T
(
Lf
)
(x) , for all f ∈ DL (or a suitable core) . (2.20)

We denote the set of all symmetries by S(L) or simply S. The symmetries form a semigroup w.r.t.
composition, i.e.

T1, T2 ∈ S ⇒ T1T2 = T1 ◦ T2 ∈ S . (2.21)
1T : C(E)→ C(E) is bounded if there exists B > 0 such that for all f ∈ C(E), ‖T f‖ ≤ B‖f‖.

26



Proof. The first part is similar to the proof of Prop. 2.1 on stationarity. Note that since T is
bounded, f ∈ DL implies T f ∈ DL (at least on a suitable core).
For the second part, note that composition of operators is associative. Then for T1, T2 ∈ S we
have

L(T1T2) = (LT1)T2 = (T1L)T2 = T1(LT2) = (T1T2)L (2.22)

so that T1T2 ∈ S. 2

Proposition 2.4 For a bijection τ : E → E let T f := f ◦ τ , i.e. T f(x) = f(τx) for all x ∈ E.
Then T is a symmetry for the process

(
Pt : t ≥ 0

)
iff

Ex
[
f(τXt)

]
= Pt(f ◦ τ) =

(
Ptf
)
◦ τ = Eτx

[
f(Xt)

]
for all f ∈ C(E) . (2.23)

We call such T (or equivalently τ ) simple symmetries. Simple symmetries are invertible and form
a group.

Proof. The first statement is immediate by the definition, T is bounded since ‖f ◦ τ‖ = ‖f‖ and
obviously linear.
In general compositions of symmetries are symmetries according to Prop. 2.3, and if τ1, τ2 : E →
E are simple symmetries then the composition τ1 ◦ τ2 : E → E is also a simple symmetry. A
simple symmetry τ is a bijection, so it has an inverse τ−1. Then we have for all f ∈ C(E) and all
t ≥ 0 (

Pt(f ◦ τ−1)
)
◦ τ = Pt(f ◦ τ−1 ◦ τ) = Ptf (2.24)

since τ ∈ S. Composing with τ−1 leads to(
Pt(f ◦ τ−1)

)
◦ τ ◦ τ−1 = Pt(f ◦ τ−1) =

(
Ptf
)
◦ τ−1 , (2.25)

so that τ−1 is also a simple symmetry. 2

Example. For the ASEP on Λ = Z the translations τi : E → E for i ∈ Λ, defined by

(τiη)(j) = η(j − i) for all j ∈ Λ (2.26)

are simple symmetries. This can be easily seen since the jump rates are invariant under transla-
tions, i.e. we have for all i, j ∈ Λ

c(i, i+ 1, η) = p η(i)
(
1− η(i+ 1)

)
= p η(i+ j − j)

(
1− η(i+ 1 + j − j)

)
=

= c(i+ j, i+ 1 + j, τjη) . (2.27)

An analogous relation holds for jumps to the left with rate c(i, i − 1, η) = qη(i)
(
1 − η(i − 1)

)
.

Note that the family {τi : i ∈ Λ} forms a group. The same symmetry holds for the ASEP on
ΛL = Z/LZ with periodic boundary conditions, where there are only L distinct translations τi for
i = 0, . . . , L − 1 (since e.g. τL = τ0 etc.). The argument using invariance of the jump rates can
be made more general.

Proposition 2.5 Consider a Feller process characterized by jump rates c(x, y) such as a Markov
chain or a IPS. Then a bijection τ : E → E is a simple symmetry iff

c(x, y) = c(τx, τy) for all x, y ∈ E . (2.28)
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Proof. Assuming the invariance of the jump rates, we have for all f ∈ C0(E) and x ∈ E(
L(T f)

)
(x) =

(
L(f ◦ τ)

)
(x) =

∑
y∈E

c(x, y)
(
f(τy)− f(τx)

)
=

=
∑
y∈E

c(τx, τy)
(
f(τy)− f(τx)

)
=
∑
z∈E

c(τx, z)
(
f(z)− f(τx)

)
=

= (Lf)(τx) =
(
T (Lf)

)
(x) , (2.29)

where the identity in the second line just comes from relabelling the sum which is possible since
τ is bijective. On the other hand, LT = TL implies that from the above that∑

y∈E
c(x, y)

(
f(τy)− f(τx)

)
=
∑
y∈E

c(τx, τy)
(
f(τy)− f(τx)

)
. (2.30)

Since this holds for all f ∈ C0(E) and x ∈ E it uniquely determines that c(x, y) = c(τx, τy) for
all x, y ∈ E with x 6= y. In fact, if there existed x, y for which this is not the case, we can plug
f = 1τy into (2.30) which yields a contradiction. For fixed η both sums then contain only a single
term, so this is even possible on infinite lattices even though 1τζ is not a cylinder function2. 2

Proposition 2.6 For an observable g ∈ C(E) define the multiplication operator Tg := g I via

Tgf(x) = g(x) f(x) for all f ∈ C(E), x ∈ E . (2.31)

Then Tg is a symmetry for the process (Xt : t ≥ 0) iff g(Xt) = g(X0) for all t > 0. In that case
Tg (or equivalently g) is called a conserved quantity.

Proof. First note that Tg is linear and bounded since ‖f‖ ≤ ‖g‖‖f‖. If g(Xt) = g(X0) we have
for all t > 0, f ∈ C(E) and x ∈ E(

Pt(Tgf)
)
(x) = Ex

(
g(Xt) f(Xt)

)
= g(x)

(
Ptf
)
(x) = Tg

(
Ptf
)
(x) . (2.32)

On the other hand, if Tg is a symmetry the above computation implies that for all (fixed) t > 0

Ex
(
g(Xt) f(Xt)

)
= Ex

(
g(x) f(Xt)

)
. (2.33)

Since this holds for all f ∈ C(E) the value of g(Xt) is uniquely specified by the expected values
to be g(x) since g is continuous (cf. argument in (2.30)). 2

Remarks. If g ∈ C(E) is a conserved quantity then so is h ◦ g for all h : R → R provided that
h ◦ g ∈ C(E).
A subset A ⊆ E is called invariant if X0 ∈ A implies Xt ∈ A for all t > 0. Then g = 1A is a
conserved quantity iff A is invariant. In general, every level set

El = {x ∈ E : g(x) = l} ⊆ E for all l ∈ R , (2.34)

for a conserved quantity g ∈ C(E) is invariant.

2So the function η 7→ L1τζ(η) would in general not be well defined since it is given by an infinite sum for η = τζ.
But here we are only interested in a single value for η 6= ζ.
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Examples. For the ASEP on ΛL = Z/LZ (discrete torus with periodic boundary conditions)
the number of particles ΣL(η) :=

∑
i∈ΛL

η(i) is conserved. The level sets of this integer valued
function are the subsets

EL,N =
{
η : ΣL(η) = N

}
for N = 0, . . . , L . (2.35)

In particular the indicator functions 1EL,N are conserved quantities.

Proposition 2.7 g ∈ C(E) is a conserved quantity if and only if Lg = 0 and Lg2 = 0.

Proof. Follows from using the martingale characterization, since

Mg
t := g(Xt)− g(X0)−

∫ t

0
Lg(Xs)ds

is a martingale with quadratic variation given by

[Mg]t =

∫ t

0

(
Lg2(Xs)− 2g(Xs)Lg(Xs)

)
ds .

Then g(Xt) ≡ g(X0) if and only if the quadratic variation vanishes. 2

The most important result of this section is the connection between symmetries and stationary
measures. For a measure µ and a symmetry T we define the measure µT via

(µT )(f) =

∫
E
f dµT :=

∫
E
T f dµ = µ(T f) for all f ∈ C(E) , (2.36)

analogous to the definition of µPt in Def. 2.1.

Theorem 2.8 For a Feller process
(
Pt : t ≥ 0

)
with state space E we have

µ ∈ I, T ∈ S ⇒ 1

µT [E]
µT ∈ I , (2.37)

provided that the normalization µT [E] ∈ (0,∞).

Proof. For µ ∈ I and T ∈ S we have for all t ≥ 0 and f ∈ C(E)

(µT )Pt(f) = µ
(
T Ptf

)
= µ

(
PtT f

)
= µPt(T f) = µ(T f) = µT (f) . (2.38)

With µT [E] ∈ (0,∞), µT can be normalized and 1
µT [E] µT ∈ I. 2

Remarks. For µ ∈ I it will often be the case that µT = µ so that µ is invariant under some T ∈ S
and not every symmetry generates a new stationary measure. For ergodic processes I = {µ} is a
singleton, so µ has to respect all the symmetries of the process, i.e. µT = µ for all T ∈ S.
If Tg = g I is a conserved quantity, then µTg = g µ, i.e.

µTg[A] =

∫
A
g(η)µ(dη) for all measurable A ⊆ E . (2.39)
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So g is the density of µTg w.r.t. µ and one also writes g =
dµTg
dµ . This implies also that µTg is

absolutely continuous w.r.t. µ (short µTg � µ), which means that for all measurableA, µ[A] = 0
implies µTg[A] = 01.
For an invariant set A ⊆ E and the conserved quantity g = 1A we have µTg = 1Aµ. If µ[A] ∈
(0,∞) the measure of Theorem (2.8) can be written as a conditional measure

1

µTg[E]
µTg =

1A

µ[A]
µ =: µ[.|A] (2.40)

concentrating on the set A, since the normalization is µTg[E] = µ(1A) = µ[A].

Examples. The homogeneous product measures νρ, ρ ∈ [0, 1] are invariant under the translations
τi, i ∈ Λ for all translation invariant lattices with τiΛ = Λ such as Λ = Z or Λ = Z/LZ. But
the blocking measures νi for Λ = Z are not translation invariant, and in fact νi = ν0 ◦ τ−i, so the
family of blocking measures is generated from a single one by applying translations.
For ΛL = Z/LZ we have the invariant sets

EL,N =
{
η ∈ EL :

∑
x∈ΛL

η(x) = N
}

for a fixed number of particles N = 0, . . . , L. Since the ASEP is an irreducible Markov chain
on EL,N it has a unique stationary measure πL,N . Using the above remark we can write πL,N
as a conditional product measure νρ (which is also stationary). For all ρ ∈ (0, 1) we have (by
uniqueness of πL,N )

πL,N = νρ[. |EL,N ] =
1EL,N

νρ[EL,N ]
νρ , (2.41)

where νρ[EL,N ] =
(
L
N

)
ρN (1 − ρ)L−N is binomial (see previous section). Therefore we can

compute explicitly

πL,N [η] =

{
0 , η 6∈ EL,N

ρN (1−ρ)L−N

(LN)ρN (1−ρ)L−N
= 1/

(
L
N

)
, η ∈ EL,N , (2.42)

and πL,N is uniform on EL,N , and in particular independent of ρ. We can write the product
measures νρ as convex combinations

νρ =
L∑

N=0

(
L

N

)
ρN (1− ρ)L−NπL,N , (2.43)

but this is not possible for the πL,N since they concentrate on irreducible subsets EL,N ( EL.
Thus for the ASEP on ΛL = Z/LZ we have

Ie = {πL,N : N = 0, . . . , L} (2.44)

given by the canonical measures. So for each value of the conserved quantity ΣL we have an
extremal stationary measure and these are the only elements of Ie. The latter follows from

EL =
L⋃

N=0

EL,N and irreducibility on each EL,N . (2.45)

1In fact, absolute continuity and existence of a density are equivalent by the Radon-Nikodym theorem (see e.g. [10]
Thm. 2.10).
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In fact, suppose that for some λ ∈ (0, 1) and µ1, µ2 ∈ I

πL,N = λµ1 + (1− λ)µ2 . (2.46)

Then for all measurable Y ⊆ E with Y ∩ EL,N = ∅ we have

0 = πL,N (Y ) = λµ1(Y ) + (1− λ)µ2(Y ) , (2.47)

which implies that µ1(Y ) = µ2(Y ) = 0. So µ1, µ2 ∈ I concentrate on EL,N and thus µ1 = µ2 =
πL,N by uniqueness of πL,N on EL,N . So the conservation law provides a decomposition of the
state space EL into irreducible non-communicating subsets.

2.3 Time reversal

In this section we only consider processes on a fixed finite time interval [0, T ]. For each path
(ωt : t ∈ [0, T ]) on DE([0, T ]) define the time reversalR : DE([0, T ])→ DE([0, T ]) via

(Rω)t := ω(T−t)+ for all t ∈ [0, T ] , (2.48)

so thatRω ∈ DE([0, T ]) is the time-reversal of the path ω. Note that of course time-reversal is an
invertible transformation on path space withR◦R = I. Then for a given process P onDE([0, T ])
we can define the path measure P ◦ R, which is the law of the time reversed process, and ask the
question if this is again a Markov process. We have to be careful and precise with initial conditions
here. Under the law Px time reversed paths will start in distribution (RX)0 ∼ µT and end up in
(RX)T = x, which is obviously not Markovian (and strange). There are two ways of making
sense of this question.

Time-reversal of stationary processes.
Let P be an ergodic Feller process on E with semigroup (Pt : t ≥ 0) and unique stationary
measure µ ∈M1(E). Consider the set of test functions square integrable w.r.t. µ,

L2(E,µ) =
(
f ∈ C(E) : µ(f2) <∞

)
. (2.49)

With the inner product 〈f, g〉µ = µ(fg) the closure of this (w.r.t. the metric given by the inner
product) is a Hilbert space, and the semigroup Pt, for all t ≥ 0 are bounded linear operators on
L2(E,µ). They are uniquely defined by their values on C(E)∩L2(E,µ), which is a dense subset
of the closure of L2(E,µ). Therefore they have an adjoint operator P ∗t , uniquely defined by

〈P ∗t f, g〉µ = µ(gP ∗t f) = µ(fPtg) = 〈f, Ptg〉µ for all f, g ∈ L2(E,µ) , (2.50)

Analogously, on can define an adjoint generator L∗ on a domain in L2(E,µ) which forms a core
for L and L∗. The domains require some thought on a case-by-case basis but is often straightfor-
ward. Note that the adjoint operators on the self-dual Hilbert space L2(E,µ) are not the same as
the adjoints L† and P †t in (2.2) onM1(E), which evolve the probability measures.

Proposition 2.9 Consider the stationary Feller process Pµ with initial condition µ0 = µ. Then
the reversed path measure PµR := Pµ ◦R is again a stationary Feller process with measure µ. Its
semigroup and generator are given by the adjoint operators P ∗t and L∗.
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Proof. To compute the action of the adjoint operator note that for all g ∈ L2(E,µ)

µ(gP ∗t f) =

∫
E
fPtg dµ = Eµ

[
f(η0) g(ηt)

]
= Eµ

[
Eµ
[
f(η0)

∣∣ηt]g(ηt)
]

=

=

∫
E
Eµ
[
f(η0)

∣∣ηt = ζ
]
g(ζ)µ(dζ) = µ

(
g Eµ

[
f(η0)

∣∣ηt = .
])
, (2.51)

where the identity between the first and second line is due to µ being the stationary measure. Since
this holds for all g ∈ L2(E,µ) it implies, again using stationarity

P ∗t f(η) = Eµ
[
f(η0)

∣∣ηt = η
]

= Eµ
[
f(ηT−t)

∣∣ηT = η
]

= EµR
[
f(ηt)

∣∣η0 = η
]
. (2.52)

So the adjoint operators (P ∗t : t ∈ [0, T ]) describe the evolution of the time-reversed process
Pµ ◦ R. With g = 1 in (2.50) we have immediately µ(P ∗t f) = µ(f), so the reversed process is
also stationary with measure µ. Similarly, it can be shown that (P ∗t : t ≥ 0) is actually a semi-
group with the adjoint generator L∗. This includes some technicalities with domains of definition,
see e.g. [19] and references therein. 2

The process Pµ on D([0, T ]) is called

time-reversible if Pµ ◦ R = Pµ , (2.53)

With Prop. 2.9 this is the case if and only if L = L∗, i.e. µ(fLg) = µ(gLf) with (2.50) (analo-
gously for the semigroup). Therefore time-reversibility is equivalent to µ being reversible, i.e. L
and Pt being self-adjoint operators w.r.t. the measure µ as in (2.4) and (2.6).

For Markov chains with countable E the rates of Pµ ◦ R are given by

cR(x, y) =
µ[y]

µ[x]
c(y, x) for all x, y ∈ E . (2.54)

The process is reversible, if and only if the detailed balance conditions are fulfilled,

µ[x]c(x, y) = µ[y]c(y, x) for all x, y ∈ E , (2.55)

which of course also implies cR(x, y) = c(x, y).
In general, the dynamics of a process can be decomposed into a reversible (or symmetric) and

a non-reversible (or anti-symmetric) part. This can be formulated on the level of the generators as
L = Ls + La with

Ls :=
1

2
(L+ L∗) and La :=

1

2
(L − L∗) . (2.56)

Note that Ls is generates a reversible Feller process with measure µ, being a positive linear com-
bination of generators with the same stationary measure. La does in general not lead to a positive
semigroup and does not generate a process, and we have L∗a = −La. If µ is reversible for the
original process L, then obviously Ls = L and La = 0.

Examples. A simple example is a simple random walk on the torus Z/(LZ) with rates c(x, y) =
pδy,x+1 + qδy,x−1. Since the generator given by the Q-matrix is doubly stochastic we have
〈1|Q = 〈1| and µ[x] = 1/L is the unique stationary measure. The time reversed stationary
process is then simply a random walk with rates cR(x, y) = qδy,x+1 + pδy,x−1, which is equal
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to c(x, y) if and only if p = q. The symmetric part of the dynamics is a random walk with rates
(p+ q)/2. In this example, the anti-symmetric part can also be interpreted as a totally asymmetric
random walk with direction sgn(p− q) and rates |p− q|/2.
Another interesting example is a random walk with closed or reflecting boundary conditions on
E = {1, . . . , L}, which has a non-uniform stationary measure and turns out to be reversible for
all p, q > 0. Analogous results hold for exclusion processes on finite lattices Λ equal to the above
state spaces for random walks. For a fixed number of particles N , the unique stationary measure
µL,N is uniform if Λ is a torus and non-uniform for other boundary conditions.

A second approach for stationary processes is based on the fact that their path measure is
invariant under time shifts, and their definition can be extended to negative times on the path space
D(−∞,∞), using time translations (θTω)s = ωs+T . P ◦ θT can then be defined for paths on
D([−T,∞)), starting at arbitrary negative times −T < 0. For stationary processes, the induced
law Pµ ◦ θT = Pµ on D([−T,∞)) is identical to the original, and the sequence Pµ ◦ θT converges
to the law Pµ on D(−∞,∞), which is then

time-translation invariant , i.e. Pµ ◦ θt = Pµ for all t ∈ R . (2.57)

Then time reversal can simply be defined as (Rω)t := ω(−t)+ for all t ∈ R, and the time reversed
process is again stationary on D(−∞,∞) with distribution µ and generator L∗ as defined above.
As before, the path measure is then

time-reversible , i.e. Pµ ◦ R = Pµ iff µ is reversible . (2.58)

Time-reversal of non-stationary processes.
Consider a Markov chain with jump rates c(x, y) on the time interval [0, T ] and recall the master
equation (1.53)

d

dt
µt[x] =

∑
y 6=x

µt[y] c(y, x)−
∑
y 6=x

µt[x] c(x, y) (2.59)

with arbitrary (non-stationary) initial condition µ0. Then the marginals of the time-reversed pro-
cess Pµ ◦ R are given by µT−t, and we can write

d

dt
µT−t[x] = −

∑
y 6=x

µT−t[y] c(y, x) +
∑
y 6=x

µT−t[x] c(x, y)

=
∑
y 6=x

µT−t[y] cR(y, x;T, t)−
∑
y 6=x

µT−t[x] cR(x, y;T, t) (2.60)

using reversed rates,

cR(x, y;T, t) =
µT−t[y]

µT−t[x]
c(y, x) for all x 6= y , (2.61)

which now depend on T and t. Note that the diagonal element of the Q-matrix

cR(x, x;T, t) =
∑
y 6=x

µT−t[y]

µT−t[x]
c(y, x) 6= c(x, x) (2.62)

is also time dependent. Using the homogeneous Markov property of the original chain, a similar
computation can be done for the transition kernel Pt(x, y) and the reversed process Pµ ◦ R is
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indeed a time-inhomogeneous Markov chain with rates (2.61). If the process is stationary with
µt ≡ µ for all t ∈ [0, T ] then we recover (2.54) and the reversed chain is stationary and time-
homogeneous.
A similar result holds also for jump processes on continuous state spaces, where µT−t[x] has to
be replaced by the PDF with respect to the uniform (Borel) measure on E (e.g. Lebesgue on Rn).

There are many examples of processes which do not have a stationary measure. but for which
the uniform measure µ on E is actually invariant, i.e. Ptµ = µ for all t ≥ 0 but cannot be
normalized since µ[E] =∞. Simple examples are simple random walks on E = Z with counting
measure µ, or diffusion processes with constant coefficients on E = R with Lebesgue measure
µ. In general, state spaces of such processes are transitive, i.e. generated by a symmetry group τ ,
such as translations generating E = Z,Zd or subsets Z/LZ with periodic boundary conditions.
Then any process (Pt : t ≥ 0) on E that has the same symmetry, i.e. PtT = T Pt, has uniform
invariant measure µ. Then for paths on D[0, T ] we can define the modified time reversal

R̄ω := T −1
ωT
Rω

where the path is time-reversed and shifted back to the origin point ω0. Then the process Px
R̄

for
each x ∈ E is a time-homogeneous Markov process with the generator L∗ which is the adjoint
operator w.r.t. the uniform measure µ (i.e. simply the transpose for Q-matrices).

Extension to negative times does not apply here since the processes involved are not stationary.
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3 Additive functionals of Markov processes

3.1 Ergodicity, typical behaviour, and fluctuations

Consider a Markov process (Xt : t ≥ 0) on the state space E. We will investigate results like the
law of large numbers and central limit theorem for ergodic averages of observables for the process.

Theorem 3.1 (LLN) Let µ be an extremal stationary measure of (Xt : t ≥ 0) and f ∈ C(E)
with µ(f2) <∞. Then

1

t

∫ t

0
f(Xs)ds→ µ(f) Pµ − a.s. , (3.1)

and in L2(Pµ), i.e. Eµ
[∣∣∣1
t

∫ t

0
f(Xs)ds− µ(f)

∣∣∣2]→ 0 .

If (Xt : t ≥ 0) is ergodic, the same holds for all initial conditions x ∈ E.

Proof. For the Pµ − a.s. statement see [10], Section 20, convergence in L2(µ) will follow from
Theorem 3.5 (which we also do not prove...).

Theorem 3.1 is the analogue of the strong law of large numbers, and the fluctuations around
the typical behaviour are described by a central limit theorem result.

Lemma 3.2 (Martingale CLT) Let (Mt : t ≥ 0) be a square integrable martingale on the path
space DR[0,∞) w.r.t. some given filtration. We assume that the increments are stationary, i.e. for
all t ≥ 0, n ≥ 1 and 0 ≤ s0 < . . . < sn

(Ms1 −Ms0 , . . . ,Msn −Msn−1) ∼ (Mt+s1 −Mt+s0 , . . . ,Mt+sn −Mt+sn−1) , (3.2)

and that the quadratic variation [M ]t converges as

Eµ
[∣∣∣ [M ]t

t
− σ2

∣∣∣]→ 0 for some σ2 > 0 . (3.3)

Then Mt/
√
t→ N (0, σ2) converges in distribution to a Gaussian.

Proof. Similar to the proof of the classical CLT for sums of i.i.d. random variables, it involves
a Taylor expansion of a characteristic function logEµ

[
eiθMt/

√
t
]

which converges to that of a
Gaussian. For details, see [21], Chapter 1 and 2.

Corollary 3.3 (CLT) Let µ be an extremal stationary measure of (Xt : t ≥ 0) and f ∈ C(E)
with µ(f) = 0 and µ(f2) < ∞. In addition, assume that there exists a solution of the Poisson
equation, i.e.

−Lg = f for some g ∈ DL , (3.4)

such that also g2 ∈ DL. Then we have convergence in distribution to a Gaussian

1√
t

∫ t

0
f(Xs)ds→ N

(
0, 2〈g, f〉µ

)
. (3.5)
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Proof. Since g and g2 are in the domain of the generator,

Mg
t = g(Xt)− g(X0)−

∫ t

0
(Lg)(Xs)ds = g(Xt)− g(X0) +

∫ t

0
f(Xs)ds (3.6)

is a martingale with quadratic variation

[Mg]t =

∫ t

0

[
(Lg2)(Xs)− 2g(Xs)(Lg)(Xs)

]
ds .

µ is stationary, and exchanging expectation and integration implies

Eµ
[
[Mg]t

]
= 2t〈g,−Lg〉µ , (3.7)

with Eµ[Lg2] = 0. Since g is the solution of (3.4) we have

1√
t

∫ t

0
f(Xs)ds =

Mg
t√
t

+
g(X0)− g(Xt)√

t
.

g2 ∈ DL in particular implies g ∈ L2(µ), and therefore (g(X0) − g(Xt))/
√
t → 0 in L2(Pµ) as

t → ∞. Since (Xt : t ≥ 0) is a stationary process under Pµ, the increments of the martingale
(3.6) are stationary, and with (3.7) obviously (3.3) is fulfilled with σ2 = 2〈g, f〉µ. 2

Remarks. The corollary also holds without the assumption that g2 is in the domain of the genera-
tor, where an additional approximation argument to show (3.3) has to be made. But the functions
we will consider later all fulfill this assumption anyway.
Note that the corollary implies a weak version of the LLN in Theorem 3.1. Unlike the general
validity of the LLN, convergence to Gaussians can only be shown for observables of the type (3.4).

From now on we consider µ to be an extremal reversible measure of the process (Xt : t ≥ 0)
and restrict to functions in L2(µ). This implies that the generator L is self-adjoint, i.e. 〈f,Lg〉µ =
〈g,Lf〉µ, and therefore has real spectrum. Since associated semigroups Pt are contracting (1.9),
the spectrum is also non-positive, with 0 being the largest eigenvalue with corresponding constant
eigenfunction 1.
In general, the spectrum of L is given by the complement of the resolvent set, which contains all
λ ∈ R such that the resolvent equation λf − Lf = g has a unique solution f ∈ L2(µ) for any
fixed g ∈ L2(µ). In that case g = (λI−L)−1f = Rλf is given by the resolvent as given in (1.11),
which is well defined for all λ > 0. The spectrum can be decomposed into the point spectrum
consisting of the eigenvalues of L, and a continuous part of the spectrum, for details see e.g. [14].

Definition 3.1 For a process with generator L and reversible measure µ the Dirichlet form for
f ∈ DL is defined as

Eµ(f) := 〈f,−Lf〉µ , (3.8)

and the spectral gap is

λgap := inf
f∈DL

{ Eµ(f)

Varµ(f)
: Varµ(f) > 0

}
= inf

f∈DL

{
Eµ(f) : µ(f2) = 1, µ(f) = 0

}
. (3.9)

If λ > 0, the inverse of the spectral gap is called the relaxation time

trel := 1/λgap . (3.10)
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The second expression in (3.9) follows from the fact that the Dirichlet form and variance do not
change when adding constants to the function f , since L1 = 0. Useful inequalities for all f ∈
L2(µ) resulting from the definition are

Var(f) ≤ trelEµ(f) and − Eµ(f) ≤ −λgapVar(f) , (3.11)

where the first is called Poincaré inequality. If λ is an eigenvalue of L with corresponding eigen-
function f , then Eµ(f) = −λµ(f2). This implies that the spectral gap is given by the modulus
of the largest, non-zero eigenvalue, since the infimum is taken over non-constant functions with
Var(f) > 0. This can easily be shown under the assumption that the eigenfunctions form a basis
of L2(µ). Analogously to (1.54) for Markov chains, the gap characterizes the decay of temporal
correlations as summarized in the following result.

Proposition 3.4 Let µ be a reversible, extremal measure of a Markov process with generator L
and semigroup (Pt : t ≥ 0). Then

Eµ
[
f(Xt)f(X0)

]
− µ(f)2 = Varµ(Ptf) ≤ e−2λtVarµ(f) for all f ∈ L2(µ) . (3.12)

Proof. Let u(t) = Varµ(Ptf) = µ
(
(Ptf − µ(f))2

)
. Then, using (3.11)

u′(t) = −2Eµ
(
Ptf − µ(f)

)
≤ −2λu(t) ,

which implies u(t) ≤ e−2λtu(0). Since u(0) = Varµ(f) this is (3.12). 2

Examples. Consider the Laplacian ∆ on L2(R, µ) with uniform Lebesgue measure µ. This is
not normalized, but otherwise reversible for ∆ which is generating Brownian motion on R. It is
well known that ∆ has continuous spectrum (−∞, 0] (see e.g. [14]) and no eigenvalues. We have
∆1 = 0, but the constant function 1 6∈ L2(R, µ). Therefore correlations decay subexponentially
fast in time, such as polynomial decay for Brownian motion as given by the heat kernel (1.28).
The discrete Laplacian ∆ on `2(Z, µ) with uniform counting measure µ generates the continuous-
time random walk. Using that the shift operator S on `2 has spectrum {z ∈ C : |z| = 1} given by
the unit circle, and ∆ = S + S−1 − 2I, the spectrum of ∆ is now [−4, 0]. This restriction of the
spectrum can be associated to a cut-off of high frequency oscillations due to the lattice structure.
Considering the Laplacian on the discrete torus Z/(LZ) cuts off further low frequency oscillations
(infrared cut-off). Due to finite state space it has a pure point spectrum and the spectral gap is L−2,
consistent with the CLT scaling for the simple random walk.
For conservative IPS with finite range jumps on lattices of size |Λ| = L, the gap usually decays
with the system size also as L−2 for reversible systems. Intuitively, this is related to the fact that
for correlations to decay, mass has to be moved distances of order L in a symmetric fashion.

Further remarks. For asymmetric, non-reversible IPS the decay of correlations is not necessarily
characterized by a result like Proposition 3.4 using the same definition for λgap. It depends heavily
on boundary conditions, and for example for the ASEP on a periodic 1D lattice it is known that
the relaxation time scales like L3/2. The gap for the symmetric part Ls of the generator (2.56)
provides a (usually bad) lower bound for the gap (upper bound for the relaxation time).
On infinite lattices the gap of conservative IPS is usually 0 related to the properties of the Lapla-
cian above. On the other hand, for spin systems IPS correlations can decay through local reactions
much faster, and the gap is usually bounded below independently of the system size. Interesting
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examples include the contact process (in particular the supercritical case) and kinetically con-
strained models such as the east model, and in particular the connection with mixing times (see
e.g. [16, 17, 18] for further details and references).

The gap or relaxation time can also be used to bound the convergence of an additive path functional
to its expectation, as is summarized in the next result. This also implies the L2 convergence in
Theorem 3.1.

Theorem 3.5 Let µ be an extremal reversible measure of (Xt : t ≥ 0) and f ∈ C(E) with
µ(f) = 0 and µ(f2) <∞. Then

Eµ
[

sup
0≤t≤T

(∫ t

0
f(Xs)ds

)2
]
≤ 24µ(f2)Ttrel . (3.13)

Proof. In [21], Chapter 2, a more general result is shown (Lemma 2.3) which applies also to
non-reversible processes. There exists a universal constant C > 0 such that

Eµ
[

sup
0≤t≤T

(∫ t

0
f(Xs)ds

)2
]
≤ CT‖f‖2−1 , (3.14)

where theH−1-norm is given by the Legendre transform of the Dirichlet form

‖f‖2−1 = sup
g

{
2〈f, g〉µ − Eµ(g)

}
.

Note that Eµ(g) is a semi-norm (wherer also constant functions have norm 0), and the supremum
is performed over a common core of the generator L and its adjoint L∗.
For reversible processes the H−1-norm can be related to the spectral gap. For details of the proof
see [21], Chapter 2, and [22], Section 3.

3.2 Additive path functionals

The integrated observables in the previous section can be interpreted as path functionals of the
process which are additive in time. Other important functionals include counters of jumps along
a path of a jump process, which cannot be written as integrals of functions on state space. This is
relevant for Markov chains (MCs) on a countable state space E, recalling the generator

Lf(x) =
∑
y 6=x

c(x, y)
(
f(y)− f(x)

)
, (3.15)

but also for conservative IPS such as exclusion processes. They have state space E = SΛ, consid-
ering S ⊆ N0 finite, and generator

Lf(η) =
∑
i,j∈Λ

c(i, j, η)
(
f(ηij)− f(η)

)
, (3.16)

and can be interpreted as interacting MCs on Λ. As before we focus on finite range, uniformly
bounded jump rates. Results in this section can be formulated completely analogously for spin
systems counting the number of spin flips. The common feature of these jump processes is that
from a given state x they can jump to a countable number of other states y, characterized by
jump rates c(x, y) with a generator of the form (3.15). For IPS the sum is a-priori uncountable,
but contains only countably many non-zero terms. Similar results could be formulated for jump
processes on continuous state space with rates c(x, dy).
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Definition 3.2 For a given path ω ∈ D[0,∞) and x, y ∈ E we define the empirical current up
to time t > 0 as

Jt(x, y)[ω] =
∑

0≤s≤t
δ
(
ωs(y)− ωs−(y)− ωs(x) + ωs−(x), 2

)
∈ N0 . (3.17)

For MCs and also IPS with generator (3.16) the above sum is a P− a.s. finite.
For given coefficients a(x, y) ∈ R, we define the additive path functional

At[ω] =
∑
x,y∈E

a(x, y)Jt(x, y)[ω] (3.18)

as a linear combination of low counters.

Note that for an IPS on an infinite lattice Λ the sum in (3.18) is uncountable, and one has to
make sure it contains only countable many terms and converges. For example, consider the ASEP
with particles jumping left and right with rates p and q, respectively. Then choosing a(η, ζ) =
δζ,ηi,i+1 − δζ,ηi+1,i , At/t measures the net particle current across a particular bond (i, i+ 1) up to
time t. This corresponds to uncountably many coefficients a(η, ζ) 6= 0, but P− a.s. only finitely
many Jt(x, y) > 0 for arbitrary t > 0. Other examples include the activity where each jump
contributes positively. In finite systems one can also count the total particle current or activity
across all bonds.

Lemma 3.6 Consider a jump process (Xt : t ≥ 0) with generator (3.15). Then

M
(x,y)
t := Jt(x, y)−

∫ t

0
c(x, y)δXs,x ds (3.19)

is a martingale with quadratic variation [M (x,y)]t =
∫ t

0 c(x, y)δXs,x ds.

Proof. It is convenient to consider the joint Markov process
(
Xt,Jt(x, y)

)
on the state space

E × N0 which has generator

L(x,y)f(z, j) =
∑
z′∈E

c(z, z′)
(
f(z′, j + δx,zδy,z′)− f(z, j)

)
. (3.20)

Then with the test function f(z, j) = j we get L(x,y)f(z, j) = c(x, y)δz,x, which implies (3.19)
with the martingale characterization in Theorem 1.5. We further compute

L(x,y)f(z, j)2 − 2f(z, j)L(x,y)f(z, j) = c(x, y)δz,x ,

which implies the expression for the quadratic variation. 2

Theorem 3.7 Consider jump process (Xt : t ≥ 0) with generator (3.15) and extremal stationary
measure µ. Then we have the law of large numbers

1

t
Jt(x, y)→ µ[x]c(x, y) Pµ − a.s. and in L2(Pµ) . (3.21)

If the process is ergodic the same holds for arbitrary initial condition.
If the process is reversible w.r.t. µ, the fluctuations around the limit can be bounded as

Eµ
[

sup
0≤t≤T

(
Jt(x, y)− tµ[x]c(x, y)

)2]
≤ T

(
4µ[x]c(x, y) + 24µ[x]c(x, y)2trel

)
. (3.22)
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Proof. Using (3.19) we can write

1

t
Jt(x, y)− µ[x]c(x, y) =

1

t
M

(x,y)
t − 1

t

∫ t

0

(
c(x, y)δXs,x − µ[x]c(x, y)

)
ds . (3.23)

With the quadratic variation of the martingale M (x,y)
t we have

1

t2
Eµ
[(
M

(x,y)
t

)2]
=

1

t
µ[x]c(x, y)→ 0 ,

which implies that M (x,y)
t /t→ 0, Pµ − a.s. and in L2(µ). Then the LLN (3.21) follows applying

Theorem 3.1 to the second term of (3.23).
Using (3.23) and Minkowski’s inequality we can bound

sup
0≤t≤T

(
Jt(x, y)− tµ[x]c(x, y)

)2
≤ sup

0≤t≤T

(
M

(x,y)
t

)2
+ sup

0≤t≤T

(∫ t

0
c̄(x, y,Xs)ds

)2
,

where we write c̄(x, y,Xs) = c(x, y)δXs,x − µ[x]c(x, y) for the standardized rates which are a
mean-zero function of Xs. For the first term we can use Doob’s inequality1, and for the second
we use Theorem 3.5 to get (3.22). 2

Analogously to Theorem 3.5, there exists a bound to (3.22) also for non-reversible processes.
We can also use (3.23) to derive a CLT-type result. We can use Lemma 3.2 for the martingale
and an adaption of Corollary 3.3 for the second part, since the integrand is of the form L(x,y)g for
the joint process (Xt,Jt(x, y)). Both lead to Gaussian limits in distribution, which are, however,
correlated, and this does not lead to a general result for the limiting variance.

Note also that for IPS on infinite lattices µ[η] = 0 and the above results are trivial if we count
the empirical current between particular configurations which is simply 0, P − a.s.. Analogous
results of course hold for general path functionals At due to linearity, for example counting the
particle current in a lattice gas between sites (i, j) we put choose as discussed before

A
(i,j)
t :=

∑
η,ζ∈E

δζ,ηi,j − δζ,ηj,iJt(η, ζ) .

Then analogously to Lemma 3.6 we have the martingale

M
(i,j)
t := A

(i,j)
t −

∫ t

0
c(i, j, ηs) ds ,

and we get as in Theorem 3.7,

1

t
A

(i,j)
t → µ

(
c(i, j, .)

)
Pµ − a.s. and in L2(Pµ) , (3.24)

with an analogous statement for the fluctuations as in (3.22).

Example. For the TASEP with rates c(i, i+ 1, η) = η(i)(1− η(i+ 1)) we get from (3.24) for the
asymptotic current under the stationary product measure νρ (see Def. 2.4)

1

t
A

(i,i+1)
t → νρ

(
c(i, i+ 1, .)

)
= ρ(1− ρ) .

1For a p-integrable martingale (Mt : t ≥ 0) with p > 1 we have E
[

sup0≤t≤T M
p
t

]
≤

(
p
p−1

)pE[Mp
T ].
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It is further known [32] that the fluctuations of the current,

A
(i,i+1)
t − tρ(1− ρ)√

t
→ N

(
0, ρ(1− ρ)|1− 2ρ|

)
have a Gaussian limit for all densities except ρ = 1/2. In that case negative correlations in the
two contributions in (3.23) cancel out and the variance vanishes. The current fluctuations occur
on a lower order scale of t1/3, which is a trademark of processes in the so-called KPZ universality
class (see [23] for a recent review).

3.3 Large deviations of additive functionals

In this section we collect some general results on large deviations of path functionals for a general
Feller process P, where we do not specify the initial condition. The functional At[ω] ∈ R can
be arbitrary, as long as it is P − a.s. finite for all t ≥ 0 and fulfills LLN with At → a ∈ R as
t → ∞. Additive path functionals introduced earlier are particular examples, but now we use the
convention to include the factor 1/t in the definition of At as is standard in large deviation theory.

Definition 3.3 The family of real-valued random variables (At : t ≥ 0) is said to satisfy a large
deviation principle (LDP) with respect to P, if there exists a lower semi-continuous1 function
I : R→ [0,∞] with I 6=∞, such that

lim inf
t→∞

−1

t
logP[At ∈ C] ≥ inf

a∈C
I(a) for all closed sets C ⊆ R , (3.25)

and

lim sup
t→∞

−1

t
logP[At ∈ O] ≤ inf

a∈O
I(a) for all open sets O ⊆ R . (3.26)

The function I is called the rate function, and if I has compact level sets it is called a good rate
function.

The LDP implies that events of the form At ∈ [a, a+da] have exponentially small probability
in leading order as t→∞, which in compact notation is often written as

P
[
At ∈ [a, a+ da]

]
� e−tI(a) da .

In general, LDPs can hold with different speeds bt ↗ ∞ where above probability scales like
e−btI(a) da. But this can be absorbed in a re-parametrization of At, and for standardized time-
additive functionals we expect bt = t to be the correct speed anyway.

In the following we assume that the scaled cumulant generating function (SCGF)

θ(k) := lim
t→∞

θt(k) := lim
t→∞

1

t
logE

[
ektAt

]
∈ (−∞,∞] (3.27)

is well defined (the limit exists) as an extended real number for all k ∈ R. We obviously have
θ(0) = 0, and assume that the origin is in the interior of the essential domain, i.e.

0 ∈ D◦θ where Dθ := {k ∈ R : θ(k) <∞} . (3.28)

1I is lower semi-continuous in a if for all ε > 0 there exists a neighbourhood U of a such that I(x) ≥ I(a)− ε.
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Definition 3.4 The Legendre-Fenchel transform of θ(k) is given by

θ∗(a) := sup
k∈R

(
k a− θ(k)

)
. (3.29)

k ∈ R is an exposed point of θ if for some a ∈ R

k a− θ(k) > l a− θ(l) for all l 6= k ,

and such a is called an exposing hyperplane. For all k ∈ R the subdifferential of θ is given by
the set of all exposing hyperplanes

∂θ(k) :=
{
a ∈ R : k a− θ(k) > l a− θ(l) for all l 6= k

}
. (3.30)

Some basic properties of θ and its Legendre transform are summarized in the next result, in
particular including convexity of θ. Note that if the point k ∈ R is not exposed, then simply
∂θ(k) = ∅. If θ has kinks, the subdifferential can also be an interval, if θ is differentiable in k then
simply ∂θ(k) = {θ′(k)}. We also have θ′(0) = limt→∞ E[At] corresponding to the asymptotic
expectation of the functional.

Proposition 3.8 Under assumption (3.27), both θ and θ∗ are convex functions on R, and (θ∗)∗ =
θ. Furthermore, θ∗ is non-negative, lower-semicontinuous and additionally assuming (3.28) has
compact level sets, so can be a good rate function for an LDP.
If a ∈ ∂θ(k), then θ∗(a) = k a− θ(k).

Proof. Convexity of θ follows by Hölder’s inequality, since for all α ∈ [0, 1], k1, k2 ∈ R and
t ≥ 0 we have

θt
(
αk1 + (1− α)k2

)
=

1

t
logE

[(
ek1tAt

)α(
ek2tAt

)1−α]
≤ 1

t
log
(
E
[
ek1tAt

]αE[ek2tAt]1−α) = αθt(k1) + (1− α)θt(k2) .

Then θ is convex as the limit of convex functions θt. θ∗ is convex simply by the definition of the
Legendre transform,

αθ∗(a1) + (1− α)θ∗(a2) =

= sup
k∈R

(
αka1 − αθ(k)

)
+ sup

k∈R

(
(1− α)ka2 − (1− α)θ(k)

)
≥ sup

k∈R

(
(αa1 + (1− α)a2)k − θ(k)

)
= θ∗

(
αa1 + (1− αa2)

)
. (3.31)

θ(0) = 0 implies that θ∗(a) ≥ 0 a− θ(0) = 0 is non-negative for all a ∈ R.
To see that θ∗ is lower semi-continuous, fix a sequence an → a. Then for all k ∈ R

lim inf
an→a

θ∗(an) ≥ lim inf
an→a

(
k an − θ(k)

)
= k a− θ(k) ,

and thus

lim inf
an→a

θ∗(an) ≥ sup
k∈R

(
k a− θ(k)

)
= θ∗(a) ,
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which implies lower semi-continuity.
Since 0 ∈ D◦θ , there is a closed ball B̄0(δ) ⊆ D◦θ for some radius δ > 0 such that M :=
supk∈B̄0(δ) θ(k) <∞, because the convex function θ is continuous in D◦θ . Therefore,

θ∗(a) ≥ sup
k∈B̄0(δ)

(
k a− θ(k)

)
≥ δ|a| −M .

Thus, for every α <∞ the level set {a : θ∗(a) ≤ α} is bounded.
If k a− θ(k) > l a− θ(l) for all l 6= k, then by definition θ∗(a) = k a− θ(k). 2

Definition 3.5 A convex function θ : R→ (−∞,∞] is essentially smooth if:

• D◦θ is non-empty,

• θ is differentiable throughout D◦θ ,

• θ is steep, i.e. limn→∞
∣∣θ′(kn)

∣∣ = ∞ for all sequences kn in D◦θ converging to a boundary
point of D◦θ .

Theorem 3.9 Gärtner-Ellis. Under assumption (3.27) we have

lim inf
t→∞

−1

t
logP[At ∈ C] ≥ inf

a∈C
θ∗(a) for all closed C ⊆ R ,

lim sup
t→∞

−1

t
logP[At ∈ O] ≤ inf

a∈O∩G
θ∗(a) for all open O ⊆ R , (3.32)

where G is the set of exposed points of θ∗ whose exposing hyperplane belongs to D◦θ .
If θ∗ is strictly convex, or alternatively, θ is essentially smooth and lower semi-continuous, then
the LDP in Definition 3.3 holds with good rate function θ∗.

Proof. see [28], Chapter 2.

In general, the large deviation rate function as given in Definition 3.3 does not have to be convex.
Its Legendre transform is always convex by definition, and given by the scaled cumulant generating
function (3.27).

Corollary 3.10 Let (At : t ≥ 0) be a sequence of path functionals of a Feller process (Xt : t ≥ 0)
that obey a LLN. Then (At : t ≥ 0) satisfies an LDP w.r.t. P with good rate function

I(a) = θ∗(a) = sup
k∈R

(
k a− θ(k)

)
(3.33)

given by the Legendre transform of the SCGF θ(k) as defined in (3.27), provided it fulfills the
regularity assumptions of Theorem 3.9.

As mentioned earlier, since additive path functionals are roughly linear in time, we expect
non-trivial results for rate functions of LDPs with speed t. For general functionals obeying a LLN
At → ā we expect an LDP with speed t in any case, but it may be trivial. If the speed t is too low,
i.e. actual fluctuations are even more unlikely, we have I(ā) = 0 an I(a) = ∞ for all a 6= ā. If
the speed t is too high all values appear typical on the exponential scale with I(a) ≡ 0.
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3.4 Conditional path ensembles

To quantitatively study large deviations of path functionals we have to get a handle on the scaled
cumulant generting function θ(k) (3.27). One popular approach is to define conditional path
ensembles on a compact time interval [0, T ], and investigate their behaviour as T → ∞ which
will be dominated by the principal eigenvalue of a modified generator. As in the previous section
we consider a general Feller process (Xt : 0 ≤ t ≤ T ) with path measure P, and a general
functional AT [ω], which exhibits a non-trivial LDP with speed T .

Definition 3.6 Conditional path measures
The canonical path measure for the process Xt|{AT=a} on path space D([0, T ]) is given by

dPc[ω] :=
1[a,a+da](AT (ω))

P
[
AT ∈ [a, a+ da]

]dP[ω] , (3.34)

and the grand-canonical path measure or Feynman-Kac transform is given by

dPgc[ω] :=
eTkAT (ω)

E
[
eTkAT

]dP[ω] . (3.35)

The tilted path measure is given by an un-normalized version of the grand-canonical one,

dPk[ω] := eTkAT (ω)dP[ω] . (3.36)

The first two are both probability measures on path space D([0, T ]), the canonical one condi-
tions on a particular value of the functional AT with normalization given by the (large deviation)
probability P

[
AT ∈ [a, a + da]

]
, and the grand-canonical one re-weights the path ensemble ac-

cording to the value of AT , and the normalization is related to the SCGF. Both measures do in
general not define Markov processes, but for large T are equivalent to Markov processes, as is
shown in [29], Section V. We will cover some aspects of process equivalence in the following. A
standard way to measure the difference between probability measures is to use the relative entropy.

Definition 3.7 For two probability measures µ1, µ2 on Ω, the relative entropy is given by

H(µ1;µ2) :=

{ ∫
Ω log dµ1

dµ2
(ω) dµ1[ω] , if µ1 � µ2

∞ , if µ1 6� µ2
. (3.37)

Here we use the standard notation µ1 � µ2 for absolut continuity of µ1 w.r.t. µ2, i.e. for each
measurable A ⊆ Ω, µ2(A) = 0 implies that µ1(A) = 0. This implies existence of the Radon-
Nikodym derivative dµ1

dµ2
, which is a measurable function on Ω such that

dµ1[ω] =
dµ1

dµ2
(ω) dµ2[ω] .

For µ1 � µ2 with q := dµ1
dµ2

we have dµ1 = q dµ2 and we can write

H(µ1;µ2) = µ2

(
q log q

)
=

∫
Ω
q(ω) log q(ω)dµ2 .

44



Since x log x is a convex function, H(µ1;µ2) is convex in µ1 for given µ2. By Jensen’s inequality
we have

H(µ1;µ2) ≥ µ2(q) logµ2(q) = µ1[Ω] logµ1[Ω] = 0 ,

with equality if and only if h = 1 µ2 − a.s. and µ1 = µ2. Relative entropy is not symmetric
and therefore not a metric, but due to non-negativity can still be used to quantify the difference
between probability measures. For more details related to relative entropy see [8], Appendix 1.

To quantify the distance between between canonical and grand-canonical path ensembles, we
define the specific relative entropy

h(a, k) := lim
T→∞

1

T
H(Pc;Pgc) . (3.38)

Proposition 3.11 Equivalence of ensembles
Under the conditions of Corollary 3.10 the limit in (3.38) is well-defined and

h(a, k) = I(a) + θ(k)− k a .

Furthermore, the equivalence of ensembles holds, i.e. for all a ∈ R such that I(a) <∞ we have

inf
k∈R

h(a, k) = I(a) + θ(k∗)− k∗ a = 0 , (3.39)

where the minimizer k∗ is such that θ′(k∗) = a.

Proof. First note that Pc � Pgc since Pc � P as a conditional version of P, and P � Pgc.
Therefore the Radon-Nikodym derivative

dPc
dPgc

(ω) =
dPc/dP(ω)

dPgc/dP(ω)
=

E[eTkAT ] e−Tka

P[AT ∈ [a, a+ da]]
1[a,a+da](AT (ω))

is given by a simply function which is constant on
{
AT ∈ [a, a+ da]

}
and vanishes outside. This

leads to

H(Pc;Pgc) = Ec
[

log
dPc
dPgc

]
= logE[eTkAT ]− k a− logP[AT ∈ [a, a+ da]] ,

and together with the LDP in Corollary 3.10 this implies that h(a, k) = I(a) + θ(k)−k a. Taking
the infimum over k with the definition of the Legendre transform in (3.29) leads to

inf
k∈R

h(a, k) = I(a)− θ∗(a) = 0 .

The conditions of Corollary 3.10 imply that θ(k) is differentiable on its essential domain Doθ , and
therefore the infimum in (3.39) is attained at k∗ ∈ R such that

θ′(k∗) = lim
T→∞

1

T

E
[
TAT e

Tk∗AT
]

E
[
eTk∗AT

] = Egc[AT ] = a .

2

Therefore, an LDP for the path functional implies the asymptotic equivalence of canonical and
grand-canonical path measures as T →∞, provided that the grand-canonical measure Pgc is tilted
such that the functional expectation is equal to the conditional value a under Pc.
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3.5 Tilted path ensemble

In this section we consider a Feller jump process (Xt : t ≥ 0) on the general state space E with
jump rates c(x, dy) and generator

Lf(x) =

∫
E
c(x, dy)

[
f(y)− f(x)

]
.

We will go back to particular additive path functionals as introduced in Sections 3.1 and 3.2, using
a more general notation

At =
1

t

∫ t

0
h(Xs)ds+

1

t

∑
0≤s≤t:Xs− 6=Xs

a(Xs−, Xs) . (3.40)

We have h ∈ C(E), and a ∈ C(E ×E) is now counting the contribution of jumps on path space.
For general a(x, y) we have to assume that P−a.s. there are only finitely many jumps in any given
time interval [0, t], which excludes IPS on infinite lattices. For the latter, the sum (3.40) can still
be well-defined for particular choices of a corresponding to e.g. the measurement of local currents
as discussed previously.

In the following we analyze the tilted path measure (3.36), which has actually a Markovian
structure as we will see, but does not conserve probability since in general

Pk[Ω] = E[eTkAT ] 6= 1 .

Trying to incorporate the action of the tilting eTkAT with AT given in (3.40), we define the tilted
generator

Lkf(x) :=

∫
E
c(x, dy)

[
eka(x,y)f(y)− f(x)

]
+ k h(x) f(x) . (3.41)

With each jump from x to y the path ensemble is re-weighted by a factor eka(x,y) corresponding to
the second term in (3.40), and the integral conditioning leads to an additional diagonal term. We
split the operator Lk into a conservative part L̄k and diagonal parts,

Lkf(x) :=

∫
E
c(x, dy)eka(x,y)

[
f(y)− f(x)

]
︸ ︷︷ ︸

:=L̄kf(x)

+f(x)

(∫
E
c(x, dy)[eka(x,y) − 1] + kh(x)

)
︸ ︷︷ ︸

=(Lk1)(x)

.

One interpretation of the backward equation (1.23) in the Hille-Yosida Theorem 1.4 is, that the
semigroup u(t, x) := Ptf(x) = Ex[f(Xt)] provides a solution of the evolution equation

d

dt
u(t, x) = Lu(t, x) , u(0, x) = f(x) .

The Feynman-Kac formula provides a probabilistic representation of the solution to an equation
where the generator has additional diagonal terms as above.

Theorem 3.12 Feynman-Kac formula
Suppose that (Xt : t ≥ 0) is a Feller process on the state space E with generator L, path measure
P and expectation E, and take f ∈ DL and g ∈ C(E). Define the operator

P gt f(x) := Ex
[
f(Xt) exp

(∫ t

0
g(Xs) ds

)]
.
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Then u(t, .) = P gt f ∈ DL for each t ≥ 0 and u(t, x) solves the equation

d

dt
u(t, x) = Lu(t, x) + g(x)u(t, x) , u(0, x) = f(x) . (3.42)

P ht = et(L+g), t ≥ 0 has a semi-group structure and is called the Feynman-Kac semigroup
generated by L + g. On compact time intervals [0, T ] it characterizes a (non-conservative) path
measure Pg with

dPg[ω] = exp
(∫ T

0
g(ωs) ds

)
dP[ω] . (3.43)

Proof. Consider the joint process (Xt, Yt) on E ×R with Yt =
∫ t

0 g(Xs) ds. This is Markov with
generator

L̃F (x, y) = LF (x, y) + ∂yF (x, y)g(x) .

Now, use the backward equation for the special test function F (x, y) = f(x) ey with ∂yF (x, y) =
F (x, y) to get (3.42). See [31], Section 3.4.6 for an alternative proof with technical details includ-
ing operator domains.
To see the semigroup structure, note that P g0 = I, and using the tower property of the expectation
we get analogously to the standard case for each 0 < u < t

P gt f(x) = Ex
[
Ex
[
f(Xt)e

∫ u
0 g(Xs)ds+

∫ t
u g(Xs)ds

∣∣∣Fu]]
= Ex

[
e
∫ u
0 g(Xs)dsEXu

[
f(Xt−u)e

∫ t−u
0 g(Xs)ds

]]
= P guP

g
t−uf(x) . (3.44)

Analogously to the conservative case, the statement on the Radon-Nikodym derivative of the path
measure then follows from the definition of P gt . 2

Applying this in the above setting, the non-conservative Feynman-Kac semigroup generated
by the tilted operator Lk (3.41) can be written as

etLkf(x) = Ēxk
[
f(Xt) exp

(∫ t

0
(Lk1)(Xs) ds

)]
. (3.45)

The process generated by the conservative operator L̄kf(x) is a Markov jump process with tilted
transition rates ck(x, dy) := c(x, dy)eka(x,y) and we denote the corresponding path measure and
expectation by P̄k and Ēk, respectively. With (3.43) we have on [0, T ]

dPk[ω] = exp
(∫ T

0
(Lk1)(ωs) ds

)
dP̄k[ω] . (3.46)

The tilted rates ck(x, dy) are absolutely continuous w.r.t. c(x, dy) and vice versa, since eka(x,y) is
strictly postive. The Radon-Nikodym derivatives are simply given by

dck(x, .)

dc(x, .)
(y) = eka(x,y) and

dc(x, .)

dck(x, .)
(y) = e−ka(x,y) , (3.47)

so the tilted and the original process with generator L have the same set of allowed transitions.
In this situation the corresponding path measures are absolutely continuous, and a formula for the
Radon-Nikodym derivative is provided by the following result.
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Theorem 3.13 Girsanov formula
Let P and P̄ be path measures of two Feller jump processes on the same state space E on the
compact time interval [0, T ], with rates c(x, dy) and c̄(x, dy), respectively. We denote by c(x) =∫
E c(x, dy) and c̄(x) =

∫
E c̄(x, dy) the total exit rates, and assume that c̄(x, dy)� c(x, dy) with

corresponding Radon-Nikodym derivative dc̄(x, .)/dc(x, .). Then

dP̄[ω] = exp

(∫ T

0

(
c(ωt)− c̄(ωt)

)
dt+

∑
0≤t≤T

log
dc̄(ωt−, .)

dc(ωt−, .)
(ωt)

)
dP[ω] .

Proof. by direct computation, see e.g. [8], Appendix 1, Proposition 2.6.

Note that in our setting, the difference of the total exit rates can be written as∫
E
c(x, dy)−

∫
E
ck(x, dy) =

∫
E
c(x, dy)

(
1− eka(x,y)

)
= −(Lk1)(x) + k h(x) .

Using further the simple expression (3.47) for derivatives of the jump rates, we get

dP̄k[ω] = exp

(∫ T

0

(
k h(ωt)− (Lk1)(ωt)

)
dt+

∑
0≤t≤T

ka(ωt−, ωt)

)
dP[ω] (3.48)

Combining (3.46) and (3.48), the main result of this section is then the following.

Theorem 3.14 The tilted path measure Pk = eTkATP describes a non-conservative Markov jump
process with generator Lk given in (3.41) and associated Feynman-Kac semigroup (3.45).

Proof. With (3.46) and (3.48) we get a cancellation of one integral term which yields

dPk
dP

(ω) =
dPk
dP̄k

(ω)
dP̄k
dP

(ω) = exp

(
k

∫ T

0
h(ωt)dt+ k

∑
0≤t≤T

a(ωt−, ωt)

)
for the path measure generated by Lk, which coincides with tilted measure defined in (3.36). 2

The operator Lk has positive ’off-diagonal’ entries, but their sum does not necessarily cancel
with the ’diagonal’ entries as for conservative operators. Still, the Perron-Frobenius theorem
implies that for finite state spaces (where Lk is a matrix) and irreducible dynamics, there exists a
unique principal eigenvalue with maximal real part, which is real and the corresponding eigenvec-
tors have positive entries. This can be extended to inifinite-dimensional compact operators, see
[29], Section III.B for details and further references.

Assume that Λk ∈ R is the unique principal eigenvalue of Lk with corresponding left and right
eigenvectors `k(dy) and rk(x), respectively, and positive spectral gap ∆k > 0. Then for every
f ∈ DL the associated semigroup can be written as

P kt f(x) = etLkf(x) = etΛk
(
rk(x)

∫
E
f(y)`k(dy) +O

(
e−t∆k

))
,

if we use the normalization
∫
E `k(dy) = 1 and

∫
E rk(x)`k(dx) = 1. If we further assume that the

initial distribution µ is such that

α :=

∫
E
rk(x)µ(dx) ∈ (0,∞) , (3.49)
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we get

Eµ
[
etkAt

]
= Eµk

[
1
]

=

∫
E
P kt 1(x)µ(dx) = etΛk

(
α+O

(
e−t∆k

))
.

With (3.27) this implies that the SCGF

θ(k) = lim
t→∞

1

t
logEµk

[
1
]

= Λk (3.50)

is given by the principal eigenvalue of Lk. The probabilistic meaning of the normalized left
eigenvector is the limiting stationary distribution of the process under the grand-canonical path
measure (3.35)

`k(dy) = lim
t→∞

Eµ
[
etkAtδXt(dy)

]
Eµ
[
etkAt

] = lim
t→∞

Pµgc[Xt ∈ dy] ,

which holds independently of initial distributions µ that fulfill (3.49). So the principal eigen-
value and eigenvector of the tilted generator characterize the most important properties of the
grand-canonical ensemble, which is equivalent to the canonical ensemble, and determine the large
deviation rate function for the additive path functional At.

Cloning algorithms.
In order to sample from the non-conservative tilted path measure, one can use a cloning-type
algorithm where an ensemble of trajectories is run in parallel. To understand the dynamics we
re-write the tilted generator (3.41) once again as

Lkf(x) =

∫
E
c(x, dy)

(
eka(x,y)f(y)− f(x)

)
+ k h(x) f(x)

=

∫
E
c(x, dy)

∞∑
n=0

qn(k, x, y)
(
nf(y)− f(x)

)
+

{
|kh(x)|

(
0− f(x)

)
, if kh(x) < 0

|kh(x)|
(
2f(x)− f(x)

)
, if kh(x) > 0

. (3.51)

Here we turn the real path weights into randomized integer weights, which can be interpreted
as the number of clones or offspring produced at a jump event or due to the diagonal term. For
jumps, qn(k, x, y) is a probability distribution on integers n ∈ N0 which is the number of copies
the process is replaced with after the jump from x to y. If ka(x, y) < 0 we want to supress
these jumps, and the simplest choice is simply to use a Bernoulli distribution with q1(k, x, y) =
eka(x,y) = 1−q0(k, x, y), so that the process is killed with probability 1−eka(x,y). If ka(x, y) > 0
jumps from x to y are encouraged, and after the jump the process is replaced with a number of
copies that has mean

∑∞
n=0 qn(k, x, y)n = eka(x,y) > 1. A simple and quite realistic choice would

be to use a geometric distribution. But in fact any distribution on positive integers with the right
mean is allowed (including e.g. also Poisson), and can be chosen to optimize the performance
of the algorithm. A similar interpretation applies to the diagonal term, where we run additional
dynamics with rates |kh(x)|, that lead to killing events if kh(x) < 0, or simple cloning events
where one new copy is created if kh(x) > 0. Of course the number of copies could also be
randomized for this term. In fact there are many other ways to set up similar cloning rules that are
consistent with the generator Lk, see e.g. [33] for more details.
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As is implied by (3.50),

Ek[1] ∝ etΛk as t→∞ ,

and since usually Λk 6= 0 the number of clones would decrease or increase exponentially on
average. This leads to obvious computational problems and one usually runs a clone ensemble of
constant size, say M . Whenever a clone is killed it is replace by the copy of another uniformly
chosen one. If several copies are created in an event, they replace uniformly chosen ones from the
ensemble. Since this replacement mechanism is unbiased, the clone ensemble represents a discrete
approximation of the grand-canonical path measure. The growth factor of the population in each
clone i, where mi ≥ −1 clones have been created (random number depending on the path), is
given by (M + mi)/M . Denoting by N(t) the total (random) number of clone events up to time
t, with (3.50) we expect

θ(k) = Λk = lim
M→∞

lim
t→∞

1

t

N(t)∑
i=1

log(M +mi)/M = lim
M→∞

lim
t→∞

1

Mt

N(t)∑
i=1

mi . (3.52)

For the last identity we use mi � M as M → ∞. For large finite ensemble sizes M and
simulation times t this provides a converging approximation scheme for θ(k).

3.6 LDPs for Markov chains

As a first simple example consider a Poisson process (Nt : t ≥ 0) ∼ PP (λ) with rate λ > 0.
Then Nt/t fulfills an LDP with good rate function

I(a;λ) := λ− a+ a log(a/λ) for all a ≥ 0 . (3.53)

To see this, simply compute the SCGF θ(k), using that Nt ∼ Poi(λt) to get

E
[
ekNt

]
=
∞∑
n=0

(λt)n

n!
ekne−λt = exp

[
λt(ek − 1)

]
, (3.54)

and therefore

θ(k) = lim
t→∞

1

t
logE

[
ekNt

]
= λ(ek − 1) . (3.55)

This is smooth for all k ∈ R, so the Gärtner-Ellis Theorem 3.9 applies and Legendre transfor-
mation leads to I(a;λ) as given in (3.53). Note that I(a;λ) is strictly convex for all a ≥ 0 with
I(0;λ) = λ and I(λ;λ) = 0.

Following results in [30], we now describe a joint LDP for the empirical measure and flow of
a continuous Markov chain (Xt : t ≥ 0) with state space E and rates c(x, y). We assume the
latter are uniformly bounded, i.e. c(x) < R <∞ for all x ∈ E, excluding explosion, and that the
chain is ergodic with unique stationary measure π. Both functionals are simple measure-valued
generalizations of additive functionals considered before.

Definition 3.8 For given T > 0 the empirical measure µT : DE([0, T ])→M1(E) is given by

µT =
1

T

∫ T

0
δXtdt , (3.56)
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and the empirical flow QT : DE([0, T ])→ L1
+(E) is given by

QT =
1

T

∑
t∈[0,T ]:Xt− 6=Xt

δ(Xt−,Xt) . (3.57)

Here δ(x,y) is the Dirac measure on E ×E, and we denote by L1
+(E) all non-negative, summable

sequences on [0,∞)E×E , with associated L1-norm ‖.‖1.

Note that µT and TQT are measure-valued, with the latter counting simultaneously the empirical
currents JT (x, y) between states x, y ∈ E as introduced earlier in Definition 3.2. Also c(x, y) = 0
obviously implies QT (x, y) = 0.
By the law of large numbers given in Theorem 3.1, µT [x] → π[x], P − a.s. as T → ∞ for each
x ∈ E. Since we use the discrete topology on E this implies also weak convergence µT (f) →
π(f), P− a.s. for all f ∈ C(E), which implies to P ◦ µ−1

T → δπ onM1(E) under the topology
of weak convergence.
For a given flow Q ∈ L1

+(E) we denote its divergence divQ : L1
+ → R as

divQ(x) =
∑
y∈E
Q(x, y)−

∑
y∈E
Q(y, x) for all x ∈ E , (3.58)

measuring the net flow out of state x. For each µ ∈ M1(E) we associate the flow Qµ ∈ L1
+

defined as

Qµ(x, y) = µ(x) c(x, y) for all x, y ∈ E . (3.59)

Therefore divQµ = 0 if and only if µ = π is stationary. With Theorem 3.7 we have the LLN
QT (x, y)→ Qπ(x, y), P− a.s. as T →∞ for all x, y ∈ E. Note that for finite E this implies a
LLN on L1

+ w.r.t. the norm ‖.‖1, while for infiniteE in general a stronger topology is required also
to formulate an LDP. One choice is to use a bounded version of the weak* topology on L1(E),
with full details given in Section 2.3 of [30]. In general, L1(E) is the dual to C(E × E) of func-
tions vanishing at infinity, and the weak* topology on L1(E) is the smallest topology such that
all maps Q 7→ 〈Q, f〉 ∈ R with f ∈ C(E × E) are continuous.

We need one more concept before stating the main result. Recalling the definition of the
Dirichlet form (3.8), for the symmetric part Ls (2.56) of the generator for a general Markov chain
with rates c(x, y) this gives

Eπ(f) =
1

4

∑
x,y∈E

(
π[x]c(x, y) + π[y]c(y, x)

)(
f(y)− f(x)

)2
, f ∈ L2(E, π) . (3.60)

The process satisfies a logarithmic Sobolev inequality, if there exists a constant CLS ∈ (0,∞)
such that for any µ ∈M1(E)

H(µ;π) ≤ CLSEπ
(√

µ/π
)
. (3.61)

Note that the density µ/π : E → [0,∞) is well defined since π[x] > 0 for all x ∈ E.

Theorem 3.15 Consider an ergodic Markov chain with uniformly bounded rates, satisfying (3.61)
and that the graph (E,G) of allowed transitions with G = {(x, y) ∈ E × E : c(x, y) > 0} is
locally finite. Then, as T →∞, the family of measure-valued observables(

(µT ,QT ) : T ≥ 0
)

onM1(E)× L1
+(E) satisfies an LDP w.r.t. Px , (3.62)
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uniformly in x on compact subsets of E with good and convex rate function

I(µ,Q) :=

{ ∑
(y,z)∈G I(Q(y, z);Qµ(y, z)) , if divQ = 0

∞ , otherwise
, (3.63)

which is determined by the rate functions (3.53) of Poisson processes, where we set I(q; 0) = ∞
for all q > 0.

Idea of the proof. Note that by the graphical construction of the Markov chain, the integer-valued
random field {TQT (y, z) : (y, z) ∈ G} under Px is stochastically dominated (see Definition
4.4) by the field {Ny,z

T : (y, z) ∈ G} of iid Poisson random variables with parameters c(y, z)T .
Due to independence, the rate function for the latter is simply given by the sum of rate functions
I(q; c(y, z)T ) for individual Poisson processes given in (3.53). The connection is then based on
an extension of the contraction principle:
Let A and B be two complete, separable metric spaces and (At : t ≥ 0) a family on A satisfying
an LDP with rate function IA : A → [0,∞] w.r.t. a measure P. Let F : A → B be a continuous
function. Then (F (At) : t ≥ 0) satisfies an LDP on B w.r.t. P ◦ F−1 with rate function

IB(b) = inf
{
IA(a) : a ∈ A, F (a) = b

}
.

If IA is a good rate function on A, so is IB on B.
The empirical measure µ leads to a thinning of PP (c(y, z)) processes, resulting in a modified
parameter Qµ(y, z) = µ[y]c(y, z). Furthermore, the asymptotic flows Q have to be divergence
free, corresponding to conservation of probability of the Markov chain. These two conditions lead
to a mapping, which has to be shown to be continuous in a proper setting. 2

Note that of course I(µ,Qµ) = 0 if and only if divQµ = 0, which is equivalent to µ = π
being stationary. A further contraction using the mapping

(µ,Q) 7→ µ onM1(E)× L1
+(E)→M1(E) ,

yields the classical Donsker-Varadhan LDP for the empirical measures (see e.g. [28]).
As mentioned earlier, the above result holds for a bounded weak* topology on the flow space

L1(E). A more general version on the flow space [0,∞]G endowed with the product topology can
be formulated with a less explicit construction of the rate function. For details on this aspect, on
the proof and also on further properties of the rate function (3.63) see [30].
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4 Hydrodynamic limits and macroscopic fluctuations

Hydrodynamic limits are scaling limits of the dynamics of conservative IPS on large space and
time scales, where the system is completely described by the local density field ρ(s, u) as a func-
tion of a continuous space coordinate u ∈ R and time s ≥ 0. This is the solution of a conservation
law (PDE) of the following form

∂sρ(u, s) + ∂uj(u, s) = 0 and j(u, s) = J(ρ(u, s), u, s) , (4.1)

where we only consider the one-dimensional case for simplicity. j(u, s) is the local current deter-
mined by the second relation called the constitutive equation. For IPS this usually takes the form

J(ρ, s) = −D(ρ)∂uρ+ χ(ρ)E(u, s) , (4.2)

with diffusion coefficient D(ρ) ≥ 0, mobility χ(ρ) > 0 and external field E(u, s) ∈ R. In
d dimensions, both are symmetric, non-negative definite matrices. The two equations can be re-
written as

∂sρ(u, s) + ∂u
(
χ(ρ(u, s)E(u, s)

)
= ∂u

(
D(ρ(u, s)∂uρ(u, s)

)
, (4.3)

and since χ and D depend on ρ this is in general non-linear which is the source of interesting
phenomena. For systems on finite domains boundary conditions have to be specified, for now we
will focus simply on periodic boundary conditions or systems on infinite domains. In the following
we will investigate how to derive (4.3) from IPS, starting out with some heuristics to fix the main
ideas.

4.1 Heuristics on currents and conservation laws

Consider a lattice gas on the compact state space E = SΛ with compact S ⊆ N0 with generator
(1.79)

Lf(η) =
∑
x,y∈Λ

c(x, y, η)
(
f(ηx,y)− f(η)

)
. (4.4)

As before we assume the jump rates to be of finite range as given in Definition (1.6), and we
denote lattice coordinates as x, y, z ∈ Λ in all of this section. Recall the forward equation from
Theorem 1.4

d

dt
Ptf = PtLf which holds for all f ∈ C0(E) . (4.5)

Integrating w.r.t. the initial distribution µ, and writing µt := µPt as before we have

d

dt
µt(f) =

d

dt
µ
(
Ptf
)

= µ
(
PtLf

)
= µt(Lf) . (4.6)

For the bounded cylinder function f(η) = η(x) we get with (4.4)

Lη(x) =
∑
y∈Λ

(
c(y, x, η)− c(x, y, η)

)
= −divj(x, η) , (4.7)

with notation explained in the following definition.
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Definition 4.1 We denote the instantaneous particle current across the directed edge (x, y) as

j(x, y, η) := c(x, y, η)− c(y, x, η) , (4.8)

and its divergence is defined similarly to (3.58) as

div j(x, η) :=
∑
y∈Λ

j(x, y, η) . (4.9)

The average particle density at site x at time t is given by

ρ(x, t) := Eµ
(
ηt(x)

)
= µt

(
η(x)

)
, (4.10)

and the average particle current across (x, y) by

j(x, y, t) := E[j(x, y, ηt)] = µt
(
j(x, y, .)

)
. (4.11)

With (4.7), the forward equation (4.6) for f(η) = η(x) can then be written as

d

dt
ρ(x, t) + divj(x, t) = 0 , (4.12)

which is also called the lattice continuity equation. The divergence of the average current is
defined analogously to (4.9). Note that in contrast to the flow Q(x, y) in (3.58) which is non-
negative, j(x, y, η) ∈ R denotes already the net current across the directed bond (x, y), which
leads to the difference in the definitions of the divergence. It describes the time evolution of
the density ρ(x, t) in terms of higher order (two-point) correlation functions which determine
the current. The form of this equation implies that the total particle density in closed systems is
conserved, i.e. on the finite lattice ΛL = Z/LZ with periodic boundary conditions we have

d

dt

∑
x∈ΛL

ρ(x, t) = −
∑
x∈ΛL

divj(x, t) = 0 . (4.13)

In general, the density is locally conserved and a change in certain domain ∆ ⊆ Λ only occurs
through flux through the boundary.

Example. For the one-dimensional ASEP on Λ = Z or ΛL = Z/LZ we have for all x ∈ Λ

j(x, x+ 1, t) = pµt(1x0x+1)− qµt(0x1x+1) , (4.14)

with j(x, x− 1, t) = −j(x− 1, x, t) and all other currents vanish. Here we have used the simpli-
fying notation µt

(
η(x)(1− η(y))

)
= µt(1x0y). This leads to the divergence

divj(x, t) = pµt(1x0x+1)− qµt(0x1x+1) + qµt(0x−11x)− pµt(1x−10x) . (4.15)

Symmetric case For p = q = 1 this simplifies significantly. Adding and subtracting an auxiliary
term we get

j(x, x+ 1, t) = µt(1x0x+1) + µt(1x1x+1)− µt(1x1x+1)− µt(0x1x+1) =

= µt(1x)− µt(1x+1) = ρ(x, t)− ρ(x+ 1, t) . (4.16)
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So the current is given by the lattice derivative of the density, and (4.12) turns into a closed equation

d

dt
ρ(x, t) = ∆xρ(x, t) := ρ(x− 1, t)− 2ρ(x, t) + ρ(x+ 1, t) . (4.17)

Thus the particle density of the SSEP behaves like the probability density of a single simple ran-
dom walk with jump rates p = q = 1. The fact that we get a closed equation for particle density
(one-point correlation function) is related to the concept of duality, which is explained in detail in
[6], Chapter II and in Chapter IIIV for the exculsion process. In general, duality allows to study the
dynamics of correlation functions for one model in terms of the dynamics of another dual model,
which is often simpler than the original one.

To describe the behaviour on large scales we scale the lattice constant by a factor of 1/L and
embed it in the continuum, i.e. 1

LΛ ⊆ R or 1
LΛL ⊆ T = R/Z for the torus. Using the macroscopic

space variable u = x/L ∈ R,T we assume that there exists a smooth function y 7→ ρ̃(., t) for all
t ≥ 0 such that

ρ̃(x/L, t) := ρ
(
x, t
)

for all x ∈ Λ , (4.18)

which we call the macroscopic density field. A Taylor expansion around the point y = x/L then
yields

ρ(x± 1, t) = ρ̃(u± 1
L , t) = ρ̃(u, t)± 1

L∂uρ̃(u, t) + 1
2L2∂

2
uρ̃(u, t) +O(1/L3) . (4.19)

The lattice Laplacian in (4.17) is then given by

∆xρ(x, t) =
1

L2
∂2
uρ̃(u, t) +O(1/L4) , (4.20)

since first and third order terms vanish due to symmetry. In order to get a non-degenerate equation
in the limit L → ∞, we have to scale time as s = t/L2. This corresponds to speeding up the
process by a factor of L2, in order to see diffusive motion of the particles on the scaled lattice.
Using both in (4.17) we obtain in the limit L→∞

∂sρ(u, s) = ∂2
uρ(u, s) (heat/diffusion equation) , (4.21)

where we drop the notation ρ̃ and simply use again ρ for the density in macroscopic time. Note
that this equation also describes the diffusion of independent particles on large scales, since the
SSEP can also be defined as simply swapping occupation numbers with rate 1 (irrespective of
occupation). In the framework of (4.3) we have D(ρ) = 1 and no external driving field E ≡ 0.
From a PDE point of view, (4.21) is a parabolic equation, for which the initial value problem has
a maximum principle and a unique smooth solution for all t > 0 even for non-smooth initial data.
For further details see e.g. [8], Chapter 4.

Asymmetric case. In the asymmetric case with p 6= q we do not get a closed equation as in (4.17)
and the constitutive equation for the current is more complicated. If we use a stationary measure
µt = µ in the continuity equation (4.12) we get

0 =
d

dt
µ(1x) = j(x− 1, x)− j(x, x+ 1) , (4.22)
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which implies that the stationary current j(x, x + 1) := pµ(1x0x+1) − qµ(0x1x+1) is site-
independent. Since we know the stationary measures for the ASEP we can compute it explicitly.
For the homogeneous product measure µ = νρ we get

j(x, x+ 1) := pνρ(1x0x+1)− qνρ(0x1x+1) = (p− q)ρ(1− ρ) =: φ(ρ) , (4.23)

which is actually just a function of the total particle density ρ ∈ [0, 1]. We can use this to arrive at
a scaling limit of the continuity equation for the asymmetric case p 6= q. We use the same space
scaling u = x/L as above and write

divj(x, t) = 1
L∂uj̃(u, t) + o( 1

L) , (4.24)

with a similar notation j̃ for the current on the macroscopic scale as above for the density. In the
asymmetric case the first order terms in the spatial derivative do not vanish and we have to scale
time as s = t/L, speeding up the process only by a factor L to see motion with a drift. In the limit
L→∞ this leads to the hyperbolic conservation law

∂sρ(u, s) + ∂uj(u, s) = 0 , (4.25)

where we can define the macroscopic current j(u, s) as (assuming that the limit exists)

j̃(u, s) := lim
L→∞

j
(
[uL]− 1, [uL], sL) . (4.26)

Since we effectively take microscopic time t = sL→∞ in that definition, it is plausible to use

j(u, s) = φ
(
ρ(u, s)

)
, (4.27)

i.e. the stationary current corresponding to the local density ρ(u, s) gives the constitutive equation
for the current. This is equivalent to the process becoming locally stationary in the limit L→∞,
the only (slowly) varying quantity remaining on a large scale is the macroscopic density field.
In general, for a lattice gas with stationary product measures νρ indexed by the density Local
stationarity (also called local equilibrium) w.r.t. a density profile ρ(u, s) holds if

µsL ◦ τ−[uL] → νρ(u,s) weakly (locally), as L→∞ . (4.28)

By local weak convergence of the translated distributions µLs we mean

µLs ◦ τ−[uL](f)→ νρ(u,s)(f) for all f ∈ C0(E) . (4.29)

Note that the limit νρ(u,s) is a now measure on the infinite lattice, Z in our case. This can also hold
for stationary measures νρ which are not of product form, as long as they can be defined on the
infinite lattice, i.e. they should be Gibbs measures.

For the ASEP, local equilibrium holds if ρ(u, s) is a solution of the conservation law

∂sρ(u, s) + ∂uφ
(
ρ(u, s)

)
= 0 where φ(ρ) = (p− q)ρ(1− ρ) . (4.30)

This has been established rigorously for the ASEP and more general IPS in a so-called hydrody-
namic limit, which we come back to in the next subsection. In the framework of (4.3) we have
now a mobility χ(ρ) = ρ(1− ρ) with a constant external field E = p− q and vanishing diffusion
D = 0. In terms of PDEs, (4.30) is a hyperbolic conservation law, the solution theory of which
is much more complex than for parabolic equations. Solutions can develop singularities even for
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smooth initial data, leading to the concept of weak solutions, which are in general not unique
without additional selection criteria. For details see e.g. [26], and also the next subsection.

Weakly asymmetric case. In order get non-zero drift and diffusion on the same scale, one has to
consider a weakly asymmetric version of the IPS. For the ASEP we can choose e.g.

p = 1 +
E

2L
, q = 1− E

2L
with a constant external field E ∈ R .

Then the above arguments with space and time scales u = x/L, s = t/L2 will lead to a scaling
limit of the form (4.3) with D = 1, χ(ρ) = ρ(1− ρ) and external field E.

4.2 Rigorous results on hydrodynamic limits

We consider lattice gases on the state space E = SΛ where S ⊆ N0 is a connected set including
0, and Λ = Z or Z/(LZ) as before where the rescaled lattices Λ/L are embedded in R or the unit
torus T, respectively. In the previous section we presented some heuristics to derive a candidate
PDE for a hydrodynamic limit, which was based on computations for expected particle densities.
Rigorous hydrodynamic limits have been established in a yet stronger sense, corresponding to
weak laws of large numbers for the evolution of empirical density profiles.

Definition 4.2 For each t ≥ 0 we define the empirical measure

πLt [du] :=
1

L

∑
x∈Λ

ηt(x)δx/L[du] ∈M+(R) orM+(T) , (4.31)

and the measure-valued process (πLt : t ≥ 0) is called the empirical process.

The πLt describe the discrete particle densities on R, T. They are (random) measures depending
on the configurations ηt and for A ⊆ R,T we have

πLt (A) =
1

L

(
# of particles in A ∩ 1

LΛ at time t
)
. (4.32)

In the following two subsections we will discuss how to derive rigorously parabolic equations for
a certain class of reversible systems and hyperbolic equations for a certain class of asymmetric
processes.

4.2.1 Reversible gradient systems

In this section we derive parabolic equations for lattice gases on the macroscopic time scale s =
t/L2, which corresponds to speeding up the microscopic process by a factor of L2, multiplying
the generator of the process. Recall the generator

Lf(η) =
∑
x,y∈Λ

c(x, y, η)
(
f(ηx,y)− f(η)

)
.

with bounded rates of finite range, and the instantaneous current (4.8)

j(x, y, η) = c(x, y, η)− c(y, x, η) .
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We assume that the model is translation invariant and has a (possibly bounded) family of reversible
stationary measures νρ indexed by the density ρ ∈ [0,maxS] or [0,∞). These may not be of
product form, then they should correspond to limiting (Gibbs) measures on the infinite lattice Z.
We have seen in the previous section that the stationary expectation of the current is translation
invariant, and many systems in fact satisfy the following (stronger) property, which facilitates
computation of the diffusion coefficient.

Definition 4.3 A translation invariant lattice gas on a regular lattice with instantaneous current
j(x, y, η) is of gradient type, if there exists a positive local function h ∈ C0(E) and r : Λ →
[0,∞) such that for all x, y ∈ Λ

j(x, y, η) = r(y − x)
(
h(τxη)− h(τyη)

)
and r(y − x) = r(x− y) . (4.33)

For one-dimensional Λ, we denote by mk(r) =
∑

z∈Λ z
kr(z) ∈ (0,∞) the k-th moment of r

for all k ≥ 0. In higher dimensions there is an obvious generalization of the following result
where the diffusivity is replaced by a diagonal matrix where each element is multiplied with the
corresponding moment. The above definition can be generalized to a less restrictive condition, as
can be found in [8], Section 4.2. The sign convention for h and r is important to get well-posed
limit equations with positive-definite diffusivity.

Theorem 4.1 Consider a sequence of lattice gases (ηLt : t ≥ 0) satisfying the above conditions,
with initial distributions µL such that

πL0 [du]→ ρ(u, 0) du weakly, in probability as L→∞ , (4.34)

i.e. there exists a limiting density ρ(., 0) ∈ (0,∞) w.r.t. Lebesgue measure on R or T. Then

πLsL2 [du]→ ρ(u, s) du weakly, in probability as L→∞ , (4.35)

where ρ(u, s) is a solution of the parabolic equation (4.3) with vanishing mobility χ = 0,

∂sρ(u, s) = 1
2m2(r)∂u

(
D(ρ(u, s))∂uρ(u, s)

)
= 1

2m2(r)∂2
uΦ(ρ(u, s)) (4.36)

on R or T with initial condition ρ(u, 0). The diffusion coefficient is given through the gradient
condition (4.33) by expectation w.r.t. the stationary measures

D(ρ) = Φ′(ρ) with Φ(ρ) = νρ(h) . (4.37)

As usual weak convergence means that for every g ∈ Cb(R), Cb(T) with compact support

πLsL(g) =
1

L

∑
x∈Λ

g(x/L) ηsL(x)→
∫
R,T

g(u) ρ(u, s) du . (4.38)

The left-hand side is random, and convergence holds in probability, i.e. for all ε > 0

Pµ
(∣∣∣ 1
L

∑
x∈Λ

g(x/L) ηsL(x)−
∫
R,T

g(y) ρ(u, s) du
∣∣∣ > ε

)
→ 0 as L→∞ . (4.39)

Proof. We give an outline of the proof for following the presentation in [35], for a full proof see
[8], Chapters 4 and 5, and also [36], Section 8. For simplicity we focus on periodic boundary
conditions and nearest neighbour dynamics. In a first step a usual strategy is to show existence of
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a limit for the sequence of empirical measures πLt [du] for each t > 0 using a standard compactness
argument. On the torus T this is very simple, since the total density

πLt [T] = πL0 [T] =

∫
T
ρ(u, 0) du =: ρ <∞

is conserved and finite under the initial conditions. Therefore πLt [du] is a sequence in the set of
bounded measures on the compact set T, which is itself compact. Then the martingale problem
is used to characterize the limit process as a weak solution of the equation (4.36), for which
uniqueness has (in this case) been established in the PDE literature.
Our starting point for this main part is the martingale characterization of the process speeded up
by L2. This implies with Lη(x) given in (4.7) that

ηt(x)− ηt(0) = −L2

∫ t

0
divj(x, ηs)ds+Mt(x) ,

where Mt(x) is a martingale. Note that t here denotes a macroscopic time. Multiplying with a
smooth test function ψ : T→ R, dividing by L and summing over x we can write this in terms of
the empirical measure (4.31)∫

T
ψ(u)πLt [du]−

∫
T
ψ(u)πL0 [du] = −L

∫ t

0

∑
x∈Λ

divj(x, ηs)ψ(x/L) ds+ o(1) . (4.40)

The o(1) term on the right is the combined contribution of the martingales, which can be shown
vanish as L→∞. Using the gradient condition (4.33) we get for the main contribution

L
∑
x∈Λ

∑
z∈Λ

r(z)
(
ψ(x/L)− ψ((x+ z)/L)

) ∫ t

0
h(τxηs) ds .

Taylor expansion of the smooth function ψ around x/L implies to leading order(∑
z∈Λ

z2

2
r(z)

) 1

L

∑
x∈Λ

ψ′′(x/L)

∫ t

0
h(τxηs) ds ,

where the first order contribution vanishes due to symmetry r(z) = r(−z). In general, h is a
non-linear function and the summation is therefore not given by an average w.r.t. the empirical
measure (as is the case for the SSEP). Using again smoothness of ψ we can write can introduce an
auxiliary sum to get

1

L

∑
x∈Λ

∫ t

0

1

|∆x|
∑
y∈∆x

h(τyηs)ψ
′′(x/L) ds ,

where ∆x is a microscopically large and macroscopically small volume around x ∈ Λ on an
intermediate scale 1 � |∆x| � L. The central part of the proof is now to show a Replacement
Lemma, substituting the spatial average of the gradient function

1

|∆x|
∑
y∈∆x

h(τyη) by Φ
( 1

|∆x|
∑
y∈∆x

η(y)
)
, (4.41)

i.e. by its stationary expectation as given in (4.37) under the local density. This is equivalent to
establishing a local equilibrium for the process, and allows to write a ’closed form’ of equation
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(4.40) in terms of the empirical measure up to vanishing correction terms. Taking the limit L →
∞, this implies that every limit point ρ(u, t)du of the empirical measures satisfies∫

T
ψ(u)ρ(u, s) du−

∫
T
ψ(u)ρ(u, 0) du =

∫ t

0
ds

∫
T

Φ
(
ρ(u, s)

)
ψ′′(u) du .

This is the weak form of a parabolic PDE, which are known to have unique smooth solutions for
t > 0 even for non-smooth initial data. This implies that the limit point of the sequence πLt [du]
is unique, and in particular absolutely continuous w.r.t. Lebesgue measure for all t ≥ 0 (under
assumption on the initial condition). 2

Examples. The SSEP is a gradient model with h(η) = η(0) and r(z) = δ|z|,1, since as in (4.16)

j(x, x+ 1, η) = η(x)
(
1− η(x+ 1)

)
− η(x+ 1)

(
1− η(x)

)
= η(x)− η(x+ 1) .

With stationary product Bernoulli measures νρ we have νρ(h) = ρ and consequently D = 1
consistent with (4.21).
The zero-range process (ZRP) is a lattice gas on the state space E = NΛ

0 with the generator

Lf(η) =
∑
x,y∈Λ

p(x, y)g(η(x))
(
f(ηx,y)− f(η)

)
, (4.42)

where p(x, y) is an irreducible transition kernel on Λ. The jump rates g : N0 → [0,∞) depend
on the particle configuration only through the departure site of a jump (zero-range), and to avoid
degeneracies one usually assumes g(n) = 0 ⇔ n = 0. For symmetric, translation invariant
dynamics with p(x, y) = p(y, x) = r(y − x) this system is obviously gradient with

j(x, y, η) = r(y − x)
(
g(η(x))− g(η(y)) ,

which leads to a diffusivity

D(ρ) =
d

dρ
Φ(ρ) with Φ(ρ) := νρ(g) .

Another nice fact about the ZRP is that the νρ are product measures with explicit formulas for the
marginals. In contrast to the exclusion process, g is in general a non-linear gradient function and
therefore the replacement lemma (4.41) is non-trivial and requires additional regularity assump-
tions on the rates. For the ZRP, due to the unbounded local state space a cut-off argument has to be
made in the proof of the replacement lemma, which requires the jump rates g(n) to grow at most
linearly in n.

There is an alternative strategy of proof called the relative entropy method, which also covers
reversible non-gradient models, but the stationary measures have to be of product form. It is based
on a Gronwall-type argument for the relative entropy between the empirical measure and the local
equilibrium νρ(u,s) as given in (4.28), where ρ(u, s) is a weak solution of the limit equation. This
is essentially a contraction-type argument with a unique fixed point given by the local equilibrium,
so it implies uniqueness of the weak solution of the limit equation, but requires that this is smooth
and in fact a strong solution. This method is therefore limited to the reversible case with parabolic
limit equations. Details can be found in [8], Chapter 6.
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4.2.2 Weakly asymmetric systems

In general, non-reversible systems even with weak asymmetry are not of gradient form. The
diffusion coefficient can in general be very hard to compute, and is linked to the microscopic
dynamics by a Green-Kubo formula, see [3], Section II.2.2. But if the model has a family νρ
of stationary measures indexed by the density, which is the same for symmetric and asymmetric
dynamics (and therefore also for weak asymmetry), then the diffusion coefficient is related to the
mobility via the Einstein relation

D(ρ) = χ(ρ)F ′′(ρ) . (4.43)

Here F (ρ) is the equilibrium free energy density, which for systems with a single conserved
quantity is simply given by the relative entropy between νρ and an a-priori measure νρ̄ with some
fixed density ρ̄. The choice of ρ̄ is arbitrary and only changes the constant and linear part of F ,
which are irrelevant for the second derivative. As we will see in the next section, the mobility
is determined by a simple stationary expectation of the instantaneous current and is often easy to
calculate explicitly. In particular, Einstein relations hold for gradient models as a consequence of
the following result.

Proposition 4.2 Consider a translation invariant lattice gas on a regular lattice of gradient type
as given in Definition 4.3 with rates c(x, y, η) and reversible distribution π. Then π is stationary
for any asymmetric version of the process with rates q(y − x) c(x, y, η), where q is a translation
invariant, irreducible transition kernel on Λ.

Proof. Consider the generator of the asymmetric version

Lf(η) =
∑
x,y∈Λ

q(y − x)c(x, y, η)
(
f(ηxy)− f(η)

)
,

where detailed balance holds for the original rates as

π[η]

π[ηx,y]
=
c(y, x, ηxy)

c(x, y, η)
for all η ∈ E and x, y ∈ Λ .

Note that for uncountable E the left-hand side has to be interpreted as a Radon-Nikodym deriva-
tive. Then the standard computation gives

π(Lf) =

∫
E
f(η) dπ[η]

∑
x,y∈Λ

q(y − x)
(π[ηyx]

π[η]
c(x, y, ηyx)− c(x, y, η)

)
=

∫
E
f(η) dπ[η]

∑
x,y∈Λ

q(y − x)
(
c(y, x, η)− c(x, y, η)

)
, (4.44)

where we use a change of variables in the first, and detailed balance in the second line. Now we
use the gradient condition (4.33) and another change of variables to get

π(Lf) =

∫
E
f(η) dπ[η]

∑
x∈Λ

h(τxη)
∑
z∈Λ

r(z)
(
q(z)− q(−z)

)
= 0 ,

since r(z) = r(−z) and the z-summation vanishes. 2
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Examples. For the simple exclusion process we have stationary Bernoulli product measures, so

F (ρ) = ρ log
ρ

ρ̄
+ (1− ρ) log

1− ρ
1− ρ̄

= ρ log ρ+ (1− ρ) log(1− ρ) + log 2 ,

if we choose ρ̄ = 1/2 for simplicity, where the constant log 2 is irrelevant. This leads to

F ′′(ρ) =
1

ρ
+

1

1− ρ
=

1

ρ(1− ρ)
,

which is consistent with (4.43) with D = 1 and χ(ρ) = ρ(1− ρ).
For zero-range processes it can be shown that F ′(ρ) = log Φ(ρ), such that F ′′(ρ) = Φ′(ρ)/Φ(ρ),
which is again consistent with (4.43) with D(ρ) = Φ′(ρ) and χ(ρ) = Φ(ρ).

The above martingale method can also be adapted to cover weakly asymmetric systems, where the
symmetric dynamics is of gradient type. Consider a perturbation of the jump rates of a homoge-
neous gradient system of the form

c(x, y, η)
(
1 + q(y − x)/L

)
.

Then the right-hand side of (4.40) has an additional contribution of the form∑
x∈Λ

∑
z∈Λ

q(z)
(
ψ(x/L)− ψ((x+ z)/L)

) ∫ t

0
c(x, x+ z, etas) ds .

Taylor expansion of smoothψ up to first order, and a similar block average to replace c(x, x+z, ηs)
by its expectation under density ρ(u, s), will then lead to a contribution to the constitutive equation
(4.2) for the current of the form

Eχ
(
ρ
)

=
∑
z∈Λ

zq(z) νρ
(
c(x, x+ z, .)

)
with constant fieldE. Note that νρ

(
c(x, x+z, .)

)
is independent of x due to translation invariance,

and if νρ is of product form it often is even independent of z (see next section). Then all explicit
spatial information of the jump rates can be separated into the field and we have

E =
∑
z∈Λ

zq(z) and χ(ρ) = νρ
(
c(x, x+ z, .) for all x, z ∈ Λ .

4.2.3 Asymmetric, attractive IPS

For asymmetric processes the previously discussed martingale and relative entropy methods do not
apply. One problem is that the scaling limit on time scale s = t/L is now given by a hyperbolic
conservation law, the weak solutions of which can develop shocks and are only unique under
additional selection criteria. But under the assumption of stochastic monotonicity (also called
attractivity), there is in fact a very general hydrodynamic limit result. Again we consider lattice
gases on the same state space E = SΛ where S ⊆ N0 is a connected set including 0, and Λ = Z
or Z/(LZ) as before. Note that E admits a partial order where η ≤ ζ if ηx ≤ ζx for all x ∈ Λ.

Definition 4.4 A function f ∈ C(E) is called increasing if η ≤ ζ implies f(η) ≤ f(ζ).
A process with semigroup (Pt : t ≥ 0) is called monotone or attractive if η ≤ ζ implies
Ptf(η) ≤ Ptf(ζ) for all t ≥ 0 and all increasing f . Two probability measures µ1, µ2 ∈ M1(E)
are stochastically ordered µ1 ≤ µ2 if µ1(f) ≤ µ2(f) for all increasing f .

62



Theorem 4.3 (Strassen) Suppose µ1, µ2 ∈ M1(E). Then µ1 ≤ µ2 if and only if there exists a
coupling µ ∈M1(E × E) such that µ[., E] = µ1 and µ[E, .] = µ2, and

µ
(
{η : η1 ≤ η2}

)
= 1 (i.e. η1 ≤ η2 µ− a.s.) . (4.45)

Proof. ⇐: Suppose such a coupling µ exists. If f ∈ C(E) is increasing then f(η1) ≤ f(η2)
µ − a.s. and writing τ i : E × E → E for the projection on the i-th coordinate τ i(η) = ηi, we
have

µ1(f) = µ
(
f ◦ τ1

)
≤ µ

(
f ◦ τ2

)
= µ2(f) , (4.46)

so that µ1 ≤ µ2.
⇒: involves a construction of the coupling on a probability space, see e.g. [2], Theorem 2.4, p. 72.
2

Using Strassen’s theorem for path space distributions, it follows that for a monotone process η ≤ ζ
implies that Pη ≤ Pζ in the sense that there exists a coupling P defining a joint process

(
(ηt, ζt) :

t ≥ 0
)

such that ηt(x) ≤ ζt(x) P−a.s. for all x ∈ Λ and t ≥ 0. If initial distributions are ordered
as µ1 ≤ µ2, this also implies that corresponding stationary distributions of a monotone process
are ordered, i.e.

ν1 := lim
t→∞

µ1Pt ≤ lim
t→∞

µ2Pt =: ν2 .

Therefore, for any IPS that has a family of stationary distributions νρ indexed by the density,
ρ1 ≤ ρ2 implies νρ1 ≤ νρ2 . This can be shown by starting coupled processes in an ordered initial
condition which is in the domain of attraction of the stationary measures.

Proposition 4.4 Consider an IPS on E = SΛ as given above with generator of the form

Lf(η) =
∑
x,y

p(x, y)b(η(x), η(y))
(
f(ηxy)− f(η)

)
(4.47)

where p(x, y) is an irreducible transition kernel on Λ and b(n,m) ≥ 0 with b(n,m) = 0 if
and only if n = 0 or m = maxS < ∞. Then the IPS is monotone if and only if b(n,m) is
non-decreasing in n and non-increasing in m (also called misanthrope process).

Proof. If b fulfills this assumption, one can construct a basic coupling of two processes with
initial conditions η ≤ ζ where particles jump together with maximal rate. They jump from x to y
in both processes

simultaneously with rate p(x, y)b(η(x), η(y)) ∧ b(ζ(x), ζ(y)) ,

with additional jumps of only η particles at rate

p(x, y)
(
b(η(x), η(y))−

(
b(η(x), η(y)) ∧ b(ζ(x), ζ(y))

))
≥ 0 ,

and analogously for ζ-particles. The monotonicity assumptions on b then imply that these dy-
namics conserves the partial order. If b violates this assumption, one can find an increasing test
function f for which Ptf(η) > Ptf(ζ) even though η ≤ ζ.
For details see [34] and references therein. 2

For example, the exclusion process is of the above form and monotone, and the zero-range process
is monotone if and only if the rate g(n) is non-decreasing.
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Theorem 4.5 Consider a sequence of translation invariant, asymmetric IPS (ηLt : t ≥ 0) with
generator of the form (4.47) on the lattice 1

LZ or 1
LZ/LZ and translation invariant p(x, y) =

q(y − x) with finite first moment m =
∑

z∈Λ zq(z) ∈ (−∞,∞). Assume that the initial distribu-
tion µ has a limiting density ρ(u, 0) as in (4.34), and that the system has a family of translation
invariant stationary measures νρ on SZ with ρ ∈ [0,maxS]. Then as L→∞

πLsL(du)→ ρ(., s) du weakly, in probability , (4.48)

where ρ(u, s) is a solution of the hyperbolic equation (4.3) with vanishing diffusion D = 0,

∂sρ(u, s) +m∂u
(
χ(ρ(u, s))

)
= 0 (4.49)

on R or T with initial condition ρ(u, 0). If νρ are of product form, the external field is given by the
first moment m and the mobility by

χ(ρ) = νρ(b) =
∑
m,n∈S

ν1
ρ(m)ν1

ρ(n)b(m,n) .

Note that weakly asymmetric IPS are also covered by the method based on monotonicity for
asymmetric models. If the stationary measures are known the mobility is easy to compute, and
if the measures are stationary independently of symmetry of p(x, y), the diffusion coefficient of
weakly asymmetric versions is given by the Einstein relation (4.43).

Relevant results and references can be found in [8] Chapter 8. The above result was first proved
in [24] for the TASEP, and in [25] for a more general class of models using attractivity. See also
[34] for a more recent reference. For a theory of entropy solutions of hyperbolic conservation laws
see e.g. [26].

4.3 Equilibrium fluctuations of density fields

While the hydrodynamic limit provides a law of large numbers result for the density field, in
this section we are interested in studying the space-time fluctuations of that field. As before for
additive functionals we will focus on equilibrium fluctuations. As before, consider a spatially
homogeneous lattice gas on the state space E = SΛ where S ⊆ N0 is a connected set including
0, and we focus on Λ = Z for simplicity. Results can also be formulated for periodic boundary
conditions, but then additional care has to be taken about the sequence of stationary measures. We
consider the dynamics in a homogeneous stationary state with density ρ > 0 given by a translation
invariant measure νρ on E, which should have decaying correlations such that

cov(ρ) :=
∑
x∈Z

(
ν
(
η(0)η(x)

)
− ρ2

)
∈ (0,∞) . (4.50)

Embedding the rescaled lattice Z/L in R with scaling parameter L→∞, the fluctuations around
νρ are then characterized by the density field

Y L[du] =
1√
L

∑
x∈Z

(
η(x)− ρ

)
δx/L[du] ∈M(R) . (4.51)

This is a signed measure on R, and can be characterized in a weak form as

Y L(G) =
1√
L

∑
x∈Z

G(x/L)
(
η(x)− ρ

)
(4.52)
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for any smooth G decaying sufficiently fast at infinity. The fluctuation field is a function on state
space E, and we can define the process Y L

t in complete analogy, simply evaluating the field at
ηt. For a large class of processes, the diffusive scaling limit Yt of the process Y L

tL2 is given by a
generalized Ornstein-Uhlenbeck process characterized by the SDE

dYt(G) = Yt(AG)dt+ dBG
t . (4.53)

Here A usually takes the form of an elliptic second order differential operator with constant coef-
ficients, simplyAG = σ2G′′ in one space dimension where σ2 > 0 is related to the spatial part of
the dynamics. By the fluctuation-dissipation relation the Brownian motions BG depend linearly
on the test function G and satisfy

E
[
(BG

t )2
]

= cov(ρ)t

∫
R
σ2G′′(u) du , (4.54)

fixing the quadratic variation. The scaling limit (4.53) is a result of the martingale decomposition
of underlying process using Itô’s formula, which takes a particularly simple form for reversible
systems. Convergence holds in law, i.e. for the stationary process characterized by Pνρ we have

Pνρ ◦ (Y L)−1 → P

where P is the law of the R-valued limit process (4.53) with corresponding expectation E used in
(4.54).

In the following, we sketch the derivation of this result for a symmetric exclusion process with
generator

Lf(η) =
∑
x,y∈Λ

p(y − x)η(x)
(
1− η(y)

)(
f(ηxy)− f(η)

)
,

with translation invariant dynamics given by p(y−x) which is also symmetric, i.e. p(−z) = p(z)
for all z ∈ Z. A simple computation reveals

LY L(G) =
1√
L

∑
x,y∈Z

p(y − x)η(x)
(
1− η(y)

)(
G(y/L)−G(x/L)

)
=

1√
L

∑
x,y∈Z

p(y − x)η(x)
(
G(y/L)−G(x/L)

)
, (4.55)

where we used symmetry of p in the second line. Using smoothness of G and Taylor expansion
we get to leading order

LY L(G) ' 1

L5/2

∑
x∈Z

σ2G′′(x/L)
(
η(x)− ρ

)
=

1

L2
Y L(σ2G′′) ,

where σ2 =
∑

z∈Λ z
2p(z), the first order term drops out due to symmetry of p, and we can add

the constant −ρ since G vanishes at infinity. Therefore we get for the process using Itô’s formula

Y L
t (G)− Y L

0 (G) =

∫ t

0
LY L

s (G) ds+ML
t (G) =

1

L2

∫ t

0
Y L
s (σ2G′′) ds+ML

t (G) (4.56)
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where ML
t (G) is a martingale with quadratic variation

[ML(G)]t =

∫ t

0

(
L(Y L

s (g))2 − 2Y L
s (G)LY L

s (G)
)
ds . (4.57)

Speeding up time by a factorL2 the factor in (4.56) is absorbed in the generator, and the martingale
CLT (Lemma 1.32) implies that ML

t (G) converges to a Brownian motion BG as L → ∞. This
leads to an integrated version of (4.53) in the scaling limit,

Yt(G)− Y0(G) = σ2

∫ t

0
Ys(G

′′) +BG
t .

The quadratic variation of BG
t can be identified from a scaling limit of (4.57) with speeded up

generator L2L and leads to

E
[
(BG

t )2
]

= ρ(1− ρ)t

∫
R
σ2G′′(u) du .

This is consistent with the fluctuation-dissipation relation (4.54), where under the simple product
stationary measure νρ for the exclusion process the covariance (4.50) cov(ρ) = ρ(1−ρ) is simply
given by the variance of a Be(ρ) random variable. Since the process is stationary, we get for the
limiting equilibrium fluctuations

E
[
Yt(G)2

]
= E

[
Y0(G)2

]
= ρ(1− ρ)

∫
R
G′′(u)2 du ,

which can easily be seen taking expectation under the stationary product measure νρ of

Y L(G)2 =
1

L

∑
x,y∈Z

G(x/L)G(y/L)
(
η(x)− ρ

)(
η(y)− ρ

)
.

Due to the product structure only diagonal terms contribute, and the equilibrium fluctuations have
the structure of spatial white noise, with the time evolution given by a generalized Ornstein-
Uhlenbeck process.

The above proof can be adapted to a large class of reversible lattice gases of gradient type, where
the Brownian noise in the SDE (4.53) results from the martingale part of the decomposition (4.56),
and the drift from the integral part. For asymmetric non-gradient systems often a similar limit re-
sult can be shown, but the integral part in (4.56) contributes to the noise in the limit equation
(4.53), and the proof is much more complicated. For details see [21], Chapter 7.
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4.4 Macroscopic fluctuation theory

In the previous subsections we have investigated the typical large scale dynamic behaviour of IPS,
and in this section we will look at large deviations of current and density profiles. A comprehensive
macroscopic fluctuation theory has recently been developed [5], but has only been made rigorous
for particular examples of processes, including the exclusion process. Recall that the typical large
scale behaviour from (4.1) and (4.2) is given by

∂tρ(u, t) + ∂uj(u, t) = 0 and j(u, t) = J(ρ(u, t), u, t) , (4.58)

where we write t ≥ 0 for the macroscopic time in this subsection. The local current j(u, t) is
determined by the constitutive equation

J(ρ, u, t) = −D(ρ) ∂uρ+ χ(ρ)E(u, t) , (4.59)

with diffusion coefficient, mobility and external field as defined at the beginning of this section.
The models we consider should be of gradient type with a generator

Lf(η) =
∑
x∈Λ

∑
|z|=1

c(x, x+ z, η)
(
f(ηx,x+z)− f(η)

)
,

where we assume nearest neighbour dynamics for simplicity, and set Λ = Z/LZ. For trans-
lation invariant gradient models with a gradient function h and a family of translation invariant
stationary measures νρ, ρ ∈ [0,maxS], the macroscopic transport parameters are connected to the
microscopic rates via

D(ρ) = Φ′(ρ) , Φ(ρ) := νρ(h) and Eχ(ρ) =
∑
z∈Λ

νρ
(
c(x, x+ z, .)

)
,

where the field E(u, t) ≡ E is constant. We have shown this in previous sections for the ASEP
and ZRP, for which it has been established rigorously, but this connection should hold for general
weakly asymmetric versions of gradient models, but I could not find this in the literature...

For simplicity we restrict the following presentation to the case E ≡ 0. We consider a
parabolic scaling with u = x/L and speeding up the process by L2. In that scaling fields E
can be included with weak asymmetries of the microscopic rates, as seen in an earlier section.
All conservative IPS fulfill the conservation law (4.58) on large scales, and the particular typical
behaviour of an IPS is characterized by the constitutive equation. The strategy to compute the
asymptotic probability or cost to see an atypical density/current profile ρ(u, t), j(u, t) is again to
tilt the path measure P of the IPS, such that the rare event becomes typical. This can be done by
an auxiliary (additional) external field F (u, t), which is determined by the constitutive equation

j(u, t) = −D(ρ(u, t))∂uρ(u, t) + χ(ρ(u, t))F (u, t) (4.60)

such that the prescribed j(u, t) is the typical current. The action of the macroscopic field F (u, t)
on the microscopic rates of the process can be implemented as a weak asymmetry of the form

cF (x, x± 1, η) := c(x, x± 1, η)eFx,x±1(t) where Fx,x±1(t) = ± 1

2L
F (x/L, t) .

Note that since eFx,x±1(t) = 1± 1
2LF (x/L, t) to leading order, this is a weak asymmetry that does

not change the mobility of the process, but only contributes to the field.
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Now we can use Girsanov’s formula to compute the path measure PF under the change of
rates on the compact time interval [0, T ]. For a path ω we denote the associated jump times where
a particle jumps from x to x+z by τx,x+z

k , k = 1, 2, . . . ,JT (x, x+z)(ω), where JT (x, x+z)(ω)
is the total number of such jumps up to time T introduced in (3.17). Then with P and PF denoting
the path measures of the process speeded up by a factor of L2, we get

dP[ω] = exp

( ∫ T

0

∑
x∈Λ

∑
|z|=1

L2c(x, x+ z, ηt)
(
eFx,x+z(t) − 1

)
dt

−
∑
x∈Λ

∑
|z|=1

JT (x,x+z)(ω)∑
k=1

Fx,x+z(τ
x,x+z
k )

)
dPF [ω] . (4.61)

The second term can be written in terms of the empirical current, which we introduce analogously
to the empirical process/density as

jL(du, dt) :=
1

L

∑
x∈Λ

(
dJt(x, x+ 1)− dJt(x, x− 1)

)
δx/L(du) .

Since Jt(x, y) is a jump process this is an atomic measure on T× [0, T ]. This leads to

∑
x∈Λ

∑
|z|=1

JT (x,x+z)(ω)∑
k=1

Fx,x+z(τ
x,x+z
k ) =

L

2

∫ T

0

∫
T
jL(du, dt)F (u, t) . (4.62)

Expanding eFx,x+z(t) up to second order and using the anti-symmetry Fx,x−1(t) = −Fx,x+1(t)
and the gradient condition we get for the first term in (4.61)∫ T

0
dt
∑
x∈Λ

∑
|z|=1

L2c(x, x+ z, ηt)
(
Fx,x+z(t) +

1

2
Fx,x+z(t)

2
)

=

=

∫ T

0
dt
∑
x∈Λ

L2

2
h(τxηt)

∑
|z|=1

(
Fx,x+z(t)− Fx+z,x(t)

)︸ ︷︷ ︸
≈∂uF (u,t)/L2

+
L2

2

∑
x∈Λ

∑
|z|=1

(
c(x, x+ z, ηt) + c(x+ z, x, ηt)

)
Fx,x+z(t)

2

≈ L
∫ T

0
dt

∫
T

(1

2
πLt
(
h ◦ τ[L·]

)
∂uF (u, t)

+
1

4
F (u, t)2πLt

(
c([L·], [L·] + z, .) + c([L·] + z, [L·], .)

))
. (4.63)

Now we use the local equilibrium assumption and again an auxiliary spatial average to replace

πLt
(
h ◦ τ[L·]

)
≈ νρ(u,t)(h) = Φ(ρ(u, t))

πLt
(
c([L·], [L·] + z, .) + c([L·] + z, [L·], .)

)
≈ νρ(u,t)

(
c(x, x+ 1, .) + c(x+ 1, x, .)

)
= 2χ(ρ(u, t)) ,

and plugging this into the above yields

L

∫ T

0
dt

∫
T
du
(1

2
Φ(ρ(u, t))∂uF (u, t) +

1

4
F (u, t)2χ(ρ(u, t))

)
.
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Combining this with (4.62) we get

dP
dPF

(ω) ≈ exp

(
L

∫ T

0

∫
T

1

2

(
j(u, t)dudt−jL(du, dt)(ω)

)
F (u, t)−1

4
F (u, t)2χ(ρ(u, t))dudt

)
,

(4.64)

where we have also used (4.60) to get∫
T
φ∂uFdu =

∫
T
D∂uρF du =

∫
T
(χF 2 − jF )du ,

omitting the arguments to simplify notation. The probability of the fluctuation is then given by

P
[
(πLt (du), jL(du, dt)) ≈ (ρ(u, t)du, j(u, t)dudt), t ∈ [0, T ]

]
� EF

[ dP
dPF

1(πLt (du),jL(du,dt))≈(ρ(u,t)du,j(u,t)dudt)

]
. (4.65)

Under EF , the event in the indicator function is typical, and we only have to evaluate the expec-
tation of the Radon-Nikodym derivative (4.64). The only random part is the empirical current
jL(du, dt) which we replace by its expectation to get

P
[
(πLt (du), jL(du, dt)) ≈ (ρ(u, t)du, j(u, t)dudt), t ∈ [0, T ]

]
� exp

(
− L

4

∫ T

0

∫
T
F (u, t)2χ(ρ(u, t))dudt

)
. (4.66)

With E ≡ 0 the constitutive equation for the typical current is simply

J(u, t) = −D(ρ(u, t))∂uρ(u, t) = j(u, t)− χ(ρ(u, t))F (u, t)

and we can use this to replace F in the above formula. In conclusion we arrive at

Pη
[
(πLt (du), jL(du, dt)) ≈ (ρ(u, t)du, j(u, t)dudt), t ∈ [0, T ]

]
� exp

(
− LI[0,T ](ρ, j)

)
with large deviation rate function

I[0,T ](ρ, j) =
1

4

∫ T

0
dt

∫
T
du
(
j(u, t)− J(u, t)

)2
/χ(ρ(u, t)) ,

as L → ∞. Here the initial conditions η have to be consistent with the initial density profile
ρ(u, 0), and if the pair (ρ(u, t), j(u, t)) does not fulfill the continuity equation (4.58), then the rate
function is∞.
Note that this corresponds to a large deviation principle on the rather complex space of measures
on T × [0,∞), and rigorous results on this are not easy to obtain. Results like this have been
proven for the exculsion processes and can be found in [8], Chapter 10.
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