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Chapter 1

Course Description

Instructor: Weiyi Zhang
Email: weiyi.zhang@warwick.ac.uk
Webpage: http://homepages.warwick.ac.uk/staff/Weiyi.Zhang/
Lecture time/room:

Monday 1pm - 2pm MA B3.02 (except week 10), A1.01 (week 10)
Wednesday 9am - 11am MA B1.01

Reference books:

• P. Griffiths, J. Harris: Principles of Algebraic Geometry, Wiley, 1978.

• D. Huybrechts: Complex geometry: An Introduction, Universitext,
Springer, 2005.

• K. Kodaira: Complex manifolds and deformation of complex struc-
tures, Springer, 1986.

• R.O. Wells: Differential Analysis on Complex Manifolds, Springer-
Verlag, 1980.

• C. Voisin: Hodge Theory and Complex Algebraic Geometry I/II, Cam-
bridge University Press, 2002.

• W. Ballmann: Lectures on Kähler manifolds, ESI Lectures in Mathe-
matics and Physics, European Mathematical Society, 2006.

• K. Fritzsche, H. Grauert: From Holomorphic Functions To Complex
Manifolds, GTM 213, Springer-Verlag, 2002.

• S.S. Chern: Complex manifolds without potential theory, Springer-
Verlag, 1979.

I have also observed Dominic Joyce’s TCC module “Kähler Geometry”
will be taught in this term:
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6 CHAPTER 1. COURSE DESCRIPTION

https://people.maths.ox.ac.uk/∼joyce/KahlerGeom2020/index.html

Prerequisites: Familiarity with topics covered in MA3H5 Manifolds,
MA3B8 Complex Analysis, MA3H6 Algebraic Topology.

MA475 Riemann Surfaces, MA4C0 Differential Geometry, MA4A5 Al-
gebraic Geometry, MA4J7 Cohomology and Poincare duality would be cer-
tainly very helpful.

Contents: The primary goal of this Module is to present some fundamental
techniques from several complex variables, Hermitian differential geometry
(and partial differential equations, potential theory, functional analysis), to
study the geometry of complex, and in particular, Kähler manifolds. Hodge
theory will be one important major topic of this course. Some possible
topics:

• Basics/definitions concerning complex manifolds, vector bundles and
sheaf theory

• Some selected topics from several complex variables: the Cauchy in-
tegral, the Cauchy-Riemann equations, Hartogs’s principle, plurisub-
harmonic functions, domains of holomorphy, holomorphic convexity,
Riemann extension theorem, Hörmander’s L2 estimates . . .

• Hermitian differential geometry, curvature of Hermitian holomorphic
vector bundles, Chern classes

• Some elliptic operator theory, Kähler manifolds, Hodge decomposition,
Kodaira embedding

• Outlook on the topology of varieties, Morse theory, Lefschetz pencils,
variation of Hodge structures, Clemens-Schmid exact sequences, etc.

https://people.maths.ox.ac.uk/~joyce/KahlerGeom2020/index.html


Chapter 2

Structures

2.1 Complex manifolds

We recall the definitions of differentiable manifolds and adapt them to
complex manifolds.

A topological manifold is a second countable Hausdorff spaceM equipped
with a covering by open sets Uα, which are homeomorphic, via local charts
φα, to open sets of Rn. Such an n is necessarily independent of α when M
is connected, and is then called the dimension of M .

Definition 2.1.1. A Ck differentiable manifold is a topological manifold
equipped with a system of local charts φα : Uα → Rn such that the open
sets Uα cover M and the change of chart morphisms φαβ = φβ ◦ φ−1

α :
φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ) are differentiable of class Ck.

A Ck differential function on such a manifold is a function f such that
for each Uα, f ◦ φ−1

α is differentiable of class Ck.
Let f : M → N be a continuous function between Ck differentiable

manifolds M and N of dimensions m and n. We call f Ck differentiable
if for any charts (U, φ) and (V, ψ) from the atlases on M and N , the map
ψ ◦ f ◦ φ−1 : φ(U) ∩ f−1(V )→ ψ(V ) is a Ck map.

An atlas on M is a collection of local charts indexed by some set A which
are pairwise compatible and M = ∪α∈AUα. An atlas is called maximal if
every chart compatible with all the charts of the atlas is already in the atlas.
Every atlas extends to a unique maximal atlas.

In the above definition, k ∈ Z+ ∪ {∞}. It is a theorem of Whitney
that any Ck-differentiable manifold with k ≥ 1 its maximal atlas contains a
C∞ atlas on the same underlying set. In particular, it could have a unique
compatible structure of C∞-differentiable (i.e. smooth) manifold. So later,
we might misleadingly call all these Ck manifolds smooth manifolds. In fact,
any Ck–structure is smoothable to a real analytic (Cω) structure.

A smooth map f : N → M between smooth manifolds is an embedding
if it is a diffeomorphism onto its image. We refer to the image of such a
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8 CHAPTER 2. STRUCTURES

map as a submanifold of M . As an equivalent definition, A k-dimensional
submanifold of M is a subset S ⊂ M such that for every point p ∈ S there
exists a chart (U, φ) of M containing p such that φ(S∩U) is the intersection
of a k-dimensional plane with φ(U).

If M is a smooth manifold of dimension 2n, we can define when it is a
complex manifold.

Definition 2.1.2. A complex manifold M is a smooth manifold admitting
an open cover {Uα} and local charts φα : Uα → Cn such that φβ ◦ φ−1

α :
φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) are holomorphic. The complex dimension of
M is n.

A holomorphic function on a complex manifold is a complex valued func-
tion f such that for each Uα, f ◦ φ−1

α is holomorphic.
Let f : M → N be a continuous function between complex manifolds M

and N of dimensions m and n. We call f holomorphic if for any charts
(U, φ) and (V, ψ) from the atlases on M and N , the map ψ ◦ f ◦ φ−1 :
φ(U) ∩ φ ◦ f−1(V )→ ψ(V ) is a holomorphic map.

The set (ring) of all holomorphic functions on will be denoted by O(M).
If M is compact, then any global holomorphic function f must be constant
by maximal principle (restrict it on a neighborhood of a maximal point of
|f |). That is O(M) = C. In general, we can ask when we have sufficiently
many holomorphic function, such that a collection of them (f1, · · · , fN )
could provide a proper embedding fromM to CN . This is a strong restriction
on the manifold, and any of such is called a Stein manifold.

Let M be a complex manifold of complex dimension n and let N ⊂
M be a smooth submanifold of real dimension 2k. Then N is a complex
submanifold if there exists a holomorphic atlas {(Uα, φα)} of M such that
φα : Uα ∩ N ∼= φα(Uα) ∩ Ck. A generalization of complex submanifold is
analytic subvariety. An analytic subvariety of M is a closed subset N ⊂M
such that for any point x ∈ N there exists an open neighborhood x ∈ U ⊂M
such that N ∩ U is the zero set of finitely many holomorphic functions in
O(U).

Being a complex submanifold or subvariety is a very restrictive condition.
For example, a real line in a complex plane cannot be. But on contrary, any
closed subset of R2 could be the zero set of a smooth function by Whitney
extension theorem.

2.1.1 Examples of Complex manifolds

1. Cn is a complex manifold of dimension n, A complex domain Ω ⊂ Cn
is a complex n-manifold. For example, GL(n,C) is a complex manifold.

2. The complex projective space CPn is the quotient space of Cn+1\{0}
by the equivalent relation:

(z0, · · · , zn) ∼ (λz0, · · · , λzn), λ ∈ C∗.



2.1. COMPLEX MANIFOLDS 9

We denote the equivalence class by the homogeneous coordinate [z0 : · · · :
zn].

We define U0, · · · , Un by Ui = {[z0 : · · · : zn]|zi 6= 0}. Ui is the set of
complex lines in Cn+1 which pass through the origin and do not belong to
the hyperplane zi = 0. Define φj : Uj → Cn by

φj [z0 : · · · : zn] = (
z0

zj
, · · · , zj−1

zj
,
zj+1

zj
, · · · , zn

zj
).

The transition function

φ01(u1, · · · , un) = φ1([1 : u1 : · · · : un]) = (
1

u1
,
u2

u1
, · · · , un

u1
)

is holomorphic on φ0(U0∩U1), making CPn a complex manifold of dimension
n.

Two ways of generalization. First, CPn parametrizes lines or hyper-
planes in Cn+1. We can also parametrize complex subspaces of dimen-
sion k in Cn, called Grassmannian GrC(k, n). It has dimension k(n − k).
More generally, we can paramatrize all Flags as sequences of vector spaces:
0 ⊂ V1 ⊂ · · · ⊂ Vk ⊂ Cn. This is called flag varieties. Even more generally,
we have complex Lie Groups modulo any parabolic subgroups.

Definition 2.1.3. A complex manifold M is projective if M is a compact
complex submanifold in CPn.

By Chow’s theorem, a projective complex manifold (or variety) is the
zero set of finitely many homogeneous polynomials.

All the above generalizations of CPn are projective. For Grassmannian,
a famous embedding is the Plücker embedding:

ι : Gr(k, n)→ P(ΛkCn),

defined by ι(W ) = [w1 ∧ · · · ∧ wk] for any basis {w1, · · · , wk} of a k-
dimensional subspace W .

Exercise: What is the defining equation of Gr(2, 4)?

3. Analytic or biholomorphic automorphisms form a group with respect
to composition, Aut(M). Let G be a subgroup of it. G is called properly
discontinuous if for any pair of compact subsets K1,K2 ⊂ M , the set {g ∈
G|gK1 ∩K2 6= ∅} is finite.

Proposition 2.1.4. If G is properly discontinuous and has no fixed point,
then the quotient space M/G is a complex manifold.

Conversely, if π : M → N is a topological (unramified) covering and
N is a complex manifold, then M has a complex structure (such that π is
holomorphic).
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Examples include complex Tori. Let Λ = Z2n ⊂ Cn is a discrete lattice
then Cn/Λ is a complex torus. When n = 1, they are always projective.
When n > 1, it is not always true. For example, the complex manifold
obtained from Λ generated by (

√
−5,
√
−7), (

√
−2,
√
−3), (1, 0), (0, 1) is not

projective, and even does not have any non-trivial subvariety. In general, we
have Riemann relations to charaterize projective complex tori, or Abelian
varieties.

Another example is Hopf manifolds. Consider Cn\{0}, n > 1, again. We
define a biholomorphic automorphism φ by φ(z) = αz where α ∈ C is a
constant with 0 < |α| < 1. Then the group 〈φ〉 = Z acts freely and properly
discontinuously on Cn\{0}. Then the complex structure of Cn\{0} descends
to the quotient Mn

α , being a compact complex manifold. It is called a Hopf
manifold. The underlying smooth manifold is S1 × S2n−1. In general, we
could choose α as the multivector (α1, · · · , αn).

Another important family is provided by quotient of unit disc Dn =
{z|||z|| < 1} ⊂ Cn. We can also view is as an open subset in CPn. If
we introduce the Hermitian product on Cn+1 given by the diagonal matrix
diag(1,−1, · · · ,−1). Then Dn is the open subset in CPn with 〈z, z〉 > 0,
which is invariant under SU(〈, 〉) = SU(1, n). A ball quotient is a quotient of
Dn by any discrete group Γ ⊂ SU(1, n). An example is a Riemann surface
of genus g > 1, which is the quotient of D1 by a Fuchsian group (discrete
subgroup of PSL(2,R)). n = 1 and n > 1 are quite different as the lattice in
first is not local rigid, which corresponds to continuous moduli of Riemann
surface, while the latter is rigid.

4. It is a natural question to ask which smooth manifold can be endowed
with a complex structure. Certainly, it has to be even dimensional and
orientable (i.e. the Jacobian determinants of the transition functions are
positive) as the transition matrix has positive determinant (exercise). But
the restriction on the topology is actually more subtle and does not know a
general criterion.

Even we restrict on spheres. It is known that S2n does not have complex
structure for n 6= 1, 3 (Borel-Serre 1953). As S2 ∼= CP 1, it has a standard
complex structure. But it is a long standing question whether S6 has one
or not.

It is also an important problem to know the restrictions on being pro-
jective manifolds (or Kähler manifolds). In the class, we will discuss Hodge
theory, which will give nontrivial restrictions.

2.2 Vector bundles and the tangent bundle

We first define tangent space which is a fiber of the tangent bundle.
To define the tangent space, we recall the notion of germ. A germ is an
equivalence class of pairs (U, fU ), where U is an open neighborhood of x
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and fU : U → R is a smooth function. The pairs (U, fU ) and (V, fV ) are
equivalent if fU and fV are equal on some neighborhood W ⊂ U ∩ V of x.
Let Ox be the vector space of germs at x.

A local derivation of Ox is a linear map X : Ox → R such that

X(fg) = f(x)X(g) + g(x)X(f).

Any such local derivative is called a tangent vector.

Let (U, φ) be a local chart with coordinate functions x1, · · · , xn and
a1, · · · , an ∈ R, then

Xf =

n∑
i=1

ai
∂f

∂xi
|x :=

∑
ai
∂f ◦ φ−1

∂ri
|φ(x)

where ri are standard coordinate functions on Rn, is a local derivation. In
fact, every local derivation is of this form.

Definition 2.2.1. The tangent space TxM is the set of such local deriva-
tives. It is an n-dimensional real vector space if M is an n-dimensional
manifold.

Follows from the above discussion, {∂x1 , · · · , ∂xn} is a basis of TxM .

Intuitively, a tangent vector is an equivalence class of paths through x:
two paths are equivalent if they are tangent at x. By a path we mean
a smooth map u : (− ε, ε) → M such that u(0) = x for some ε > 0.
Given a function, we can use the path to define a local derivation Xf =
d
dtf(u(t))|t=0 =

∑
ai

∂f
∂xi

(x). We sometimes write this X ∈ TxM as u′(0).

By a vector field X on M , we mean a rule that assigns to each point
x ∈M an element Xx ∈ TxM and the assignment x 7→ Xx is smooth.

Proposition 2.2.2. There is a one-to-one correspondence between vector
fields on a smooth manifold M and derivations of C∞(M).

This implies vector fields can be restricted and patched, hence a sheaf.

Now consider two vector fields X,Y . Locally, X =
∑
ai

∂
∂xi

and Y =∑
bi

∂
∂xi

where ai, bi are smooth functions. We have [X,Y ] =
∑

i,j(aj
∂bi
∂xj
−

bj
∂ai
∂xj

) ∂
∂xi

.

Given a smooth map θ : M → N , one can describe the map dxθ :
TxM → Tθ(x)N (sometimes, we also write it as θ∗) by saying that it sends
v ∈ TxM to (θ◦γ)′(0) for any curve γ in M with γ′(0) = v. Or more directly,
dxθ(Xx)(f) = Xx(f ◦ θ). Two vector fields X,Y on M and N respectively
are said to be θ-related if dxθ(Xx) = Yθ(x) for all x ∈M .

The dual space of the tangent space is called the cotangent space of M
at x, and is denoted by T ∗xM . In the special case N = R above, we have
Xx(f) = dxf(Xx). In other words, dxf is a cotangent vector at x. In local
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charts, the dual basis of {∂x1 , · · · , ∂xn} in T ∗xM is {dx1, · · · , dxn}. And we
have df = ∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn at x.

For complex manifolds, we can write the complex coordinate functions
z1 = x1 + iy1, · · · , zn = xn + iyn. If we let ∂zi = 1

2(∂xi −
√
−1∂yi) and ∂z̄i =

1
2(∂xi +

√
−1∂yi), then the complexified tangent space TxM ⊗C is spanned

by {∂z1 , · · · , ∂zn , ∂z̄1 , · · · , ∂z̄n}. We have TxM ⊗C = T 1,0
x M ⊕ T 0,1

x M where
the holomorphic tangent space T 1,0

x M is spanned by {∂z1 , · · · , ∂zn} and the
anti-holomorphic tangent space T 0,1

x M is spanned by {∂z̄1 , · · · , ∂z̄n}. We also
have the dual spaces spanned by dz1, · · · , dzn and dz̄1, · · · , dz̄n respectively.
In particular, any holomorphic function f has df = ∂f

∂z1
dz1 + · · ·+ ∂f

∂zn
dzn at

x.

The implicit function theorem implies the following.

Theorem 2.2.3. If p ∈ N is a regular value of smooth map f : M → N
between manifolds, then f−1(p) is a manifold of dimension dimM −dimN .
Moreover, ker dqf = Tq(f

−1(p)) for any q ∈ f−1(p).

Here a regular value means for all the preimage q ∈ f−1(p), the tangent
map dqf is surjective (or of rank dimM−dimN). The theorem also has the
complex version where f is a holomorphic map between complex manifolds
and we look at points p such that at any q ∈ f−1(p) has the complex version
of Jacobian J (f) = ( ∂fi∂zj

) is of full rank. Then f−1(p) is a complex manifold

of dimension dimM − dimN .

Apply to projective manifold, we have the following construction. If
P (z0, · · · , zn) is a non-zero homogeneous complex polynomial, and for all
the point in CPn with P (z0, · · · , zn) = 0, we have ∂P

∂zi
6= 0 for some i. Then

M = {[z0, · · · , zn] ∈ CPn : P (z0, · · · , zn) = 0}

is a projective manifold of dimension n− 1.

Exercise: Generalize it to higher codimensions.

Example 2.2.4. Plane curves.

In fact, all these tangent spaces could be bundled together to form a
manifold TM , called the tangent bundle. We recall the definitions for vector
bundle.

A real (resp. complex) topological vector bundle of rank m over a topo-
logical space X is a topological space E equipped with a map π : E → M
such that for an open cover {Uα} of M , we have local trivialization homeo-
morphisms

τα : π−1(Uα) ∼= Uα × Rm (resp. Uα × Cm)

such that

1. pr1 ◦ τα = π.
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2. The transition functions

ταβ = τβ ◦ τ−1
α : τα(π−1(Uα ∩ Uβ))→ τβ(π−1(Uα ∩ Uβ))

are R-linear (resp. C-linear) on each fiber u× Rm (resp. u× Cm).

Such a transformation between Uα∩Uβ×Rm ⊂ Uα×Rm and Uα∩Uβ×Rm ⊂
Uβ × Rm must respect pr1, and is thus described by a continuous function
from Uα∩Uβ to GL(m,R) or GL(m,C). These are called transition matrices.

Definition 2.2.5. If M is a smooth manifold, a smooth vector bundle E is
a vector bundle with given local trivializations whose transition matrices are
smooth.

A smooth complex vector bundle π : E → M over a complex manifold
M is holomorphic if E is a complex manifold such that πE : E → M is
holomorphic.

Equivalently, a complex vector bundle E is a holomorphic vector bundle
if and only if both E and M are complex manifolds such that for any x ∈M
there exists x ∈ U in M and a trivialization τU : EU → U × Ck that
is a biholomorphic map of complex manifolds. This is equivalent to the
transition functions for E are holomorphic. If there is a global trivialization,
we call it trivial bundle (in smooth or holomorphic sense). Notice there are
smoothly trivial but holomorphically non-trivial vector bundles.

We can also use transition functions to define a vector bundle. Given
an open cover {Uα} of M and smooth (resp. holomorphic) maps ταβ : Uα ∩
Uβ → GL(m,K) where K = R or C satisfying ταα = I and ταβτβγτγα = I
on Uα ∩ Uβ ∩ Uγ . It is not hard to check there is a unique (smooth or
holomorphic) vector bundle E → M with transition functions {ταβ} and
thus these two definitions are equivalent.

For two holomorphic (resp. smooth) vector bundles E and F over M ,
a holomorphic (resp. smooth) vector bundle homomorphism between E
and F is a holomorphic (resp. smooth) map φ : E → F with πE = πF ◦
φ such that the induced map φ(x) : Ex → Fx is linear with rk(φ(x)) is
independent of x ∈ M . Two vector bundles E and F are holomorphically
(resp. smoothly) isomorphic if there is a biholomorphic (resp. bi-smooth)
vector bundle homomorphism.

Use the transition function viewpoint, two vector bundles {ταβ} and
{τ ′αβ} are holomorphically (resp. smoothly) equivalent if there are nonva-
nishing matrix valued holomorphic (resp. smooth) functions hα(x) on Uα
such that τ ′αβ = hαταβh

−1
β .

A section of a vector bundle E → M is a map s : M → E such that
π ◦ s = IdM . This section is said to be continuous, smooth, or holomorphic
if s is so respectively. We will denote by Γ(U,E) the set of all holomorphic
sections of E over U .
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We can also construct vector bundles out of what we have. Suppose
F and G are vector bundles with rank r and s and transition functions
{fαβ} and {gαβ}. The following constructions work in any of the category:
continuous, smooth, holomorphic, · · · .

1. Whitney sum F⊕G has rank r+s and is given by transition functions

hαβ =

(
fαβ 0
0 gαβ

)
.

2. Tensor product F ⊗ G has rank rs and the transition functions are
given by

hik,jlαβ = f ijαβg
kl
αβ.

3. Dual bundle F ∗ has rank r and transition function tf−1
αβ .

4. Exterior product ΛqF has rank (rq) and transition functions

hIJαβ =
∑
π

επ f
i1jπ(1)
αβ · · · f iqjπ(q)αβ

where I = (i1, · · · , iq), 1 ≤ i1 < · · · < iq ≤ r and J = (j1, · · · , jq), 1 ≤
j1 < · · · < jq ≤ r and the sum is taken from all the permutations π and
{1, · · · , q}.

5. Symmetric product SqF , leave as exercise.

6. If the original bundle is complex, we have complex conjugate F̄ . It is
defined by transition functions {f̄αβ}.

7. A subset F ⊂ E of a vector bundle π : E →M such that π|F : F →M
is a vector bundle and F ⊂ π−1(x) is a vector subspace of π−1(x) is said to be
a subbundle of the vector bundle E. We can then choose local trivializations
such that the transition function gαβ of E to be

gαβ =

(
hαβ kαβ
0 qαβ

)
,

where F has transition functions hαβ. And the quotient bundle E/F whose
fibers are Ex/Fx has transition functions qαβ. We have short exact sequence
0 → F → E → E/F → 0. This always splits in smooth category, i.e.
E = F ⊕ E/F and local trivialization could be chosen such that kαβ = 0.
But this is not true in holomorphic category.

8. Let f : N → M be a holomorphic (resp. smooth) map between
complex (resp. smooth) manifolds and let E be a holomorphic (smooth)
vector bundle on M given by {Uα} and ταβ. Then the pull back f∗E is a
holomorphic (resp. smooth) vector bundle overN that is given by {f−1(Uα)}
and ταβ◦f . For any y ∈ N , there is a canonical isomorphism (f∗E)y ∼= Ef(y).

Come back to the tangent bundle TM of a smooth manifoldM (of dimen-
sion n). Let M have the atlas with local charts (Uα, φα = (xα1, · · · , xαn))
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with α in an index set A. Then the local trivialization of TM over Uα is
given in terms of the basis {∂xα1 , · · · , ∂xαn}. That is,

(x,
n∑
i=1

ak∂xαi |x) 7→ (x, (a1, · · · , an)).

The transition maps between Uα ∩Uβ ×Rn ⊂ Uα×Rn and Uα ∩Uβ ×Rn ⊂
Uβ × Rn are given by (u, v) → (u, dφαβ(v)). Here dφαβ is the Jacobian
matrix ( ∂xαi∂xβj

)n×n. Precisely,

τβ ◦ τ−1
α (x,a) = (x,

n∑
i=1

ai∂xαi |x) = (x,
n∑
i=1

ai
∂xα1

∂xβi
, · · · ,

n∑
i=1

ai
∂xαn
∂xβi

).

A section of the tangent bundle is a vector field.
A smooth manifold is orientable if and only if we can have an atlas such

that the transition matrices are in GL+(n,R).
Similarly, the cotangent spaces also form a vector bundle, called the

cotangent bundle T ∗M . It is the dual bundle of TM . A smooth section of
the cotangent bundle is a 1-form (or sometimes called a covector). Given
each x ∈ M , we can form the pth exterior power of the cotangent space.
This is also a vector bundle, ΛpT ∗M . A section of it is called a p-form.

This construction also applies to complex setting. First, T 1,0M or T ∗1,0M

is a holomorphic bundle. Thus, all of its exterior products Λp,0M = ∧pT ∗1,0M
are so. In particular, if dimCM = n, then Λn,0M is a holomorphic line
bundle, which is called the canonical bundle KM .

2.2.1 Holomorphic vector bundles

We start to talk about holomorphic line bundles and divisors. A divisor
D on M is a locally finite formal linear combination D =

∑
aiVi where

Vi are irreducible analytic hypersurfaces of M and ai ∈ Z. A divisor is
called effective if ai ≥ 0 for all i. The set Div(M) of divisors is a group
under addition in the obvious way. There is a basic correspondence between
divisors and holomorphic line bundles. First, for a meromorphic section s
of a holomorphic line bundle (i.e. a locally defined holomorphic function
with values in CP 1), we can associate a divisor (s) :=

∑
V ordV (s)V by a

weighted sum of its zeros and poles, where V are irreducible hypersurfaces.
Let fα be local defining functions of D over some open cover {Uα} of M .
Then the functions gαβ = fα

fβ
are holomorphic and nonzero in Uα ∩ Uβ with

gαβgβα = 1, and in Uα∩Uβ∩Uγ we have gαβgβγgγα = 1. With these identities
for {gαβ}, we can construct a line bundle L by taking the union ∪αUα × C
with points (x, λ) ∈ Uβ × C and (x, gαβ(x)λ) ∈ Uα × C identified. The line
bundle given by the transition functions {gαβ} is called the associated line
bundle of D and denoted by LD (or O(D)). It is easy to check that it is well
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defined. Denote by Pic(M) the set of isomorphism classes of holomorphic
line bundles. In sheaf theory language, Pic(M) ≡ H1(M,O∗).

Recall that collection of transition functions define the same line bundle
if and only if there exists non-vanishing holomorphic functions fα on Uα
such that g′αβ = fα

fβ
gαβ. Tensor product makes Pic(M) into an abelian

group, called the Picard group of M (L ⊗ L∗ = End(L) is a trivial line
bundle because identity L → L gives a nowhere zero section). The kernel
of the homomorphism Div(M)→ Pic(M) is those divisors (f) where f is a
meromorphic section of the trivial bundle, i.e. a meromorphic function on
M . In fact, if D is given by fα and LD is trivial, then there exists hα ∈
O∗(Uα) such that fα

fβ
= gαβ = hα

hβ
. Then f = fαh

−1
α is a global meromorphic

function on M with divisor D. Two divisors are called linearly equivalent if
D ∼ D′, i.e. when D−D′ = div(f). Thus the group homomorphism factors
through an injection Div(M)/ ∼→ Pic(M). This homomorphism need not
to be surjective, although it is true when M is a projective manifold.

There is a holomorphic line bundle which is the “universal” line bundle.
This is a tautological bundle over CPn, denoted O(−1): the fibre of O(−1)
over z is precisely the line Lz ⊂ Cn+1 corresponding to z, or formally,
the pairs (l, z) ∈ CPn × Cn+1 with z ∈ l. Over open subsets Ui ⊂ CPn, a
canonical trivialization is given by τi : π−1(Ui) ∼= Ui×C, (l, w) 7→ (l, wi). The
transition map τij(l) : C→ C are given by w 7→ zj

zi
w where l = [z0 : · · · : zn].

The dual of O(−1), i.e. the bundle whose fiber corresponds to linear
functional over the line, is denoted by O(1). More generally, we have O(k)
as the kth tensor power of the O(1) for k > 0. When k < 0, O(k) = O(−k)∗

and O(0) is the trivial bundle.
The global linear coordinates z0, · · · , zn on Cn+1 define natural sections

of O(1). For k > 0, consider a homogeneous degree k polynomial. It gives
a map Cn+1 → C, restricting to Lx we get a degree k map Lx → C. It is a
linear map Lkx → C and so a section of O(k). On the other hand, these are
all holomorphic sections of O(k). We only need to show that the effective
divisor D = (s) of a holomorphic section s is the zero set of a homogeneous
degree k polynomial. Let sF be a section as above, then s

sF
is a meromorphic

function on CPn. Pull it back to Cn+1\{0} and multiply it with F , we get a
holomorphic function G. It could be extended to Cn+1 by Hartogs’ theorem.

Theorem 2.2.6 (Hartogs). A holomorphic function on the complement of
a point in an open set U ⊂ Cn, n ≥ 1 extends to a holomorphic function in
all of U .

Proof. We look at each slice zi = const, i = 1, · · · , n− 1. Set

F (z1, · · · , zn−1, zn) =
1

2π
√
−1

∫
|wn|=r

f(z1, · · · , zn−1, wn)dwn
wn − zn

.

F is define on U . It is clearly holomorphic in zn, and since ∂
∂z̄i

= 0, i =
1, · · · , n− 1, F is holomorphic in z1, · · · , zn−1 as well. Moreover, F = f on
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U \ {p} first on slices with at least one zi 6= 0 by Cauchy’s formula and then
by continuity on z1 = · · · = zn−1 = 0.

Moreover, we have G(λX) = λkG(X). By restricting on a line in Cn, i.e.
look at ι∗G for ι : t 7→ (µ0t, · · · , µnt), we know ι∗G is either identically zero
or has a zero of order k at t = 0 and pole of order k at t =∞. So the power
series expansion for G around the origin contains only terms with degree
k. Such a holomorphic function G is a homogeneous degree k polynomial.
Hence dimH0(CPn,O(k)) = (k+n)!

k!n! .
Exercise: What is the holomorphic tangent bundle of CP 1 in terms of

the notation O(k)?
The above description of O(1) also leads to the Euler sequence

0→ OCPn → O(1)⊕n+1 → T 1,0CPn → 0.

The first map is 1 7→ (z0, · · · , zn). For the second map, let π : Cn+1−{0} →
CPn. We look at U0 and let z0, · · · , zn be coordinates for Cn+1 and Zi = zi

z0
be coordinates on U0 ⊂ CPn. Then we have

π∗
∂

∂zi
=

1

z0
· ∂

∂Zi
, i = 1, · · · , n, π∗

∂

∂z0
= −

∑ zi
z2

0

∂

∂Zi
.

Hence for any linear functions l(z) on Cn+1, the vector field v(z) = l(z) ∂
∂zi

descends to CPn. That is π∗v(z) = π∗v(λz). Moreover, T 1,0CPn is spanned
by {π∗(zi ∂

∂zj
)}i,j=0,··· ,n with the single relation provided by the Euler vector

field E =
∑n

i=0 zi∂zi : π∗E = 0. This is true since
∑n

i=0 zi∂zif = d · f on
homogeneous function f of degree d and also functions on CPn corresponds
to homogeneous functions of degree 0. With these understood, the second
map is (σ0, · · · , σn) 7→ π∗(σi(z)

∂
∂zi

), where σi are sections of O(1).
Thus the kernel of the second map is multiples of (z0, z1, · · · , zn) and the

exact sequence holds.
We remark that the above description of sections of O(k) actually implies

Chow’s theorem:

Theorem 2.2.7. Any analytic subvariety of projective space is algebraic.

The above constructions could be generalized to GrassmannianGrC(k, n).
We have a tautological holomorphic vector bundle S of rank k whose fiber
over p ∈ GrC(k, n) is just the vector space corresponding to p. So S is a
subbundle of the trivial bundle of rank n. Its quotient bundle is called the
universal quotient bundle of GrC(k, n).

We can classify holomorphic vector bundles over S2.

Theorem 2.2.8 (Grothendieck-Birkhoff). Any holomorphic vector bundle
E on S2 is isomorphic to a sum O(a1)⊕ · · · ⊕O(an). The ordered sequence
a1 ≥ · · · ≥ an is uniquely determined.
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Proof. Write S2 = U0 ∪ U∞ where U0 = S2 − {∞} and U∞ = S2 − {0}.
Then O(k) could be determined from the gluing of U0 × C and U∞ × C by
the map

(z, λ) 7→ (z, zkλ).

For our holomorphic bundle E, its restriction to U0 and U∞ are trivial
as both are Stein. So E is obtained by gluing U0 × Cn to U∞ × Cn by a
holomorphic function τ : U0 ∩ U∞ → GL(n,C). By Birkhoff’s factorization
theorem, we can factor τ as τ− ·D · τ+, where τ+ and τ− can be extended
to and are holomorphic in U0 and U∞ respectively and D = za is diagonal.
If we change coordinates in U0 ×Cn by τ+ and in U∞ ×Cn by τ−1

− , we will
have transition matrix given by a diagonal one with elements za1 , · · · , zan ,
in other words a direct sum O(a1)⊕ · · · ⊕ O(an).

The original version of Birkhoff factorization says that any (smooth,
holomorphic, etc.) function f : S1 → GL(n,C) can be factored as f− ·D ·f+

where f+ is the boundary of a map from {|z| ≤ 1} to GL(n,C), f− is the
boundary of a map from {|z| ≥ 1} to GL(n,C), and D is a diagonal matrix
za. This result could be applied in our setting by let f = τ ||z|=1 and by the
unique continuation of holomorphic functions.

2.3 Almost complex structure and integrability

When we have a complex manifold, there is a R-linear operator J :
TM ⊗ C → TM ⊗ C defined by J∂zj = i∂zj and J∂z̄j = −i∂z̄j ; or on TM
by J∂xj = ∂yj and J∂yj = −∂xj . Such an endomorphism could be de-
fined on the tangent bundle of certain smooth manifolds with even dimen-
sion. An almost complex structure J is an endomorphism J : TM → TM
of the tangent bundle TM such that J2 = −Id. Almost complex mani-
folds have even dimension since det(J)2 = det(J2) = det(−Id) = (−1)m.
Moreover, M has to be orientable. This is because we can choose a base
X1, · · · , Xn, JX1, · · · , JXn in each TxM and any such two bases give the
same orientation for TxM . (basically due to the fact GL(n,C) could be
canonically embedded to GL+(2n,R) or U(n) ⊂ SO(2n). More explicitly,
the matrix representation of changing a base is(

A B
−B A

)
,

which is of positive determinant.) This gives the orientation of TM .
Given almost complex structure J on M , the complexification of the

tangent bundle of M decomposes as TM⊗C = T 1,0M⊕T 0,1M where J acts
on T 1,0M as i and on T 0,1M as −i. For any X ∈ TM , X+iJX ∈ T 1,0M and
X−iJX ∈ T 0,1M . For cotangent bundle, we have T ∗M⊗C = T ∗1,0M⊕T ∗0,1M
where T ∗1,0M annihilates T 0,1M . A (1, 0)-form is a smooth section of T ∗1,0M ;
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similarly for a (0, 1)-form. The splitting of the cotangent bundle induces
a splitting of all exterior powers. Write Λp,qM = Λp(T ∗1,0M) ⊗ Λq(T ∗0,1M).
Then

ΛrT ∗M ⊗ C = ⊕p+q=rΛp,qM.

A (p, q)-form is a smooth section of the bundle Λp,qM . The space of all such
sections is denotes Ωp,q(M).

Apparently, a complex manifold is almost complex. For example, the
tangent bundle of an almost complex manifold is merely a complex vector
bundle, while the tangent bundle of a complex manifold is a holomorphic
vector bundle. An almost complex structure is integrable if it induces a
complex structure. For any almost complex structure J , we could associate
it with the Nijenhuis tensor

NJ(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ].

Newlander-Nirenberg theorem shows that an almost complex structure is
integrable if and only if the Nijenhuis tensor vanishes.

Exercise: NJ = 0 if and only if [T 1,0M,T 1,0M ] ⊂ T 1,0M .
Exercise: Any almost complex structure on a 2-dimensional manifold is

integrable.
The Newlander-Nirenberg Theorem could provide an alternative view-

point of standard complex structure on Flag manifolds. I learned it from
Raoul Bott. As the flag manifolds parametrize (partial) flags

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V

with dimensions dimVi = di and 0 = d0 < d1 < · · · < dk = n. When
k = dimV , it is called a complete flag. These could be understood as a
homogeneous space for the the general linear group. We discuss it in the
complex setting, so G = GL(n,C). The stablizer of a flag is a nonsingular
block upper triangular matrices, where the dimensions of the blocks are
ni = di − di−1.

Restricting to SL(n,C), the flag manifold is SL(n,C)/P where this notion
could be generalize to GC/P for a complex semisimple Lie group GC and a
parabolic group P . In the complete flag case, P is a Borel subgroup (i.e.
a maximal Zariski closed and connected solvable algebraic subgroup). In
general, each GC/P is a coadjoint orbit of G on g∗.

If we choose an inner product on V , then any flag can be split into
a direct sum, and so the flag manifold is isomorphic to the homogeneous
space U(n)/U(n1) × · · · × U(nk). In the complete flag case, this viewpoint
generalizes to G/T where G is a compact connected semisimple Lie group
and T ⊂ G a maximal torus.

Example 2.3.1. Assume that G is a compact connected semisimple Lie
group and T ⊂ G a maximal torus. Let g and t be Lie algebras of G and
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T respectively. The set of all roots R is by definition constituted of all el-
ements α ∈ it ⊂ t ⊗ C such that there exists a nonzero X ∈ g ⊗ C with
[H,X] = 〈α,H〉X for all H ∈ t, or equivalently, the characters of the corre-
sponding irreducible representation of T , if we identify the character group
Hom(T,C∗) with (C∗)dimT ⊂ t⊗ C. The eigenspaces are denoted gα.

The tangent space of G/T at the coset eT decomposes, in terms of Lie
algebra, as

(g/t)⊗ C = ⊕α∈Rgα.

By left action, such a decomposition induces a decomposition of T ∗(G/T )⊗
C. By choosing a regular element H0 ∈ it, we have the decomposition of
R = R+ ∪R− to positive and negative roots. Notice R+ = −R− as α ∈ R if
and only if −α ∈ R. We have

[gα, gβ] ⊂ gα+β (2.1)

for any positive roots α, β.
In fact, the decomposition R = R+∪R− is a decomposition T (G/T )⊗C =

T 1,0(G/T )⊕T 0,1(G/T ), thus gives rise an almost complex structure on G/T .
The relation (2.1) is the integrability condition. This is the well known
complex structure on G/T .

We can modify this construction a bit such that R is decomposed as a
disjoint union of two sets R1 and R2, with the relation R1 = −R2. But we do
not require the condition (2.1). This gives different choices of non-integrable
almost complex structures on G/T .

For a general flag manifold GC/P , the holomorphic tangent plane is
given by a subset of R+ which is closed under addition. So the above dis-
cussion still applies.

Different from being a complex manifold, being an almost complex man-
ifold is a topological condition. For example, in complex dimension two,
the condition is guaranteed by the Wu’s theorem. It asserts that almost
complex structures on M are classified (up to homotopy) by the integrable
lifts c1 of the Stiefel-Whitney class w2(M) (which means c1 · [A] = [A] · [A]
mod 2 for any [A] ∈ H2(M,Z)) that satisfy

(c2
1, [M ]) = 3σ(M) + 2χ(M).

Dessai further specified it as a purely topological description.

Theorem 2.3.2. An oriented 4-manifold M admits an almost complex
structure if and only if χ(M) + σ(M) ≡ 0 mod 4 and one of the follow-
ing conditions is satisfied:

1. The intersection form Q on H2(M,Z) is indefinite.

2. Q is positive definite and b1 − b2 ≤ 1.
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3. Q is negative definite and, in case b2 ≤ 2, 4(b1 − 1) + b2 is the sum of
b2 integer squares.

For example, we see that S4 is not almost complex. It was a challenging
problems to produce examples of almost complex but not complex manifolds
before Donaldson, although the first such example was found by Yau. Now,
we know abundant such examples, the simplest one might be (2n + 1)CP 2

with n ≥ 1 (almost complex because 3× (2n+ 1) + 2× (2n+ 3) = 10n+ 9 =
32 × (n + 1) + 12 × n). A bold conjecture of Yau says that in complex
dimensions 3 and higher, any almost complex manifold admits a complex
structure (of course, it is NOT saying every almost complex structure is
integrable). Its special case is S6 where we have a canonical almost complex
structure, but do not know whether there are complex structure or not.

Example 2.3.3. Let e1, e2, · · · , e7 be the standard basis of R7 and e1, e2, · · · , e7

be the dual basis. Denote eijk the wedge product ei ∧ ej ∧ ek and define

Φ = e123 + e145 + e167 + e246 − e257 − e347 − e356

Then Φ induces a unique bilinear mapping, the cross product: × : R7×R7 →
R7 by (u × v) · w = Φ(u, v, w), where · is the Euclidean metric on R7. It
follows that u× v = −v × u and

(u× v) · u = 0. (2.2)

Also, further discussion shows that

u× (u× v) = (u · v)u− (u · u)v. (2.3)

Just as 3-dimensional cross product can be expressed in terms of quaternions,
the cross product on R7 could also be understood by octonions. Identify R7

with the imaginary octonions, then

u× v = =(uv) =
1

2
(uv − vu).

But unlike the 3-dimensional cross product which is invariant under SO(3),
the 7-dimensional cross product is invariant under G2 ⊂ SO(7).

Let
S6 = {u ∈ R7, u · u = ||u|| = 1}.

The tangent space at u ∈ S6 is TuS
6 = {v ∈ R7|u · v = 0}. Let Ju = u ×

be the cross product operator of u. Then Ju(TuS
6) ⊂ TuS

6 and J2
u = −id

on TuS
6 by (2.2),(2.3). Let J = {Ju, u ∈ S6}. Then J gives an almost

complex structure on S6 which is the standard almost complex structure we
consider. It is known that J is not integrable since the Nijenhuis tensor of J
is nowhere-vanishing.



22 CHAPTER 2. STRUCTURES

Exercise: Define the complex structure on S2 in a similar manner using
the standard cross product.

If M is a complex manifold, the splitting of the complex cotangent bun-
dle induces a splitting of the exterior derivative: df = ∂f + ∂̄f where
∂ : C∞(M,C) → C∞(T 1,0M) with ∂f = (df)1,0 and similarly for ∂̄. In
local coordinates zj = xj + iyj ,

∂f =
∑ ∂f

∂zj
dzj , ∂̄f =

∑ ∂f

∂z̄j
dz̄j

where
∂f

∂zj
=

1

2
(
∂f

∂xj
− i ∂f

∂yj
),

∂f

∂z̄j
=

1

2
(
∂f

∂xj
+ i

∂f

∂yj
).

We can naturally extend ∂, ∂̄ to Ωp,q. By definition ∂ : Ωp,q → Ωp+1,q, ∂̄ :
Ωp,q → Ωp,q+1.

For complex manifold M , ∂̄2 = 0. Hence it defines a cohomology.

Definition 2.3.4. The (p, q)-Dolbeault cohomology group of the complex
manifold M is the vector space

Hp,q(M) =
ker ∂̄ : Ωp,q → Ωp,q+1

Im ∂̄ : Ωp,q−1 → Ωp,q
.

Recall that the de Rham cohomology of a smooth manifold M could be
defined in a similar manner as d2 = 0:

Hk
dR(M,R) =

ker d : Ωk → Ωk+1

Im d : Ωk−1 → Ωk
.

The de Rham cohomology is isomorphic to the usual (singular) cohomology
Hk(M,R). The Betti numbers are defined as bi = dimH i(M,R).

Notice Hp,0 is simply the space of holomorphic p-forms, which by defi-
nition is the space of holomorphic sections of the holomorphic bundle Λp.0.

In general, if M is merely almost complex, we can also define ∂α and ∂̄α
by projection to its (p+1, q) and (p, q+1) components if α ∈ Ωp,q. However,
we don’t necessarily have ∂̄2 = 0. The latter condition would guarantee the
integrability. More precisely, since

dΩ0,0 ⊂ Ω1,0 +Ω0,1, dΩ1,0 ⊂ Ω2,0 +Ω1,1 +Ω0,2, dΩ0,1 ⊂ Ω2,0 +Ω1,1 +Ω0,2,

and Ω0,0,Ω1,0,Ω0,1 generate ⊕Ωp,q, we have

dΩp,q ⊂ Ωp−1,q+2 + Ωp,q+1 + Ωp+1,q + Ωp+2,q−1.

Hence, we can write

d = µ̄+ ∂̄ + ∂ + µ,
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with the components µ̄ and ∂̄ being complex conjugate to µ and ∂, and each
component derivation µ̄, ∂̄, ∂, µ has bidegrees (−1, 2), (0, 1), (1, 0), (2,−1) re-
spectively. µ (and µ̄) are essentially Nijenhuis tensor in guise. In fact,

µ̄+ µ = −1

4
(NJ ⊗ idC)∗.

As both sides are derivations, it suffices to check this on 1-forms. which
follows from Cartan’s formula relating exterior differential and Lie bracket.

This is essentially the following. We could view Nijenhuis tensor as
measuring how far the Lie bracket of the two (1, 0) complex vector fields,
i.e. i-eigenvectors of J , X − iJX and Y − iJY from being a (1, 0) complex
vector field as well. This is a Frobenius type condition. There is another
interpretation: it measures the (0, 2) part of dΩ1,0. This is because if Z and
W are complex vector fields of type (0, 1), then for ω ∈ Ω1,0, we have

dω(Z,W ) = Z(ω(W ))−W (ω(Z))− ω([Z,W ]) = ω(NJ(Re Z,Re W )1,0).

If we take ω = df , the above measures ∂̄2f . It is easy to see that idΩ1,0 ⊂
Ω2,0 + Ω1,1 would imply dΩp,q ⊂ Ωp+1,q + Ωp,q+1.

To prove the equality,

dω(X,Y ) = (ιX ◦ dω)(Y ) = (LXω)(Y )− (d ◦ ιXω)(Y ).

Notice (d ◦ ιXω)(Y ) = Y (ω(X)), and (LXω)(Y ) = X(ω(Y )) − ω([X,Y ]).
The latter is because of the general formula Y (T (α1, α2, · · · , X1, X2, · · · )) =
(LY T )(α1, α2, · · · , X1, X2, · · · )+T (LY α1, α2, · · · )+T (α1, LY α2), · · · )+ · · · .

We can also see the Nijenhuis tensor from the following setting.
We let {θ1, · · · , θn} be a local unitary coframe for T 1,0M . We have a dual

base {e1, · · · , en} on the complexified tangent bundle. The metric g can be
written as g = θi ⊗ θ̄i. We extend an affine connection ∇ (i.e. a linear map
∇ : Ω0(TM) → Ω1(TM) satisfying Leibniz rule ∇(fX) = df ⊗ X + f∇X
for smooth function f and vector field X) linearly to TM ⊗ C. It is called
almost-Hermitian if ∇J = ∇g = 0. Assume ∇ is almost Hermitian from
now on. Since J(∇ej) = i∇ej , we have a matrix of complex valued 1-forms

{θji }, called the connection 1-forms, such that

∇ei = θji ej .

It is a metric connection implies the matrix is skew-Hermitian: θji + θ̄ij = 0.
The torsion Θ is defined as

dθi = −θij ∧ θj + Θi, i = 1, · · · , n.

The curvature as a skew-Hermitian matrix of 2-forms is defined by

dθij = −θik ∧ θkj + Ψi
j .
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It is known that there exists a unique almost-Hermitian connection whose
torsion has no (1, 1) part. Hence, we define N i

j̄k̄
by

(Θi)(0,2) = N i
j̄k̄θ̄

j ∧ θ̄k.

This is another interpretation of Nijenhuis tensor. And then it is easy to see
that ∂̄2f = 0 for any smooth function f if and only if the Nijenhuis tensor is
zero. Once we have this, we can formally argue that dΩp,q ∈ Ωp+1,q+Ωp,q+1.

2.4 Kähler manifolds

Let (M,J) be a complex manifold. A Riemannian metric g onM is called
Hermitian if g(Ju, Jv) = g(u, v) for all u, v ∈ TM . This is equivalent to
require the 2-form defined ω defined by ω(u, v) = g(Ju, v) is a (1, 1) form. In
fact, a Hermitian metric h = g − iω. The fact g is positive definite implies
that ω tames J , i.e. ω(u, Ju) > 0 for all u 6= 0. Overall, the Hermitian
structure is a compatible triple (g, J, ω), any two determines the third.

A Kähler manifold is a Hermitian manifold such that dω = 0. We have
the following equivalent definitions.

Proposition 2.4.1. Let (M,J, g) be a Hermitian manifold and ∇ be the
Levi-Civita connection. The following are equivalent:

• (M,J, g) is Kähler.

• ∇J = 0.

• ∇ω = 0.

• Locally, one can write ω = i∂̄∂φ for a real valued function φ, called a
local Kähler potential.

• There exist holomorphic coordinates z1, · · · , zn in which the Hermtian
metric is Euclidean metric on Cn to second order: h =

∑
dzi ⊗ dz̄i +

O(|z|2).

The last is called normal coordinates for Kähler manifold. It implies if
our calculation involves only first derivatives of the Kähler structure, then
we could check it only for flat metric in Cn. For example, it implies ∇J = 0
because the Christoffel symbols Γijk only depends on the the first derivatives
of the metric.

For any compact Kähler manifold, the Kähler class [ω] ∈ H2(M,R) is
nontrivial. This is because ωn

n! is the volume form. We derive it by noting
the (1, 1)-form associated to the Euclidean metric on Cn is

ω =
i

2

∑
dzj ∧ dz̄j .
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2.4.1 Examples.

0. M = Cn. Use notation zj = xj + iyj .

J
∂

∂xi
=

∂

∂yi
, J

∂

∂yi
= − ∂

∂xi
.

If g is the Euclidean metric, then its Kähler form is

ω =
i

2

∑
j

dzj ∧ dz̄j =
∑
j

dxj ∧ dyj .

1. The most important example is the complex projective plane CPn.
Write ||w|| =

∑n
i=0 |wi|2. For λ ∈ C∗, log ||λw||2 = log |λ|2 + log ||w||2, so

ω =
i

2π
∂∂̄ log ||w||2

is a well-defined, closed (1, 1) form on CPn. This is called the Fubini-Study
form.

On U0, zi = wi
w0

, 1 ≤ i ≤ n. Hence

2π

i
ω =

∑
i,j

(
dzi ∧ dz̄i
1 + |z|2

− z̄idzi ∧ zjdz̄j
(1 + |z|2)2

).

The eigenvalues of the matrix z∗z are |z|2 and n − 1 copies of 0. So the
metric is positive definite. Recall that 2

iω =
∑
gij̄dzi ∧ dz̄j . The Fubini-

Study metric is the unique U(n + 1)-invariant (up to scaling) Riemannian
metric on CPn. Use this viewpoint, we could check it is positive form also
by checking at one point, say [1, 0, · · · , 0], where it is ω = i

2π

∑
j dwj ∧ dw̄j .

1’. A similar looking but dramatically different metric is the Bergman
metric on the unit ball Dn = {z ∈ Cn | |z|2 < 1} in Cn. Define

ω = − i

2π
∂∂̄ log(1− |z|2) =

i

2π

∑
i,j

(
dzi ∧ dz̄i
1− |z|2

+
z̄idzi ∧ zjdz̄j
(1− |z|2)2

).

ω is closed and invariant under the action of SU(1, n). Thus its descends to
a Kähler form on any ball quotient.

2. Let (X,J, ω) be Kähler and Y ⊂ X a complex submanifold. Then Y
is Kähler with Kähler form ω|Y .

3. Any complex submanifold of CPn is Kähler. In particular, any pro-
jective variety is Kähler.

4. For the general operations, the covering preserve the Kähler structure,
but the quotient is not, e.g. the Hopf surface.
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2.4.2 Blowups

We now define blowups:

1. Blowing-up at a point. Let B = Br(0) be a ball in Cn, n ≥ 2. Let
z = (z1, · · · , zn) be the standard coordinates of Cn and w = [w1, · · · , wn] be
homogeneous coordinates on CPn−1. The blowing-up of B at 0, denoted by
B̃ ⊂ B × CPn−1 is the complex n-manifold given by

B̃ = {(z, w) ∈ B × CPn−1|ziwj = zjwi, ∀1 ≤ i < j ≤ n}.

If we cover CPn−1 by U1, · · · , Un, then B̃ ∩ (B ×Ui) is defined by the n− 1
equations

zj = zi
wj
wi
, 1 ≤ j ≤ n, j 6= i.

Let π : B̃ → B be the restriction of the projection map from B×CPn−1

onto B. In other words, the blowing-up of 0 ∈ B ⊂ Cn is the restriction of
the projection of the holomorphic line bundle O(−1) ⊂ CPn−1 × Cn over
CPn−1 to the second factor O(−1)→ Cn on B.

For any z 6= 0, π−1(z) is a single point (z, [z]). While for the origin
0 ∈ B, the inverse image is the complex projective space E := π−1(0) =
{0} × CPn−1. E is called the exceptional divisor of the blowing up.

In general, if Mn is a complex n-manifold and p ∈ M . Take a neigh-
borhood p ∈ U ⊂ M along with φ : U → B a coordinate disc around x.
M̃x = M − {x} ∪π B̃ obtained by replacing B ⊂ M with B̃ is the blow-up
of M .

Topologically, M̃ = M#CPn. To show this, we notice this is a local
statement so reduced to the case when M = Cn. As shown above, the
blowup of Cn is biholomorphic to the total space of O(−1). As O(−1) can
be identified with a complex conjugate of O(1), we know their total spaces
are identical up to an orientation reversing diffeomorphism. Moreover, the
total space of O(1) is biholomorphic to CPn − {x}. So the identification
follows. Notice in this identification, all real rays going into the origin of Cn
are transformed into rays going out of x in CPn.

2. More generally, one can blow up any codimension k ≥ 2 complex
submanifold Z of Cn. Suppose Z is the locus of the equation x1 = · · · =
xk = 0, then the blow-up of Z is the locus of the equations xiyj = xjyi, i, j ∈
1, · · · , k in Cn×CP k−1. Of course, we can blow up any submanifold of any
complex manifold M by applying this construction locally. The restriction
π|E : E → Z could be seen as the projectivization of the normal bundle of
Z in M .

3. The inverse operation of a blowup is called blowdown.

The blow-ups (of points and submanifolds) always preserve Kählerness,
but not blowing-down along submanifolds. The first claim is very funda-
mental in Kähler geometry, but it seems there is no proof in any textbook.
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We will prove it after introducing geometry of Hermitian bundles. The sec-
ond statement corresponds to Moishezon manifolds. The easiest example
might be when we have two homologous O(−1,−1) curves and we flop one
of them.
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Chapter 3

Geometry

3.1 Hermitian Vector Bundles

We now focus on holomorphic vector bundles. Recall a holomorphic vec-
tor bundle is a complex vector bundle over a complex manifold X such that
the total space E is a complex manifold and the projection map π : E → X is
holomorphic. Equivalently, we can say that a holomorphic bundle is uniquely
determined by a system of holomorphic transition functions φαβ : Uα∩Uβ →
GL(k,C) are holomorphic. One can define a ∂̄E : Ω0(E) → Ω0,1(E) oper-
ator on sections. To define it, we first work in a local trivialization Uα.
Here sections are functions Uα → Ck and we define it by the ordinary ∂̄
operator. Now, the transition functions of different trivializations are holo-
morphic, and so our ∂̄ are identical at the intersections, which means the
the local definitions patch together to give an operator defined on global
sections. Notice that there is no naturally defined the exterior derivative d
on sections of a vector bundle (flat bundle has one?).

Let Ω0,q(X,E) be the smooth sections of Λ0,q ⊗ E. Then ∂̄2
E = 0 and

the cohomology of the complex (Ω0,·(X,E), ∂̄E) is called the the Dolbeault
cohomology of X with values in E, denoted by H0,·(X,E). It is canonically
isomorphic to Hq(X,OX(E)) of the sheaf OX(E) of holomorphic sections
of E over X. We shortly denote Hq(X,E) := Hq(X,OX(E)) = H0,q(X,E).
Similarly, we can define Hp,q(X,E).

A Hermitian metric h is a C∞ field of Hermitian inner products in the
fibers of E.

Definition 3.1.1. A connection ∇ on a complex vector bundle E → M is
a R-linear map ∇ : Ω0(E)→ Ω1(E) satisfying Leibnitz rule

∇(fs) = df ⊗ s+ f∇s

for smooth function f and s ∈ Ω0(E).

If ∇1 and ∇2 are two connections on E → M , then their difference
is C∞-linear. That is (∇1 − ∇2)(fs) = f(∇1s − ∇2s). Hence ∇1 − ∇2

29
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is induced by a 1-form on M with values in Hom(E,E) = E ⊗ E∗, i.e.
∇1 − ∇2 ∈ Ω1(M,End(E). In other words, the space of connections on E
is an affine space for Ω1(M,End(E).

Given a connection ∇, we can define operators

∇ : Ωp(E)→ Ωp+1(E)

by Leibniz rule
∇(ψ ∧ ξ) = dψ ⊗ ξ + (−1)pψ∇ξ

for ψ ∈ Ωp(E) and ξ ∈ Ω0(E). In particular, we have ∇2 : Ω0(E)→ Ω2(E)
which is easy to check is linear over Ω0, i.e. ∇2(fs) = f∇2s. Hence, it is
induced by bundle map E → Λ2T ∗M ⊗E and thus corresponds to a global
section Θ, called curvature, of the bundle

Λ2T ∗M ⊗Hom(E,E) = Λ2T ∗M ⊗ E∗ ⊗ E.

Then on Uα with the fixed trivialization with frames e1, · · · , ek for E,
we can write

∇A = d+Aα.

Here Aα is a matrix value 1-form. More precisely, if we write s =
∑
siei

and ∇ei =
∑
Aαijej on Uα, we have

∇s =
∑
j

(dsj +
∑
i

siA
α
ij)ej .

In terms of this basis, we can write

∇2ei =
∑

Θij ⊗ ej .

Θij is called the curvature matrix and will be denoted by ΘA or simply Θ
later.

If E has a Hermitian metric h, we could require the connection compat-
ible with it, which means dh(X,Y ) = h(∇X,Y ) + h(X,∇Y ). Equivalently,
it means the structure group is the unitary group U(k) and Aα is now a
u(k)-valued 1-form, i.e. Aα = −(Aα)∗, if the trivialization is unitary with
respect to h. A connection ∇ on E is said to be compatible with the holo-
morphic structure on E if π0,1(∇s) = ∂̄Es for all sections s of E. Here ∂̄E
has ∂̄2

E = 0 and is naturally extended from ∂̄ on M and the holomorphic
structure on E as explained in the beginning of this section.

Proposition 3.1.2. Let E be a Hermitian holomorphic vector bundle. Then
there is a unique connection on E compatible with the metric and the holo-
morphic structure.

Actually, a unitary connection on a Hermitian complex vector bundle is
compatible with a holomorphic structure if and only if it has curvature of
type (1, 1).
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Proof. In a local trivialization, there are two ways to choose frames. If
we choose a holomorphic frame {e1, · · · ek}, then a connection compatible
with the holomorphic structure has the form ∇A = d + Aα where Aα is
a matrix valued (1, 0)-form. The Hermitian structure h is given by the
matrix hij = h(ei, ej). Later we will also use h to represent this matrix.
The condition that ∇ is compatible with the Hermitian metric h gives us
Aαh + h(Āα)T = dh. Comparing the (1, 0) part, we have Aα = ∂h · h−1.
When E is a line bundle, it is ∂ log h.

If we work with a local unitary trivialization, then Aα is a u(k)-valued
1-form, since 0 = dh(ei, ej) = Aij + Āji. However, under this frame, ∂̄E
behaves as ∂̄ + Bα where Bα is a matrix valued (0, 1)-form. The matrix
Bα is determined by ∂̄Eei = Bα

ijej . Hence Aα = Bα − (Bα)∗ is uniquely
determined.

For the second fact, one could see it as follows. A connection is compati-
ble with a holomorphic structure if and only if Θ0,2

A = ∂̄2
E = 0. For a unitary

connection, the curvature is also skew adjoint. Hence Θ2,0
A = −(Θ0,2

A )∗ = 0
and the statement holds. When E is a line bundle, it is ∂̄∂ log h. Notice
i[TrΘA] ∈ H2(M,R) ∩H1,1(M,C).

When E = TM for a complex manifold M , this connection is exactly
the Levi-Civita connection with respect to the Kähler metric.

This unique connection is called the Chern connection. Our argument
for the Chern connection also holds for a complex vector bundle E with a
pseudoholomorphic structure ∂̄E over an almost complex manifold M . For
a complex vector bundle E, a pseudoholomorphic structure on E is given by
a differential operator ∂̄E : Ω0(E)→ Ω0,1(E) which satisfies the Leibniz rule
∂̄E(fs) = ∂̄f ⊗ s+ f∂̄Es, where f is a smooth function and s is a section of
E. The Koszul-Malgrange theorem says that a pseudoholomorphic structure
is induced from a holomorphic structure on E over a complex manifold M
if and only if ∂̄2

E = 0. This follows from Newlander-Nirenberg theorem as a
pseudoholomorphic structure is one-to-one corresponds to a bundle almost
complex structure, which is an almost complex structure J on TE so that

(i) the projection is (J , J)-holomorphic,

(ii) J induces the standard complex structure on each fiber, i.e. multiply-
ing by i,

(iii) the fiberwise addition α : E×ME → E and the fiberwise multiplication
by a complex number µ : C×E → E are both pseudoholomorphic.

And the integrability condition ∂̄2
E = 0 implies this almost complex structure

is integrable by Newlander-Nirenberg.

Notice for unitary trivializations, the transition map is no longer holo-
morphic. So if we simply say trivialization, we mean a holomorphic one. If
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we change a trivialization, {e′1, · · · , e′k} = {e1, · · · , ek}g, then h′ = gThḡ, and
Aαg = gAαg−1+(dg)g−1. The last one is because ∇e′i = Aαgij e

′
j = Aαgij elgjl =

Aαgij gjl⊗ el and ∇e′i = ∇(ejgij) = dgij ⊗ ej + gij∇ej = dgil⊗ el + gijA
α
jl⊗ el,

which means Aαgg = gAα + dg.
As ΘAu = ∇(du + Au) = d(Au) + A ∧ du + A ∧ Au = (dA + A ∧ A)u,

we have ΘA = dA + A ∧ A. Hence, we have Θg(A) = gΘAg
−1 (Use the

fact dg−1 = −g−1(dg)g−1). For line bundle dΘA = 0. In general, we have
Bianchi Identity dΘA = ΘA ∧A−A ∧ΘA.

Example 3.1.3. An important example is the tangent bundle of a Riemann
surface M . Write the metric in isothermal coordinate ds2 = h2dz ⊗ dz̄. Let
the compatible Kähler form be ω = i

2h
2dz ∧ dz̄. Then

Θ = −2(
∂2

∂z∂z̄
log h)dz ∧ dz̄ = −1

2
∆ log hdz ∧ dz̄.

We have iΘ = K · ω, where K = −∆ log h
h2

is the Gaussian curvature.
The Gauss-Bonnet theorem follows from Chern-Weil theory by noticing∫

M Kω = 2πc1(TM) = 2πχ(M).

For a holomorphic line bundle L with a Hermitian metric, the structure
group is U(1). So, in a local holomorphic trivialization, a connection on L
is represented by a 1-form A and the curvature is the 2-form Θ = dA =
∂̄∂ log h. It is closed form representing a de Rham cohomology class in
H2(X; iR). To summarize, we have

Proposition 3.1.4. Given a Hermitian metric h in a holomorphic line
bundle L → M , the curvature Θh of the Chern connection is closed and
i

2π [Θh] ∈ H2(M,R) is independent of the choice of h. Hence [Θh] is inde-
pendent of the metric h.

This class i
2π [Θ] is defined as the first Chern class c1(L) of the line

bundle.

Proof. If there is another metric h′ = efh. The curvatures are related by
Θh′ = Θh + ∂̄∂f .

In fact, we can use the same definition of Chern class for any unitary
connection for any complex line bundle, not just one compatible with the
holomorphic structure. If we have another connection A′ = A + a with
a ∈ Ω1(M,End(E)), which implies Θ′ = Θ + da, so [Θ′] = [Θ]. We can also
define higher Chern classes for vector bundles of higher rank in a similar
manner. But now as we have Θg(A) = gΘAg

−1, the right things we should
look at are polynomials invariant under conjugation, e.g. trace, determinant
etc., for matrix iΘA. Precisely, for any k × k matrix P , we can define
elementary symmetric functions of eigenvalues fi(P ) by

det(P + tI) = fk(P ) + fk−1(P )t+ · · ·+ f1(P )tk−1 + f0(P )tk.
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It is a good exercise to check that fi(
i

2πΘA) are all closed. Then the Chern
forms and Chern classes are defined as fi(

i
2πΘA) and their cohomology

classes. It is also direct to check that the cohomology classes fi(
i

2πΘA)
are independent of connection A.

Let M be an almost complex manifold. The first Chern class of M is
defined by c1(X) = −c1(K) where K = Λn(T ∗1,0M) is the canonical line
bundle.

A holomorphic line bundle L over a complex manifold M is positive if
there exists a metric with curvature form Θ such that i

2πΘ is a positive
(1, 1) form. Here, a (1, 1) form ω is called positive if g(u, v) = ω(u, Jv)
defines a Hermitian metric. In terms of local holomorphic coordinates z =
(z1, · · · , zn), a form ω is positive if ω = i

2

∑
i,j hijdzi ∧ dz̄j with (hij(z))

a positive definite Hermitian matrix for each z. The positivity of a line
bundle is a topological property. More precisely, L is positive if and only if
its Chern class c1(L) may be represented by a positive form. It follows from
the following

Proposition 3.1.5. Let M be Kähler. If ω is any real, closed (1, 1) form
with [ω] = c1(L), then there exists a Hermitian metric on L whose Chern
connection has curvature form Θ = 2π

i ω. Moreover, if H1(M ;R) = 0, there
is a unique such connection up to gauge transformation.

In particular, we know that a trivial bundle cannot be positive when
the base is compact. This implies Stein manifolds are non-compact since
strictly plurisubharmonic functions could be viewed as Hermitian metrics
on the trivial bundle.

3.2 (Almost) Kähler identities

We assume (M,J) is an almost complex manifold of dimension 2n. We
can still define Hermitian metric h = g − iω with respect to J , by requiring
g(X,Y ) = g(JX, JY ). There is a real (1, 1) form ω(X,Y ) := g(JX, Y ).

For a general Riemmanian manifold (M, g) is compact, we have global
L2 inner product

(α, β) =

∫
M
g(α(z), β(z))

ωn

n!
.

Here the pointwise inner product (α(z), β(z)) is extended from that on T ∗M
by requiring that (α(z), β(z)) = det(αi, βj) for any decomposable k-vectors
α(z) = α1 ∧ · · · ∧ αk and β(z) = β1 ∧ · · · ∧ βk.

When we are in the almost complex setting and define L2 inner product
using almost Hermitian metric instead of Riemannian metric, we can define
the adjoint operator of ∂̄

∂̄∗ : Ωp,q(M)→ Ωp,q−1(M)
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by requiring that
(∂̄∗α, β) = (α, ∂̄β).

Similarly for ∂∗.
One can give an explicit formula for ∂̄∗ in terms of the Hodge star

∗ : Ωp,q(M)→ Ωn−q,n−p(M)

by requiring

h(α(z), β(z))
ωn

n!
= α(z) ∧ ∗β̄(z).

Notice the Hodge star is defined for any almost complex manifold and our
convention makes sure it is linear. Locally, if we write α =

∑
I,J αIJ̄φI ∧ φ̄J

where {φ1, · · · , φn} is a unitary coframe of T ∗1,0M such that h = g − iω is∑n
i=1 φi⊗ φ̄i under this basis, then h on Λp,q is defined by letting {φα ∧ φ̄β}

be orthonormal. In particular h(φα ∧ φ̄β, φα ∧ φ̄β) = 2p+q.

∗α =
∑
I,J

εIJαIJ̄φJ0 ∧ φ̄I0 ,

where I0 = {1, · · · , n} − I and εIJ is the sign of the permutation

(1, · · · , n, 1′, · · · , n′)→ (I, J, J0, I0).

We have ∗ ∗ α = (−1)p+qα. The sign (−1)p+q is the sign of changing
(I, J, J0, I0) to (J0, I0, I, J), which is (−1)(p+q)(2n−p−q).

The Hodge star is in fact defined on any Riemanninan manifold, for an
orthonormal basis {e1, · · · , en} where the volume form is e1 ∧ · · · ∧ en, it
could be computed as

∗(ei1 ∧ · · · ∧ eik) = ε · ej1 ∧ · · · ∧ ejn−k ,

where ε = sgn(i1, · · · , ik, j1, · · · , jn−k) and ∗ ∗ α = (−1)k(n−k) for α ∈ Ωk.
One can check that ∂̄∗ = − ∗ ∂∗. In fact, we have the following.

Proposition 3.2.1. Let X be a compact, almost Hermitian manifold with
dimension 2n. The L2-adjoint of d is the codifferential d∗ = − ∗ d∗ and the
adjoints of µ, ∂, ∂̄, µ̄ are given by

D∗ = − ∗ D̄∗

for any D ∈ {µ, ∂, ∂̄, µ̄}.

Proof. We only need to check it for d, others follow from projection onto
different (p, q) types.

This identity follows from Stokes’ theorem for smooth forms. When M
is a compact manifold without boundary, and η ∈ Ωk, ξ ∈ Ωk+1,

0 =

∫
M
d(η∧∗ξ̄) =

∫
M
dη∧∗ξ̄+(−1)kη∧d∗ξ̄ = (dη, ξ)+(−1)k(η, (−1)2n−k∗d∗ξ).
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Since (dη, ξ) = (η, d∗ξ), we have d∗ = − ∗ d∗.
As both sides can map a (p, q) form to (p + 1, q − 2), (p, q − 1), (p −

1, q), (p− 2, q + 1) forms, we have the other 4 relations for µ, ∂, ∂̄, µ̄.

Now we can define different Laplacians:

∆D = DD∗ +D∗D, D ∈ {d, µ, ∂, ∂̄, µ̄}.

In particular, we denote ∆ = ∆d.

There are two more important linear operators on form spaces. The
Lefschetz operator is given by

L : Ωp,q → Ωp+1,q+1, L(η) = ω ∧ η.

The dual Lefschetz operator is defined as Λ := ∗−1L∗ : Ωp,q → Ωp−1,q−1. We
can check Λ = (−1)k ∗L∗ is the formal adjoint of L: i.e., (Lα, β) = (α,Λβ).
This is because (Lα, β) =

∫
Lα ∧ ∗β̄ =

∫
α ∧ ω ∧ ∗β = (α, ∗−1(ω ∧ ∗β)).

If we let H =
∑2n

k=0(k−n)Πk where Πk is for the projection to k-forms,
then we have the following relations.

Proposition 3.2.2.

[H,L] = 2L, [H,Λ] = −2Λ, [L,Λ] = H.

Notice this is a pointwise property.

Proof. If α ∈ Ωk, then [H,L](α) = (k+2−n)ω∧α−ω∧((k−n)α) = 2ω∧α.
Similarly, [H,Λ] = (k − 2− n)Λα− Λ((k − n)α) = −2Λα.

For the third one, as it is a pointwise relation, we can study it at a given
cotangent space and choose the standard coordinate for vector space T ∗1,0M ,

{e1, · · · , en}, and the standard form ω = i
2

∑
ej ∧ ēj . Let {e1, · · · , en} be

dual basis in T 1,0
x M . Apply Lemma 3.2.3 and using the formula Xc(β∧γ) =

Xcβ∧γ+(−1)pβ∧(Xcγ) for p-form β, we have (notice L,Λ each contributes
i
2 , so cancelled −4 in item 5 of Lemma 3.2.3)

LΛα =
∑

ej∧ēj∧(ēkc(ekcα)) = −
∑
j 6=k

ej∧(ēkc(ēj∧(ekcα)))+
∑
j

ej∧ēj∧(ējc(ejcα)).

ΛLα =
∑

ēkc(ekc(ej∧ēj∧α)) = −
∑
j 6=k

ēkc(ej∧(ekc(ēj∧α)))+
∑
j

ējc(ejc(ej∧ēj∧α)).

The first terms on the right hand sides cancelled. Without loss, we can
assume α = eI ∧ ēJ . The second term on the right hand side in the first
formula counts the number of j ∈ I∩J ; the one in the second formula counts
the number of j with j /∈ I ∪ J . Since |I ∩ J |+ |I ∪ J | = |I|+ |J |, we have
|I ∩ J | − |(I ∪ J)c| = k − n, and hence the third identity.
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Lemma 3.2.3. • ∗ēj ∧ ∗ = 2ejc,

• ∗−1(ēj∧)∗ = 2(−1)k+1ejc,

• ∗ej ∧ ∗ = 2ējc,

• ∗−1(ej∧)∗ = 2(−1)k+1ējc,

• ∗−1(ej ∧ ēj∧)∗ = −4ējcejc.

Proof. For the first one, apply both sides to α = ej ∧ β, we have ∗2ejcα =
2 ∗ β. It could be written as ēj ∧ γ̄ where β ∧ ej ∧ γ = 2h(β, β)ω

n

n! . As
β ∧ ej ∧ γ = (−1)kα ∧ γ, we have ∗α = (−1)k−1γ̄ as h(α, α) = 2h(β, β). So
ēj ∧ ∗α = (−1)k−1ēj ∧ γ̄. Then the second one also follows immediately.

The next two are similar. The last one apply the second and fourth and
(−1)k+1 · (−1)k = −1.

Hence, L,Λ, H defines a natural sl(2,C) representation on Λ∗T ∗M , with

H =

(
1 0
0 −1

)
, L = X =

(
0 1
0 0

)
, Λ = Y =

(
0 0
1 0

)
.

Hence, it is a direct sum of irreducible submodules. We recall some basic
fact of (finite dimensional) sl(2,C) representations.

Let (ρ, V ) be an irreducible complex representation. Then the action H
on V is diagonalizable. Thus we have V = ⊕Vλ, where λ runs over a collec-
tion of complex numbers. It is easy to compute that X(Vλ) ⊂ Vλ+2, Y (Vλ) ⊂
Vλ−2. Then for any v ∈ V with X(v) = 0, we know V is generated as a
vector space by {v, Y v, Y 2(v), · · · }. The key formula used to show it is

XY m(v) = m(n−m+ 1)Y m−1(v), v ∈ Vn (3.1)

A similar result is true when we start with some v with Y (v) = 0. This would
immediately imply that each Vλ is one-dimensional, H(Vλ) = Vλ, X(Vλ) =
Vλ+2, Y (Vλ) = Vλ−2. And as dimV < ∞, all the eigenvalues of H are
integers, and we have

V = Vn ⊕ Vn−2 ⊕ · · · ⊕ V−n.

In other words, the eigenvalues are symmetric with respect to the origin and
are appearing with multiplicity 1.

To summarize, all the finite dimensional irreducible representations of
sl(2,C) are indexed by integers n ≥ 0. Explicitly, V (n) = Symn(C2) which
has dimension n+ 1. Hence, we can define the Lefschetz decomposition of a
(not necessarily irreducible, but finite dimensional) sl(2,C) module V . Let
PV = ker ρ(X), then V = PV ⊕ Y PV ⊕ Y 2PV ⊕ · · · . With respect to
each eigenspace Vm, we see Y m : Vm → V−m are isomorphisms. Finally, in
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general, kerX ∩ Vk = ker(Y k+1 : Vk → V−k−2). Similar when we swap the
roles of X and Y .

There are two applications (to the triple (−H,Λ, L). Applying to Λ∗M =
Λ∗T ∗M for an (almost) Hermitian manifold M , we have a direct sum de-
composition of vector bundles

ΛkM = ⊕i≥0L
i(P k−2iM),

where P k−2iM := ker(Λ : Λk−2iM → Λk−2i−2M).
Second, notice all the operators L,Λ, H commute with ∆d by Kähler

identities, so they act on the space of harmonic forms H∗d(M) = ker ∆d. As
by Hodge theory, H∗d(M) ∼= H∗(M), we have the following

Theorem 3.2.4 (Hard Lefschetz Theorem). Let M be a compact Kähler
manifold. The map Lk : Hn−k

dR (M) → Hn+k
dR (M) is an isomorphism, Ll :

Hn−k
dR (M)→ Hn−k+2l

dR (M) is injective when l < k. If we define the primitive
cohomology

Pn−k(M) = ker(Lk+1 : Hn−k
dR (M)→ Hn+k+2

dR (M)) = ker Λ ∩Hn−k
dR (M),

then we have Hm
dR(M) = ⊕kLkPm−2k(M).

We denote the projection to (p, q) component by Πp,q. Then there is a
linear map

I =
∑
p,q

ip−qΠp,q

multiplicatively extending the almost complex structure J .
When the compatible form ω is closed, we call (M,J, ω) an almost Kähler

manifold. We can formulate following identities (due to Cirici and Wilson
with a correction by Tom Holt), which are called Kähler identities when J
is integrable.

Proposition 3.2.5. The following identities hold on any almost Kähler
manifold.

1. [L, µ] = [L, ∂] = [L, ∂̄] = [L, µ̄] = 0

2. [Λ, µ] = −iµ̄∗, [Λ, ∂] = i∂̄∗, [Λ, ∂̄] = −i∂∗, [Λ, µ̄] = iµ∗

3. [L, µ∗] = −iµ̄, [L, ∂∗] = i∂̄, [L, ∂̄∗] = −i∂, [L, µ̄∗] = iµ

4. [Λ, µ∗] = [Λ, ∂∗] = [Λ, ∂̄∗] = [Λ, µ̄∗] = 0

Proof. The first item follows from [L, d](α) = ω∧dα−d(ω∧α) = −dω∧α = 0
since dω = 0, and then look at each bidegree component separately.

For the second set, we first show [Λ, d] = ∗I−1 ◦ d ◦ I∗. By Lefschetz
decomposition of form bundle, it is enough to prove the assertion for forms
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of type Ljα with α a primitive k-form. We write dα = α0 +Lα1 + · · · , with
αj ∈ P k+1−2j(M). Since [d, L] = 0, we have

0 = Ln−k+1α0 + Ln−k+2α1 + · · · .

This implies Ln−k+j+1αj = 0 for each j. On the other hand, Ll is injective
on Ωi(M) for l ≤ n−i. Hence we have αj = 0 for j ≥ 2. Thus dα = α0+Lα1

with Λα0 = Λα1 = 0.
We compute ΛdLjα = ΛLjdα = ΛLjα0 + ΛLj+1α1 for α ∈ P k(M). By

(3.1), it is

j(n− k − 1− j + 1)Lj−1α0 + (j + 1)(n− k + 1− j)Ljα1.

And

dΛLjα = j(n− k − j + 1)Lj−1dα = j(n− k − j + 1)(Lj−1α0 + Ljα1).

Therefore,
[Λ, d]Ljα = −jLj−1α0 + (n− k − j + 1)Ljα1.

On the other hand, by the following exercise, we can compute

∗I−1 ◦ d ◦ I ∗ Ljα = −jLj−1α0 + (n− k − j + 1)Ljα1.

Then for any (p, q)-form α and any linear map D : Ω∗,∗ → Ω∗,∗ with
bidegree (r, s) we have

I−1 ◦D ◦ I(α) = i(q+s)−(p+r)D(ip−qα) = is−rDα.

Applying this to d = µ+ ∂ + ∂̄ + µ̄ gives us

I−1 ◦ d ◦ I = i(µ− ∂ + ∂̄ − µ̄)

and thus
[Λ, d] = i(µ∗ − ∂∗ + ∂̄∗ − µ̄∗).

The statement follows by equating bidegree components.
Remaining two identities follows from the first two. Item four follows

from

[Λ, D∗] = − ∗−1 L ∗ ∗D̄ ∗+ ∗ D̄ ∗ ∗−1L∗ = − ∗ (LD̄ − D̄L)∗ = 0.

Item three follows from [L,D∗] = − ∗ [Λ, D̄]∗ = ±iD̄.

Exercise: For all α ∈ P k, we have

∗Ljα = (−1)
k(k+1)

2
j!

(n− k − j)!
Ln−k−jI(α).



3.2. (ALMOST) KÄHLER IDENTITIES 39

This is a fundamental but somewhat mysterious identity. It is equivalent
to

∗ exp(L)α = (−1)
k(k+1)

2 exp(L)I(α).

In fact, this can be understood as the consequence that the Hodge star is es-
sentially the Chevalley τ -operator, which is given by τ = exp(L) exp(−Λ) exp(L).
Using product property and decomposition of vector space V = T ∗xM into

one dimensional. We can τ = (−1)
k(k+1)

2 ∗−1 I on Ωk.
By definition, ∗ exp(L) = exp(Λ)∗. And for primitive α, we get exp(−Λ)α =

α. Hence

∗ exp(L)α = (−1)
k(k+1)

2 exp(L) exp(−Λ)I(α) = (−1)
k(k+1)

2 exp(L)I(α).

On a complex manifold, as d = ∂ + ∂̄, we have

∆d = ∆∂ + ∆∂̄ + ∂∂̄∗ + ∂̄∗∂ + ∂̄∂∗ + ∂∗∂̄.

For Kähler manifolds, we have more

Theorem 3.2.6. On a Kähler manifold, ∆d = 2∆∂ = 2∆∂̄.

Proof. Since [Λ, ∂] = i∂̄∗, we have

i(∂∂̄∗ + ∂̄∗∂) = ∂(Λ∂ − ∂Λ) + (Λ∂ − ∂Λ)∂ = 0.

Take complex conjugate, we have ∂̄∂∗ + ∂∗∂̄ = 0.
To prove ∆∂ = ∆∂̄ , we have

−i∆∂ = ∂(Λ∂̄ − ∂̄Λ) + (Λ∂̄ − ∂̄Λ)∂ = ∂Λ∂̄ − ∂∂̄Λ + Λ∂̄∂ − ∂̄Λ∂,

and

i∆∂̄ = ∂̄(Λ∂ − ∂Λ) + (Λ∂ − ∂Λ)∂̄ = ∂̄Λ∂ − ∂̄∂Λ + Λ∂∂̄ − ∂Λ∂̄.

Then ∆∂ = ∆∂̄ since ∂̄∂ = −∂∂̄.

For almost Kähler manifolds, we also have corresponding identities. In
particular, we have ∆∂ + ∆µ̄ = ∆∂̄ + ∆µ.

We also have the following.

Corollary 3.2.7. For any almost Kähler manifold, the following hold:

1. [L,∆∂̄ ] = [L,∆µ̄] = −[L,∆∂ ] = −[L,∆µ] = −i(∂̄∂+∂∂̄) = i(µ̄µ+µµ̄).

2. [Λ,∆∂̄ ] = [Λ,∆µ̄] = −[Λ,∆∂ ] = −[Λ,∆µ] = −i(∂̄∗∂∗ + ∂∗∂̄∗) =
i(µ̄∗µ∗ + µ∗µ̄∗).

Proof. [L,∆∂̄ ] = [∂̄, [L, ∂̄∗]]± = −i(∂̄∂ + ∂∂̄) = i(µ̄µ+ µµ̄) = [µ̄, [L, µ̄∗]]± =
[L,∆µ̄]. Here []± means the signed commutator. All the others follow from
taking conjugates or adjoints.

In particular, for Kähler manifolds, [L,∆d] = [L,∆∂̄ ] = 0.
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3.3 Hodge theorem

We known that the Hodge theorem for compact orientable Riemannian
manifolds states that each de Rham cohomology class contains a unique har-
monic representative, i.e. ∆dα = 0. For Hermitian manifolds and Dolbeault
cohomology class, we have a similar statement. It follows from the following
Hodge theorem.

Theorem 3.3.1. Let M be a compact, complex manifold.

• The space of ∂̄-harmonic (p, q)-forms Hp,q(M) is of finite dimension.

• The orthogonal projection H : Ωp,q(M)→ Hp,q(M) is well defined, and
there is a unique Green’s operator, G : Ωp,q → Ωp,q with G(Hp,q(M)) =
0, ∂̄G = G∂̄, ∂̄∗G = G∂̄∗ and

ψ = H(ψ) + ∂̄(∂̄∗Gψ) + ∂̄∗(∂̄Gψ)

for ψ ∈ Ωp,q(M).

In the above, ∂̄ could be any differential operator P , e.g. d, ∂, or ∂E , as
long as ∆P is elliptic.

Exercise: State the theorem for ∆d.

A related decomposition in analysis is the Helmholz decomposition for a
vector field on a bounded domain V ⊂ R3. It is a sum of a curl-free vector
field and a divergence-free vector field.

F = −∇Φ +∇× A.

If V = R3 and F vanishes faster than 1
r as r →∞, one has

Φ(r) =
1

4π

∫
R3

∇′ · F (r′)

|r − r′|
dV ′, A(r) =

1

4π

∫
R3

∇′ × F (r′)

|r − r′|
dV ′,

and ∇′ is the nabla operator with respect to r′. In analysis, 1
4π|r−r′| is

the Green function for the 3-dimensional Laplacian, which means it solves
∆G(r, r′) = δ(r − r′). Green operator is an integral operator Gφ(x) =∫
M G(x, y)φ(y)dV (y).

In fact, it follows from Hodge decomposition, although it has a much
simpler and direct argument. We assume R3 have coordinate x, y, z and
standard metric. A vector field F = (F1, F2, F3) is equivalent to a 1-form
Ψ = F1dx + F2dy + F3dz. The infinite behavior makes Ψ to be a smooth
form on S3 which has value 0 at the one adding point. By Hodge theorem
for Riemannian manifolds, it could be represented as dα + d∗β since the
harmonic 1-form must be zero. dα and d∗β correspond to ∇Φ and ∇ × A
respectively. So the first term is dG(d∗Ψ) and the second is − ∗ d ∗GdΨ.
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Note the Hodge decomposition of every ∂̄-closed form φ ∈ Zp,q
∂̄

(M) is

φ = H(φ) + ∂̄(∂̄∗Gφ)

since ∂̄Gφ = G∂̄φ = 0. We have the following

Theorem 3.3.2. Let (M,J, g) be a compact Hermitian manifold. Each
Dolbeault cohomology class a ∈ Hp,q(M) contains a unique ∂̄-harmonic rep-
resentative α, i.e. ∆∂̄α = 0.

Similarly, for a Riemannian manifold (M, g), each cohomology class a ∈
Hk(M,C) contains a unique harmonic representative α.

In particular, the dimension Hp,q(M) is independent of the choice of the
Hermitian metric. In fact, we can still define ∆∂̄ and the corresponding
Hp,q(M) := ker ∆∂̄ for almost Hermitian manifolds. On one side, ∆∂̄ is still
elliptic, so hp,q = dimHp,q(M) < ∞. But on the other hand, hp,q does
depend on the choice of Hermitian structure, and can be arbitrarily large
when we vary J .

When (M,J, g) is turned out to be Kähler, by Kähler identities, ∆d =
2∆∂̄ . Hence two notions of harmonic coincides.

Theorem 3.3.3. On a complex manifold, we have the Serre duality Hp,q(M) =
Hn−p,n−q(M).

On a Kähler manifold, a differential form is d-harmonic if and only if it
is ∂̄-harmonic. Hence

Hr(M,C) = ⊕p+q=rHp,q(M).

Moreover, we have isomorphism

Hp,q(M) = Hq,p(M) = Hn−p,n−q(M) = Hn−q,n−p(M).

Serre duality follows because α ∈ Hp,q implies ∗ᾱ ∈ Hn−p,n−q since
Hodge star commutes with the Laplacian, and

∫
α ∧ ∗ᾱ = ||α||2 > 0 when

α 6= 0. The decomposition follows since ∆d preserves bidegree. For the last
claim, the first equality follows from ∆∂ = ∆∂̄ by Kählerness and conjuga-
tion.

It follows that
∑

p+q=r h
p,q = br. In particular, we have hp,q ≤ bp+q. On

an almost Kähler manifold, hp,q could be arbitrarily large.
An immediate corollary is an important topological criterion for non-

Kählerness.

Corollary 3.3.4. If M is a compact Kähler manifold, b2r+1 is even for all
r.

Actually, a complex surface is Kähler if and only if b1 is even. There
are at least two proofs. First is by the Enrique-Kodaira classification of
complex surfaces. Second is a classification free proof by analytic method
due to Buchdahl and Lamari independently.
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Remark 3.3.5. Although each cohomology group could be written alge-
braically in terms of sheaf cohomology, we don’t know an algebraic proof
of Hodge theorem, in particular Hr(M,C) = ⊕p+q=rHp,q(M), even for pro-
jective manifold M . However, there is an algebraic proof of Deligne-Illusie
to show the Hodge to de Rham spectral sequence Hj(X,Ωi

X)⇒ H i+j(X,C)
degenerates at E1. Notice it doesn’t imply the direct sum decomposition,
however it does imply the above corollary for projective manifolds.

Example 3.3.6. The Kodaira-Thurston manifold KT 4 is defined to be the
direct product S1 × (H3(Z)\H3(R)), where H3(R) denotes the Heisenberg
group

H3(R) =


1 x z

0 1 y
0 0 1

 ∈ GL(3,R)


and H3(Z) is the subgroup H3(R)∩GL(3,Z) acting on H3(R) by left multi-
plication. It will also be useful to consider the covering of this manifold by
R4 given by identifying points with the relation

t
x
y
z

 ∼


t+ t0
x+ x0

y + y0

z + z0 + x0y

 (3.2)

for every choice of integers t0, x0, y0, z0 ∈ Z. Vector fields ∂
∂t ,

∂
∂x ,

∂
∂y + x ∂

∂z

and ∂
∂z are well defined, form a basis at each point. The Kodaira-Thurston

manifold is the first example of a manifold admitting both complex and sym-
plectic structures but has no Kähler structure.

A complex structure can be seen as following. We first make a coordi-
nate change (t, x, y, z) 7→ (t + 1

4(x2 + y2), x, y, z − 1
2xy), we have the new

isomorphism 
t
x
y
z

 ∼

t+ t0 + 1

2x0x+ 1
2y0y

x+ x0

y + y0

z + z0 + 1
2x0y − 1

2xy0

 (3.3)

Let v = x + iy, w = t + iz in the new coordinate, and then the complex
structure of KT 4 is from the quotient of the C2 by a non-abelian group of
affine automorphisms of C2 with four generators

g1(v, w) = (v, w + 1), g2(v, w) = (v, w + i), g3,4 = (v + α3,4, w + ᾱ3,4v).

There is a non-abelian relation g3g4 = g2g4g3.
We can compute its first Betti number. It is the rank of Γ/[Γ,Γ] which is

3 (generated by g1, g3, g4, where Γ ∼= H3(Z)×Z or the above group generated
by gi. The generators in H1

dR(M) are dt, dx, dy. By the Corollary above,
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it is not Kähler. Although it does admit an almost Kähler structure for
J ∂
∂t = ∂

∂x , J( ∂∂y+x ∂
∂z ) = ∂

∂z , with compatible symplectic form dt∧dx+dz∧dy
which is i

2(φ1 ∧ φ̄1 + φ2 ∧ φ̄2) where

φ1 = dt+ idx & φ2 = dy + i(dz − xdy)

are generators of T ∗1,0 at every point.

An important corollary of Hodge theorem is Hodge index theorem. First,
we have

Theorem 3.3.7 (Hodge-Riemann bilinear relation). Let (M,ω) be a com-
pact Kähler manifold of dimension n. Then for any α ∈ PHp,q(M) ⊂
PHk(M,C), we have ip−q(−1)

k(k−1)
2

∫
M α ∧ ᾱ ∧ ωn−k > 0.

Proof. We choose α as the harmonic form in the class. Recall we have

∗Ljα = (−1)
k(k+1)

2
j!

(n−k−j)!L
n−k−jI(α). In our situation,

Ln−kα = (−1)k+
k(k+1)

2 (n− k)!ip−q ∗ α.

Hence,

ip−q(−1)
k(k−1)

2

∫
M
α ∧ Ln−kᾱ = (n− k)!

∫
M
α ∧ ∗ᾱ

= (n− k)!||α||2L2

> 0

Theorem 3.3.8. When n = dimCM is even, the signature of the intersec-
tion form Q(α, β) =

∫
M α ∧ β on Hn(M,R) is equal to

∑
a,b(−1)aha,b(M).

Proof. The signature is also equal to the signature of the Hermitian form
H(α, β) =

∫
M α ∧ β̄. We use the decomposition Hn(M) = ⊕kLkPHa,b(M)

for all a+ b = n− 2k. By Theorem 3.3.7, the sign of H on LkPHa,b(M) is

equal to ia−b · (−1)
1
2

(n−2k)(n−2k−1) = (−1)a · (−1)
n−2k

2 · (−1)
n−2k

2 = (−1)a as
n is even.

We thus have
sign(Q) =

∑
a+b=n−2k

(−1)aha,bprim.

But ha,bprim = ha,b − ha−1,b−1, so by Poincaré duality, we have sign(Q) =

2
∑

a+b=n−2k,k>0(−1)aha,b+
∑

a+b=n(−1)aha,b =
∑

a+b≡0(mod2)(−1)aha,b. On
the other hand, by complex conjugation, it is clear that∑

a+b≡1(mod2)

(−1)aha,b = 0.

So sign(Q) =
∑

a,b(−1)aha,b(M).
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A particular important special case of the above is the following

Corollary 3.3.9 (Hodge index theorem). Let M be a compact Kähler sur-
face, then the intersection pairing has index (2h2,0(X)+1, h1,1−1). Restrict
to H1,1(M), it is of index (1, h1,1(X)− 1).

Proof. All the forms in H0,2(M) or H2,0(M) are primitive, so the restriction
of the Hermitian form H on them are positive definite. For the rest, the
sign(Q) = 2 + 2h0,2 − h1,1, so (2h2,0(X) + 1, h1,1 − 1) is the index of the
intersection pairing. In fact, H1,1(M) = PH1,1 ⊕ [ω]R.

Hodge index theorem is mostly used in the following form.

Corollary 3.3.10. Let D and E be R-divisors on an algebraic surface. If
D2 > 0 and D · E = 0, then E2 ≤ 0 and E2 = 0 if and only if E is
homologous to 0.

We could extend the discussion to the case of vector bundles. For exam-
ple, the Hodge star is defined as

∗E : Ωp,q(E)→ Ωn−p,n−q(E∗)

by requiring for α, β ∈ Ωp,q(E),

(α, β) =

∫
M
α ∧ ∗Eβ

where the wedge product maps Ωp,q(E) ⊗ Ωp′,q′(E∗) to Ωp+p′,q+q′(M) by
(η ⊗ s) ∧ (η′ ⊗ s′) =< s, s′ > η ∧ η′.

The Hodge theorem still holds for E valued forms Ωp,q(E). Let ∇ =
∂E + ∂̄E , where ∂̄E is the holomorphic ∂̄ operator, be the Chern connection
on E. Then we still have the Kähler identities, namely [Λ, ∂̄E ] = −i∂∗E .

Choose local frame {eα} for E. If θ = θ′ + θ′′ is the connection matrix
for ∇ in terms of the frame. For η =

∑
α ηα ⊗ eα, we have

[Λ, ∂̄E ]η =
∑
α

[Λ, ∂̄]ηα ⊗ eα + [Λ, θ′′]η.

We also have

∂∗Eη =
∑
α

∂∗ηα ⊗ eα + θ′∗η.

Hence

[Λ, ∂̄E ] + i∂∗E = [Λ, θ′′] + iθ′∗.

But we can choose a frame of E at a neighborhood of z0 for which θ(z0)
vanishes. Hence we have the Kähler identity.
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3.3.1 ∂∂̄-Lemma

∂∂̄-Lemma is a very basic but important lemma for Kähler manifolds.

Lemma 3.3.11. Let M be a Kähler manifold and let φ is a d-closed (p, q)
form on M , where p, q > 0. If φ is d-, ∂-, or ∂̄-exact, then it is ∂∂̄-exact,
i.e. there is a ψ ∈ Ωp−1,q−1 such that φ = ∂∂̄ψ. Moreover, if p = q and φ is
real, then we may take ψ such that iψ is real.

Proof. We have Kähler identities

[Λ, ∂̄] = −i∂∗, [Λ, ∂] = i∂̄∗, ∆d = 2∆∂ = 2∆∂̄ .

Hence the Green operators also have the similar identity

2Gd = G∂ = G∂̄ .

The Green operators commute with differentials d, ∂, ∂̄ and their adjoints.
We have the Hodge decomposition I = H+∆DGD where D is one of d, ∂, ∂̄.
Here H is independent of D from the three.

If φ is a ∂̄-exact (p, q)-form, then

φ = (H+ ∆∂̄G∂̄)φ = ∂̄∂̄∗G∂̄φ = ∂̄η.

By Kähler identity, ∂̄∗ = −i[Λ, ∂] anti-commutes with ∂, so ∂η = −∂̄∗G∂̄∂φ =
0, since dφ = 0 implies ∂φ = 0 in particular. Thus

η = (H+ ∆∂G∂)η = ∂∂∗G∂η = ∂ψ.

Hence φ = ∂̄η = −∂∂̄ψ.
Similarly, we can argue it when φ is d-exact or ∂-exact. When argue it

for d-exact, we use dc := i(∂̄ − ∂).
When φ = φ̄, if φ = i∂∂̄ψ, then

2φ = i∂∂̄(ψ + ψ̄),

and γ = 1
2(ψ + ψ̄) is real.

In particular, ifM is a Kähler manifold and φ1 and φ2 are d-cohomologous
(1, 1) forms. Then there exists a function f ∈ C∞(M,R) such that φ1−φ2 =
∂∂̄f .

It is also known that the ∂∂̄-lemma is preserved under birational trans-
formation. Hence in particular it holds for Moishezon manifolds.

An application of Lemma 3.3.11 is the proof of Theorem 3.1.5.

Proof. If L is a holomorphic line bundle on M and h is a Hermitian metric
on L, which is a collection {hα} of smooth positive functions hα : Uα → R
satisfying the transformation rule hα = |gαβ|2hβ on Uα ∩ Uβ where gαβ
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is the transition function of L. The curvature Θh = −∂∂̄ log hα on Uα
(check it is well defined), and i

2πΘh is a real (1, 1)-form representing c1(L) ∈
H1,1(M). If φ is another real (1, 1)-form representing c1(L), then the dif-
ference i

2πΘh − φ = i
2π∂∂̄f for a real-valued smooth function f on M . So

φ = − i
2π∂∂̄ log(efh) = i

2πΘh̃ is the i
2π multiple of the curvature form of a

new Hermitian metric h̃ on L, where h̃ = efh.

The canonical (holomorphic) line bundle of a complex manifold is de-
fined as KM = det(T ∗1,0M). More explicitly, the transition function is given

by φαβ = det(∂ziβ/∂z
j
α) on Uα ∩ Uβ, where z1

α, · · · , znα are coordinates on

Uα. K−1
M is called the anti-canonical bundle. c1(K−1

M ) = c1(M). If h is a
Hermitian metric on M , then hα = det(hα

ij̄
) defines a Hermitian metric on

K−1
M . By above calculation the curvature corresponding to this Hermitian

metric is just the Ricci curvature form of h

Ric(ω) = − i

2π
∂∂̄ log deth = − i

2π
∂∂̄ logωn.

Here ω is the 2-form determined by h and the complex structure. In partic-
ular, [Ric(ω)] = c1(M).

For any complex manifold, we can define the Bott-Chern cohomology as

Hp,q
BC := {α ∈ Ωp,q|dα = 0}/∂∂̄Ωp−1,q−1.

Clearly, there are natural maps

Hp,q
BC(M)→ Hp,q

∂̄
(M) and ⊕p+q=k Hp,q

BC(M)→ Hk(M,C).

The ∂∂̄-lemma implies these two maps are injective. Clearly, the second
map is surjective. The first map is surjective is less obvious, which follows
from Lemma 5.15 and Remark 5.16 of Deligne-Griffiths-Morgan-Sullivan’s
1975 Inventiones paper. Their argument is to introduce Aeppli cohomology

Hp,q
A := {α ∈ Ωp,q|∂∂̄α = 0}/{∂Ωp−1,q + ∂̄Ωp,q−1}.

It is a nice exercise to show the ∂∂̄-lemma is equivalent to surjectivity or
injectivity of the natural map Hp,q

∂̄
(M) → Hp,q

A (M), or the surjectivity of
the composition of Hp,q

BC(M) → Hp,q

∂̄
(M) → Hp,q

A (M). In particular, it
implies Hodge decomposition holds when a complex manifold satisfies the
∂∂̄-lemma. In fact, the converse is also true by Proposition 5.17 of [DGMS].

As ∂∂̄-lemma preserved under birational transform, we know Hodge de-
composition holds for Moishezon manifolds or Fujiki class C (i.e. some blow
up of them are projective or Kähler respectively).

Example 3.3.12 (Hironaka’s Moishezon non-Kähler manifold). Pick up two
rational curves C and D in CP 3 intersect transversally only at two points
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p, q (This is easy to do in any projective manifolds). Then “blow up” C and
D but in a different order at p and q: first C and then D over p but first D
then C over q. This manifold M is non-Kähler. Let l be a general fibre of
the exceptional divisor E1 over C and m a general fibre of the exceptional
divisor E2 over D. Over p, it is a reducible fibre, with the irreducible fibre
of E2 over it l2 and the one from E1 is l1. Similarly, the irreducible fibre of
E1 over q is m2 and the one from E2 is m1. Then

[m2] = [l] = [l1] + [l2] = [l1] + [m] = [l1] + [m1] + [m2].

Hence [l1] + [m1] is nullhomologous. This cannot be true if M is Kähler as
the Kähler form restrict to smooth curves l1 and m1 need to be positive.

On the other hand, if we blow up l1 or m1, we have a projective mani-
fold. Notice both of them are rational curves with normal bundle O(−1) ⊕
O(−1). If we blow up, say l1, the exceptional divisor will be a ruled surface
CP 1×CP 1 with the normal bundle restricting on each direction of fibres are
O(−1). If we blow down along the other direction, we will have the manifold
M ′ which is obtained from CP 3 by blowing up first D then C. This is cer-
tainly projective as we will show blowing up along smooth locus will preserve
projectivity/Kählerness.

The process from M to M ′ is an example of a flop.

3.3.2 Proof of Hodge theorem

First, the Laplacian ∆ = ∆d or ∆∂̄ is self-adjoint, i.e. (∆α, β) = (α,∆β)
for α, β ∈ Ωk(M). Let Hk be ker ∆d : Ωk(M) → Ωk(M). Similarly for
Hp,q(M). Then basically, the Hodge decomposition is the infinite dimen-
sional version kerA⊕ Im A = Cn for an n× n Hermitian matrix A.

Roughly speaking, we decompose Ωk (or Ωp,q) as Hk (or Hp,q) and
(Hk)⊥ ∩ Ωk (or (Hp,q)⊥ ∩ Ωp,q). Here the orthogonal complement is taken
with respect to the L2 norm on M . Then we would like to show that any
α ∈ (Hk)⊥ ∩ Ωk, there exists ω ∈ Ωk such that ∆ω = α.

To find such a solution, we first look for a weak solution of the equation
∆ω = α. This means a bounded linear functional L : Ωk → R which satisfies
L(∆φ) = (α, φ) for all φ ∈ Ωk. The following regularity theorem guarantees
such a weak solution is always smooth in our situation.

Theorem 3.3.13. Let α ∈ Ωk(M), and let L be a weak solution of ∆ω =
α. Then there exists an ω ∈ Ωk(M) such that L(β) = (ω, β) for every
β ∈ Ωk(M).

To show such a weak solution exists, we need the following lemmas.

Lemma 3.3.14. Let {αn} be a sequence of uniformly bounded smooth k-
forms on M such that {||∆αn||} is uniformly bounded. Then there exists a
Cauchy subsequence of {αn}.
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We will postpone to explain its proof later.

Lemma 3.3.15. There exists a constant C > 0 such that ||β|| ≤ C||∆β||
for all β ∈ (Hk)⊥ ∩ Ωk.

Proof. If not, there exists a sequence βn ∈ (Hk)⊥ ∩ Ωk such that ||βn|| =
1 for all n and limn→∞ ||∆βn|| = 0. By Lemma 3.3.14, we can choose
a Cauchy subsequence, still denoted by {βn}. For each ψ ∈ Ωk, define
F (ψ) := limn→∞(βn, ψ). F is a bounded linear functional and F (∆φ) =
limn→∞(βn,∆φ) = limn→∞(∆βn, φ) = 0 for every φ ∈ Ωk. Hence F is a
weak solution of ∆β = 0. By Theorem 3.3.13, there exists a smooth solution
β ∈ Hk. It follows that βn → β and hence ||β|| = 1. But (Hk)⊥∩Ωk is closed
subspace of Ωk and hence β ∈ (Hk)⊥. Hence β = 0, a contradiction.

Now we can complete the proof of Hodge theorem. First Hk is finite
dimensional by Lemma 3.3.14 applying to otherwise an infinite sequence of
orthonormal elements.

Now we will show (Hk)⊥ = ∆(Ωk(M)). Choose α ∈ (Hk)⊥, the above
L(∆φ) = (α, φ) is well defined. Moreover, L is a bounded linear functional
on ∆(Ωk) by the above lemma, and hence extend to a weak solution by Hahn-
Banach theorem. Hence there exists a unique smooth solution of ∆ω = α
for α ∈ (Hk)⊥ ∩ Ωk(M) by Theorem 3.3.13. Hence the Green operator is
defined as G(α) = G(α − αh) = ω where ω ∈ (Hk)⊥ solves ∆ω = α − αh.
Here αh is the projection of α to Hk. Or by first choosing a basis w1, · · · , wn
of Hk, we have αh =

∑
i(α,wi)wi.

For the remaining two unproved results, we can use Sobolev spaces.
For Lemma 3.3.14, by partition of unity, it suffices to show the statement in
open subsets of Rn or Tn = Rn /Zn. In addition, for Theorem 3.3.13 and any
p ∈M , we can find a small neighborhood V of p and a differential operator
L̃ on Tn which agrees with L on V . Hence, we reduce our discussions to
analysis on Tn. The advantage of this space is we can use Fourier series.

Let S be the space of all sequences in C indexed by n-tuples of integers,
or in other words, the space of formal Fourier series u =

∑
ξ∈Zn uξe

i<ξ,x>.
The Sobolev space

Hs := {u ∈ S|
∑
ξ

(1 + |ξ|2)s|uξ|2 <∞}.

Since ||Dαφ||2 =
∑

ξ ξ
2α|φξ|2 by Parseval identity, we know the norm

∑
[α]≤s

∫
T |D

αφ|2dx
is equivalent to the above one. Here α = (α1, · · · , αn) is a multi-index and

[α] =
∑
αj , D

αu = ∂[α]u
∂
α1
x1
···∂αnxn

. Apprently Ck ⊂ Hk. More crucially, we have

the following Sobolev lemmas.

Lemma 3.3.16. 1. (Sobolev) For k > l + n
2 , Hk ⊂ C l.
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2. (Rellich) For any integers l > k, the inclusion Hl → Hk is a compact
operator, i.e. given a sequence {ui} in Hl, we can find a convergent
subsequence in Hk.

3. Dα is a bounded operator from Hs+[α] to Hs for each s.

In particular, ∩Hs = C∞. This lemma holds on any manifold M , but
can be seen in a very explicitly way for Tn.

A differential operator P of order 2 on smooth functions is P =
∑2

[α]=0 a
α(x)Dα

where aα are smooth with at least one aα 6= 0 for some α with [α] = 2. It is
called elliptic at x if

∑
aα(x)ξα 6= 0 for all ξ ∈ Rn. For standard Laplacian

on Rn, this sum is the square sum. The ellipticity could be formulated for
differential operators P : Γ(M,E) → Γ(M,F ) for smooth sections of Her-
mitian bundles E,F of any order. Now Pu(x) =

∑
[α]≤k a

α(x)Dαu where
aα are rank E × rank F matrices. And the signature is a polynomial map
from T ∗M → Hom(E,F ) by σP (x, ξ) =

∑
[α]=k a

α(x)ξα where ξ ∈ T ∗xM .
Ellipticity just means σP (x, ξ) ∈ Hom(Ex, Fx) is injective for every x ∈ M
and ξ 6= 0.

Example 3.3.17. We would like to calculate the signature of ∆d acting on
Ωk(M) of a Riemannian manifold M . That is, E = F = Ωk. Choose an
orthonormal basis {ξ1, · · · , ξn} of TxM and dual basis ξ∗i .

Let u =
∑
uIξ
∗
I with |I| = k. Then

du =
∑
I,j

(ξj ·uI)ξ∗j ∧ξ∗I+
∑
I

uIdξ
∗
I , d∗u = −

∑
I,j

(ξj ·uI)ξjcξ∗I+
∑
I,K

αI,KuIξ
∗
K

for some smooth coefficients αI,K with |K| = k−1. Hence the principal part
of ∆ is the same as that of

u 7→ −
∑
I

(
∑
j

ξ2
j · uI)ξ∗I .

So the signature σP (x, ξ) is the diagonal matrix −
∑

j ξj(ξ)
2 · Id where

ξj(ξ) denotes the jth component of ξ in terms of the basis ξi at x. Hence it
is elliptic.

The key property we need from ellipticity is G̊arding’s inequality.

Theorem 3.3.18. Let P be an elliptic operator of order d. Then given any
s ∈ Z, there exists a constant C > 0 such that

||u||s+d ≤ C(||Pu||s + ||u||s)

for all u ∈ Hs+d.
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Now Lemma 3.3.14 follows from G̊arding’s inequality and item 2 of
Lemma 3.3.16. Theorem 3.3.13 actually holds for any elliptic operators
P in place of ∆. It follows from applying G̊arding’s inequality in a boot-
strapping way. In fact, if Pu = v for u ∈ Hs, v ∈ Hs−1, then u ∈ Hs+1. We
can use difference quotient to bound the s+ 1 norm of u.

Since the weak solution L is a bounded, it extends to a bounded linear
functional on H0 = L2. It follows from Riesz representation theorem that
there is an element ω ∈ H0 such that L(β) = (ω, β). Hence Pω = α for
ω ∈ H0 and smooth α. Hence apply the above for s = 0, we know ω ∈ H1.
Applying this process for s = 1, 2, · · · , we get ω ∈ Hn for any n and thus by
Sobolev embedding ω ∈ C∞.

Let us prove G̊arding’s inequality for order 2 elliptic operator with con-
stant coefficient on Tn to see how the ellipticity is used. General case on Tn

follows from a slight perturbation.

Proof. Ellipticity implies |P (ξ)u|2 > c|ξ|4|u|2. Write φ(x) =
∑

ξ∈Zn φξe
i<ξ,x>,

then

(||Pφ||s + ||φ||s)2 ≥ ||Pφ||2s + ||φ||2s
=
∑
ξ

(|P (ξ)φξ|2 + |φξ|2)(1 + |ξ|2)s

≥
∑
ξ

(1 + c|ξ|4)|φξ|2(1 + |ξ|2)s

≥ c
∑
ξ

(1 + |ξ|2)s+2|φξ|2

A general form of Hodge decomposition is the following.

Theorem 3.3.19. Let P : Γ(M,F ) → Γ(M,F ) be an elliptic operator be-
tween smooth sections of an Hermitian bundle F . Then

1. kerP and kerP ∗ are finite dimensional.

2. P (Γ(M,F )) is closed and of finite codimension. Furthermore, there is
a decomposition

Γ(M,F ) = P (Γ(M,F ))⊕ kerP ∗

as orthogonal direct sum in L2(M,F ).

The proof is almost identical to the above special case. We could also use
a slightly different strategy by first showing Hk(M,F ) = P (Hk+d(M,F ))⊕
kerP ∗, and then pass to the smooth decomposition. Again the proof is very
similar. When P = P ∗, a Green operator as in Hodge decomposition exists.
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3.4 Divisors and line bundles

A divisorD onM is a locally finite formal linear combinationD =
∑
aiVi

where Vi are irreducible analytic hypersurfaces of M and ai ∈ Z. A divisor
is called effective if ai ≥ 0 for all i. The set Div(M) of divisors is a group
under addition in the obvious way. There is a basic correspondence between
divisors and holomorphic line bundles. First, for a meromorphic section s
of a holomorphic line bundle (i.e. a locally defined holomorphic function
with values in CP 1), we can associate a divisor (s) :=

∑
V ordV (s)V by a

weighted sum of its zeros and poles, where V are irreducible hypersurfaces.
Let fα be local defining functions of D over some open cover {Uα} of M .
Then the functions gαβ = fα

fβ
are holomorphic and nonzero in Uα ∩ Uβ with

gαβgβα = 1, and in Uα∩Uβ∩Uγ we have gαβgβγgγα = 1. With these identities
for {gαβ}, we can construct a line bundle L by taking the union ∪αUα × C
with points (x, λ) ∈ Uβ × C and (x, gαβ(x)λ) ∈ Uα × C identified. The line
bundle given by the transition functions {gαβ} is called the associated line
bundle of D and denoted by LD (or O(D)). It is easy to check that it is well
defined. Denote by Pic(M) the set of isomorphism classes of holomorphic
line bundles. In sheaf theory language, Pic(M) ≡ H1(M,O∗).

Recall that collection of transition functions define the same line bundle
if and only if there exists non-vanishing holomorphic functions fα on Uα
such that g′αβ = fα

fβ
gαβ. Tensor product makes Pic(M) into an abelian

group, called the Picard group of M (L ⊗ L∗ = End(L) is a trivial line
bundle because identity L → L gives a nowhere zero section). The kernel
of the homomorphism Div(M)→ Pic(M) is those divisors (f) where f is a
meromorphic section of the trivial bundle, i.e. a meromorphic function on
M . In fact, if D is given by fα and LD is trivial, then there exists hα ∈
O∗(Uα) such that fα

fβ
= gαβ = hα

hβ
. Then f = fαh

−1
α is a global meromorphic

function on M with divisor D. Two divisors are called linearly equivalent if
D ∼ D′, i.e. when D−D′ = div(f). Thus the group homomorphism factors
through an injection Div(M)/ ∼→ Pic(M). This homomorphism need not
to be surjective, although it is true when M is a projective manifold. The
following Poincaré-Lelong theorem is fundamental.

Theorem 3.4.1. For any divisor D on a compact complex manifold, c1(LD) =
PD[D].

Proof. As the general argument is the same, we could assume D = V an
irreducible subvariety. We are amount to show that

i

2π

∫
M

Θ ∧ ψ =

∫
V
ψ

for every real closed form ψ ∈ Ω2n−2(M).
Now let s be a global section {fα} of LD vanishing exactly on V . Set

D(ε) = (|s(z)| < ε) ⊂ M to be a tubular neighborhood around V in M .
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Recall that on M\D(ε), Θ = −∂∂̄ log |s|2 = 1
2 idd

c log |s|2. Here dc = −i(∂−
∂̄). We have∫

M
Θ ∧ ψ = lim

ε→0

i

2

∫
M\D(ε)

ddc log |s|2 ∧ ψ = lim
ε→0

1

2i

∫
∂D(ε)

dc log |s|2 ∧ ψ.

In Uα∩D(ε), write |s|2 = fαf̄αhα with hα > 0. As dc log |s|2 = i
4π (∂̄ log f̄α−

∂ log fα + (∂̄ − ∂) log hα), we have

lim
ε→0

1

2i

∫
∂D(ε)

dc log |s|2 ∧ ψ = lim
ε→0
−iIm

∫
∂D(ε)

∂ log fα ∧ ψ,

since dc log hα is bounded and limε→0 vol(∂D(ε)) = 0.
If we have local coordinate w = (w1, · · · , wn) with w1 = fα. Write

ψ = ψ(w)dw′ ∧ dw̄′ + φ, where w′ = (w2, · · · , wn) and φ contains dw1 or
dw̄1. Then in any polydisc ∆ around z0 ∈ V ∩ Uα,

lim
ε→0

∫
∂D(ε)∩∆

∂ log fα ∧ ψ =

∫
|w1|=ε

1

w1
dw1 ∧ ψ(w)dw′ ∧ dw̄′ = 2πi

∫
V ∩∆

ψ

as it is 2πi
∫
w′ ψ(0, w′)dw′ ∧ dw̄′. Hence∫

M
Θ ∧ ψ =

2π

i

∫
V
ψ.

If D is any divisor such that LD = L, there exists a meromorphic section
s of L with (s) = D. It is uniquely determined up to a scaling since a nowhere
zero holomorphic section of the trivial bundle is a constant when the base is
compact. On the other hand, for any meromorphic section s of L, L = L(s).
In particular, it is the line bundle of an effective divisor if and only if it has
a nontrivial global holomorphic section.

When M is projective, then every line bundle is of the form LD, i.e.
Div(M) → Pic(M) is surjective. This essentially follows from the Ko-
daira vanishing and embedding. By Poincaré-Lelong theorem, it suffices to
show that every holomorphic line bundle over a projective manifold admits
a meromorphic section. Choose an ample bundle H over M , then for suffi-
ciently large N , both L⊗H⊗N and H⊗N are very ample, thus have non-zero
holomorphic sections s1, s2. Then s = s1

s2
is a meromorphic section of L.

Similar arguments, but using Grassmannian, lead to the following.

Theorem 3.4.2. Let M be a projective manifolds. A cohomology class in
H2k(M,Z) is the cohomology of a subvariety if and only if it is the Chern
class of a holomorphic vector bundle.

Furthermore, by the following generalization of Proposition 3.1.5, we
can prescribe any closed (1, 1) form in H2(M,Z) as the curvature form of a
Hermitian holomorphic line bundle.
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Proposition 3.4.3. Let M be a compact Kähler manifold and ω be a smooth
closed real (1, 1)-form such that [ω] ∈ H2(M,Z). Then there exists a Her-
mitian line bundle L such that the curvature form (of the Chern connection)
is Θ = 2π

i ω.

Proof. We give a conceptual proof. For a concrete proof of this proposition,
see [?] V.13.9.b.

We first prove that any class in H1,1(M,C)∩H2(M,Z) is the Chern class
of a holomorphic line bundle. It follows from the exact sequence

0→ Z→ O → O∗ → 0

and its associated cohomology sequence

H1(M,O∗)→ H2(M,Z)→ H2(M,O) = H0,2(M).

Then we apply Proposition 3.1.5 to show there is an Hermitian connec-
tion on L to realize 2π

i ω as the curvature.

Theorem 3.4.1 and Proposition 3.4.3 imply (integral) Hodge conjecture
holds for (1, 1)-classes. That is, on projective variety M , every cohomology
class γ ∈ H1,1(M) ∩ H2(M,Z) is c1(LD) = PD[D] for some divisor D on
M .

In general, Hodge conjecture need to be stated for rational coefficients.

Conjecture 3.4.4. Let M be a projective manifold, and α ∈ H2k(M,Q) ∩
Hk,k(M). Then α is a linear combination with rational coefficients of the
cohomology classes of complex subvarieties of M .

By Hard Lefschetz Theorem, Ln−1 : H1,1(M,Q) → Hn−1,n−1(M,Q) is
an isomorphism. Hence, the Hodge conjecture also holds for H2n−2(M,Q)∩
Hn−1,n−1(M). In particular, Hodge conjecture holds up to complex dimen-
sion three. However, unlike (1, 1) classes, integral Hodge conjecture does not
hold for (n − 1, n − 1)-classes, even for 3-folds (e.g. see Kollár’s example).
In particular, these are also examples where the Hard Lefschetz Theorem
fails for integral coefficients.

However, whenM is merely Kähler, the group homomorphismDiv(M)→
Pic(M) is not necessarily surjective. The main point is Kähler manifolds
may not have enough subvarieties. Let M be a general complex 4-torus,
then M does not have any curve, while H1,1(M,C) ∩ H2(M,Z) is of di-
mension two. Hence Proposition 3.4.3 implies Div(M) → Pic(M) is not
surjective. This in turn implies the naive generalization of the Hodge con-
jecture to Kähler manifolds is not true. We can further ask whether the
Chern classes of vector bundles (or coherent sheaves) would generate all the
Hodge classes, but the answer is still no by Voisin. We should also remark
that Div(M)→ Pic(M) might not be surjective when M is Moishezon.
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The most basic and important example of a positive line bundle is the
hyperplane bundle O(1). First, every point on the total space of O(−1)
could be seen as a point on Cn+1. We can thus put a Hermitian metric on
O(−1) by setting ||(z0, z1, · · · , zn)||2 =

∑
|zi|2. Hence the curvature form is

Θ∗ = −∂∂̄ log ||z||2.

The curvature form of the dual metric on O(1) is consequently

Θ = −Θ∗ = ∂∂̄ log ||z||2.

Thus i
2πΘ is just the Fubini-Study form, which is positive. It implies that

the Fubini-Study form is in the class PD[CPn−1] ∈ H2(CPn,Z) by Theorem
3.4.1 as a section of O(1) vanishes on a hyperplane in CPn.

Exercise: Let E be the exceptional divisor of a blow-up M̃n along a point.
Then LE |E is O(−1) on CPn−1.

Now, we discuss the adjunction formula. Recall that the normal bundle
NV of the smooth irreducible hypersurface V in a compact complex manifold
M is the holomorphic line bundle given by taking the quotient of T 1,0M |V
by T 1,0V . The conormal bundle N∗V is the dual of NV , it is the subbundle
of T ∗1,0M consisting of cotangent vectors to M that are zero on T 1,0V . We
claim

Proposition 3.4.5. NV = LV |V .

Proof. Suppose on Uα, V is locally defined by fα ∈ O(Uα). Then the tran-
sition functions of LV are gαβ = fα

fβ
. Since fα = 0 on V ∩ Uα, we have

dfα|TV = 0, thus the differential dfα = ∂fα is a section of N∗V over V ∩ Uα.
Since V is smooth, dfα is nowhere zero on V .

At points of V ∩ Uα ∩ Uβ, the locally defined 1-forms dfα satisfy dfα =
gαβdfβ as fβ = 0 on it. This means that the dfα fit together to get a global
section of N∗V ⊗LV |V over V . Moreover, as explained above, it is a nowhere
vanishing holomorphic section of N∗V ⊗ LV |V . Hence N∗V ⊗ LV |V = O or
NV = LV |V .

In particular, it implies the normal bundle of the exceptional divisor is
O(−1).

Now we have the adjunction formula.

Proposition 3.4.6. Let V ⊂M be a smooth irreducible hypersurface. Then

KV = KM |V ⊗ LV |V .

Proof. We have NV = T 1,0M |V /T 1,0V . Take the determinant bundle of
each and use the above relation NV = LV |V , we have the relation for line
bundles KV = KM |V ⊗ LV |V .
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The corresponding map on sections H0(M,KM ⊗ O(V )) → H0(V,KV )
can be seen in an explicit way. An element in H0(M,KM ⊗ O(V )) is a
meromorphic n-form with a single pole along V and holomorphic elsewhere
with n = dimCM . We write ω = g(z)

f(z)dz1 ∧ · · · ∧ dzn. Then using the

isomorphism in Proposition 3.4.6, we have a form ω′ such that ω = df
f ∧ ω

′.

Since df =
∑ ∂f

∂zi
dzi, we can take

ω′ =
∑

(−1)i−1 g(z)dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn
∂f
∂zi

.

The map ω → ω′|f=0 is the residue map.

Corollary 3.4.7. If X ⊂ CPn is a smooth hypersurface of degree d, i.e.
defined by a section s ∈ H0(CPn,O(d)), then KX ∼= O(d− n− 1)|X .

Proof. By Euler sequence, we know KCPn ∼= O(−n− 1). So it follows from
Proposition 3.4.6.

In particular, if C is a smooth plane curve of degree d, then KC =
O(d − 3)|C . Hence the Euler characteristic is χ(C) = −c1(KC) = (3 − d)d.

So the genus g = (d−1)(d−2)
2 .

More generally, when M is a complex surface and C is a smooth complex
curve in it, pairing the above adjunction formula with the class [C], we have

KM · [C] + [C] · [C] = KC = −c1(TC) = 2g(C)− 2.

As we have shown in Example 3.1.3, for the curvature of the tangent bun-
dle of a Riemann surface iΘ = Kω where K is the Gauss curvature. It then
follows from Gauss-Bonnet theorem that c1(TC) =

∫
C

i
2πΘ = 1

2π

∫
C KdA =

χ(C) = 2− 2g.

3.5 Lefschetz hyperplane theorem

It also follows from Proposition 3.4.6 that a smooth irreducible represen-
tative of the anti-canonical divisor in a smooth Fano variety (i.e. a complex
manifold whose anticanonical bundle K∗ is ample) of complex dimension 3
is a simply connected Calabi-Yau manifold (i.e. whose canonical bundle
is trivial). The canonical bundle is trivial follows from Proposition 3.4.6
and it is simply connected follows from Lefschetz hyperplane theorem and
Theorem 3.8.1.

Theorem 3.5.1 (Lefschetz Hyperplane Theorem). Let M be an n-dimensional
compact, complex manifold and V ⊂M a smooth hypersurface with L = LV
positive. Then the natural map

πk(V )→ πk(M)

is an isomorphism for k < n− 1 and is surjective for k = n− 1.
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In fact, by Kodaira embedding theorem 3.6.1, such an M is projective.

We apply Morse theory, or more precisely the Morse-Bott theory. A
Morse-Bott function is a smooth function φ on a manifold whose critical set

is a closed submanifold and whose Hessian ( ∂2φ
∂xi∂xj

) is non-degenerate in the

normal direction. Equivalently, the kernel of the Hessian at a critical point
equals the tangent space to the critical submanifold. When the critical
manifolds are zero-dimensional (so the Hessian at critical points is non-
degenerate), it is the classical Morse function. The dimension of a a maximal
subspace of TxM at a critical point x on which the Hessian is negative
definite is called the index of the critical point.

Let φ be a Morse-Bott function on a compact manifold M . Then the
homotopy type of Mt = {x ∈ M |φ(x) ≤ t} remains the same as long as t
does not cross a critical value, and changes by attaching a cell of dimension
k when we cross a critical value whose index is k.

So if M∗ is the set on which φ takes on its absolute minimum. then
M = M∗ ∪ e1 ∪ e2 ∪ · · · ∪ er, dim ei ≥ min ind φ. Hence, to deduce Lefschetz
hyperplane theorem, it will be sufficient to construct a Morse-Bott function
on M with M∗ = V and min ind φ ≥ dimCM .

Proof. Let s be a holomorphic section with (s) = V . We can cover V by
finitely many open sets Ui of M such that in these open sets, V is {z1 = 0}
and s = z1 · si where si 6= 0 on Ui. We choose φ(x) = |s|2 as our first
candidate of Morse-Bott function. First, φ is Morse-Bott along V . For
any p ∈ V ∩ Ui, we have |si|2 6= 0. Clearly, V is in its critical locus. For
the normal direction, the coordinates are x1 and x2 where z1 = x1 + ix2.
And the Hessian in the normal direction is Hp(∂xα , ∂xβ ) = 2|si|2δαβ for
{α, β} ⊂ {1, 2}, which is non-degenerate.

To show for any critical point of φ on M \ V , the index is no less than
n, we look at f(x) = log |s|2. We are amount to show that the index of the
Hessian of φ, which is equal to that of f , is at least n. The corresponding
Hermitian extension H̃ to complexification of TxM (Levi form) has matrix

∂2

∂zi∂z̄j
log |s|2.

This is negative definite, since the curvature is positive means i
2π∂∂̄ log |s|−2

is a positive form (thus g(u, v) = i
2πΘ(u, Jv) defines an Hermitian metric;

or more explicitly when we write i
2πΘ = i

2π

∑
hijdzi ∧ dz̄j , the matrix hij is

positive definite). Then the Hessian cannot be positive definite on a complex

line, since on a complex line with z = x+ iy, H̃ = ∂2f
∂z∂z̄ = ∂2f

∂x2
+ ∂2f

∂y2
= trH.

Hence the index of H is no less than n = dimCM .

Finally, we need a perturbation of φ such that we will have the nonde-
generacy on M \ V . It is easy to see that after small perturbations, the
Hessian will have the same index if the manifold is compact.
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This theorem could be stated also for (co)homology.

Theorem 3.5.2. Under the above condition,

• The natural map Hk(V,Z) → Hk(X,Z) is an isomorphism for k <
n− 1 and is surjective for k = n− 1.

• The natural map Hk(X,Z) → Hk(V,Z) is an isomorphism for k <
n− 1 and is injective for k = n− 1.

Exercise: State and prove the corresponding version of Lefschetz hyper-
plane theorems for complete intersections.

It also has a dual form which applies to any complex affine variety. The
argument, which is similar to the above one, also applies to Stein manifolds,
where is equivalent to admitting smooth real function ψ with i∂∂̄ψ > 0,
such that {ψ(z) < c} is compact for any real number c. We can similarly

apply Morse theory to this function ψ, and since ( ∂2ψ
∂zi∂z̄j

) is positive definite,

we know the Hessian of it would have at least n positive eigenvalues with
multiplicities. Hence the index at any critical point of ψ (possibly with small
perturbations) would be at most n.

Theorem 3.5.3. If S is a Stein manifold of (complex) dimension n, then S
has the homotopy type of a CW complex of real dimension ≤ n. Therefore,

• πi(S) = 0 for i > n.

• H i(S,Z) = 0 for i > n.

• Hi(S,Z) = 0 for i > n.

By Kodaira embedding theorem, we can view V = X ∩ H (possibly
with some positive multiplicity) in the statement of Theorem 3.5.1 where
X is embedded in CPN and H is a hyperplane section in CPN . That
means, from LV , we get a very ample line bundle L⊗kV with (V, k) as the
zero locus of a holomorphic section. Hence X − V is an affine variety
and thus Stein. By applying the corresponding long exact sequences for
pair (X,V ), we know the statements of Lefschetz hyperplane theorem are
equivalent to Hk(X,V ;Z) = 0 for k < n etc. Theorem 3.5.2 then follows
from the above theorem for Stein manifolds (in fact, we only need its spe-
cial case for smooth affine varieties) by Lefschetz duality for (co)homology
Hk(X,V ;Z) = H2n−k(X \ V ;Z).

Grothendieck stated a version of Lefschetz hyperplane theorem for con-
structible sheaf. In particular, if X is a projective manifold and Y a smooth
complete intersection subvariety of X, then Pic(X) = Pic(Y ) if dimC Y ≥ 3.
The cohomology statement could also be replaced by Dolbeault cohomology
groups.
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If we merely assume the ambient manifold X is symplectic. i.e. a mani-
fold with a closed, non-degenerate 2-form (but this form are not necessarily
compatible with any complex structure), then it is an open question whether
symplectic divisors (real codimension two symplectic submanifolds) whose
homology class is Poincaré dual to the cohomology class of a symplectic
form would satisfy Lefschetz hyperplane theorem. In particular, it is not
known whether there are non-simply connected symplectic hypersurfaces in
CPn when n > 2. Whether the complement of it admits Stein structures?

3.6 Kodaira embedding theorem

Unlike the real manifolds, where Whitney theorem asserts that any n-
manifolds embed to R2n+1 as submanifolds, not every complex manifold
embeds in CPN as an analytic subvariety. Chow’s theorem asserts that
any analytic subvariety in projective space is actually algebraic. First, such
complex manifolds have to be Kähler since the pullback of the Fubini-Study
form on projective space would give rise a Kähler form. Furthermore, this
Kähler form has rational cohomology class. Reversely, this would guarantee
a complex manifold is algebraic projective, which is asserted by Kodaira
embedding theorem.

Theorem 3.6.1. Let M be a compact complex manifold with complex di-
mension n. The following conditions are equivalent.

1. M is projective algebraic, i.e. M can be embedded as an algebraic
submanifold of the complex projective space CPN for N large.

2. M carries a positive line bundle L.

3. M caries a Hodge metric, i.e. a Kähler metric determined from a
Kähler form ω with rational cohomology class.

Actually, the Whitney type theorem holds for projective manifolds. In
other words, N can be taken as 2n+1. For this, we use the so-called generic
projection. Assume N > 2n+ 1. Let a ∈ CPN\M . The projection map

pa : M → Y ⊂ CPN−1

is an isomorphism unless either a lies on a secant of M or in the tangential
variety of M . Meanwhile, the secant variety Sec(M) has dimension no
greater than 2n+ 1 < N and dimTan(M) ≤ 2n < N . Hence we can always
find a point a /∈ M for which the map pa is an isomorphism. Continuing
this process we get N could be chosen 2n + 1. This bound is clearly sharp
when n = 1 as plane curves are very rare and has strong restrictions on the
genus. But is 2n+ 1 always a sharp bound? This is related to Castelnuovo
bounds.
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Exercise: A similar argument can be used to show that Stein manifolds of
complex dimension n can be properly holomorphically embedded in C2n+1

(in fact, the optimal space is Cq for minimal integer q > 3n+1
2 ).

In fact, the study of maps to projective spaces are very important. For
example, (rational) maps to CP 1 leads to the theory of Lefschetz fibrations
(pencils). The original Lefschetz’s proof of Theorem 3.5.1 uses Lefschetz
pencil with complex Morse theory. Holomorphic maps onto CP dimCM is
the theory of branched covering, namely every projective manifold M is a
branched covering of CP dimCM .

For the proof of Theorem 3.6.1, firstly, (2) ⇒ (3) is easy since the cur-
vature of this positive bundle gives a Hodge metric. Conversely (3) ⇒ (2)
follows from Proposition 3.4.3 on Nω where N ∈ Z and N [ω] ∈ H1,1(M,C)∩
H2(M,Z).

Now, let us prove (1) is equivalent to (2). It is easy to see that (1)⇒ (2):
if f : M → CPN is an embedding, the pull back of the Fubini-Study metric
on f∗O(1) is positively curved. The basic idea of (2) ⇒ (1) is to choose a
basis s0, · · · , sN of H0(M,Lk) for some integer k > 0 and define the map
f : M 99K CPN = P((H0(M,Lk))∗) by f(x) = [s0(x), · · · , sN (x)]. The
dashed arrow means f may not be defined at some points, i.e. there might
be x such that s0(x) = · · · = sN (x) = 0. These are called base locus B. On
M \ B, since sj(x) takes value in Lx, we have to choose an identification
of Lx with C. However, a different identification would differ only by a
multiplication by λ ∈ C∗ = GL(1,C). Then we want to show B = ∅ (base-
point-free) and f is indeed an embedding, while it is apparently holomorphic
on M \B. When f is indeed embedding, such a line bundle Lk is called very
ample and L is ample. One of the implication of Kodaira embedding is a
holomorphic line bundle is positive if and only if it is ample.

Before jumping into the proof, I would like to point out that if we choose
the positive bundleO(k) over CPn, then each of them are very ample and the
corresponding embedding is the Veronese embedding. On the other hand,
let S be the tautological (rank k) bundle over Grassmannian Gr(k, n), and
the line bundle ΛkS∗ is very ample and the corresponding embedding is the
Plücker embedding. Another example is the Segre map CPn × CPm →
CP (n+1)(m+1)−1 which is given by the very ample bundle π∗1O(1)⊗ π∗2O(1).

We would show (2)⇒ (1) in the statement of Kodaira embedding in the
following by Hörmander’s L2 technique. More precisely, we need to prove
the following fact.

Theorem 3.6.2. Let x ∈ M , L a positive bundle over M , and Vx ⊂
H0(M,Lk) the subspace of all sections vanishing at x. Then for all large
k, Vx has codimension 1. Write sk,x for a generator of the L2-orthogonal
complement of Vx, with unit length in L2. Then

• |sk,x(x)|2 = kn +O(kn−1)
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• for y 6= x, |sk,x(y)| decays faster than any polynomials, denoted O(k−∞).

Once we have Theorem 3.6.2, we can show (2)⇒ (1). Vx has codimension
one implies the base locus of Lk is empty, i.e. the map M → P(H0(M,Lk)∗)
given by x 7→ [s0(x), · · · , sN (x)] is well defined. To show the map is injective,
namely that if x, y are distinct then there is a section which vanishes at x
but not y, we argue it as follows. Since sk,x(x) 6= 0, we can find a ∈ C,
|a| << 1, such that ask,x + sk,y vanishes at x. But it can’t vanish at y since
its growth rate will be kn +O(kn−1).

We also need to show that the map has injective differential everywhere.
This information could be translated to its blow-up π : M̃ → M . We need
two facts.

The first is the positivity of π∗Lk⊗L−E when k is large. Let U ⊂M be
an open neighborhood of x and Ũ = π−1(U). So if we use z = (z1, · · · , zn)
for the local coordinates on U with center x, then Ũ = {(z, w) ∈ U ×
CPn−1|ziwj = zjwi}. Then over (z, w), the fiber of LE consists of points on
the line w.

Let h1 be the metric on LE |Ũ given by |λ(w1, · · · , wn)|2 = |λ|2||w||2.
Let σ be the canonical section (z1, · · · , zn) of LE , i.e. (z, w) 7→ z, with
(σ) = E. Let Uε ⊂ U2ε be neighborhoods of E which are pulled back
from neighborhoods in M with distance ε and 2ε from x. Let h2 be the
metric on LE |M̃−E given by |σ(z)| = 1. Let ρ1, ρ2 be the partition of unity

for the cover {Ũ2ε, M̃ − Ũε} of M̃ , and h the global metric ρ1h1 + ρ2h2.
Let ΩLE = i

2πΘLE . On M̃ − Ũ2ε, ρ2 = 1 so |σ|2 = 1 and ΩL−E = 0.

On Ũε − E = Uε − {x}, ΩLE = − i
2π∂∂̄ log ||z||2 which is just the pullback

−pr∗ωFS of the Fubini-Study metric on CPn−1 under the second projection
pr(z, w) = w. Moreover, by continuity, −ΩLE = pr∗ωFS ≥ 0 throughout Ũε.
In particular, −ΩLE |E = ωFS > 0 on E. Hence the curvature form ΩL−E of
the dual metric on L∗E satisfies

ΩL−E =


0 on M̃ − Ũ2ε,

≥ 0 on Ũε,

> 0 on TxE ⊂ TxM̃ for all x ∈ E.

On the other hand, we can choose a metric hL on L→M such that ΩL

is a positive form. Then for the induced metric on π∗L, we have

Ωπ∗L = π∗ΩL =


≥ 0 everywhere,

> 0 on M̃ − E,
> 0 on TxM̃/TxE for all x ∈ E.

Hence Ωπ∗Lk⊗L−E = kΩπ∗L + ΩL−E is positive in Ũε and M̃ − Ũ2ε. Since

ΩL−E is bounded below in Ũ2ε − Ũε and Ωπ∗L is strictly positive there, we
see that Ωπ∗Lk⊗L−E is everywhere positive for k large.
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In particular, the above argument implies Kählerness is preserved under
blowup along points. It is easy to see that a similar construction would
lead to general blowups along smooth centers. Hence, we have the following
result which is promised in previous lectures.

Theorem 3.6.3. Kählerness is preserved under blowing up along complex
submanifolds.

Second fact is KM̃ = π∗KM⊗Ln−1
E . As M−x ∼= M̃−E, and KM̃ |M̃−E =

π∗KM |M−x, the statement is reduced to a local statement on a neighborhood
U of x ∈ M and its preimage Ũ in M̃ containing E. We can cover Ũ =
{(z, l) ∈ U ×CPn−1|zilj = zjli} by Ũi = {li 6= 0}. And E is given by zi = 0

in Ui. The local coordinates are z(i)j which is
lj
li

=
zj
zi

when i 6= j and

z(i)i = zi. So locally, we choose a meromorphic n-form ω = f(z)
g(z)dz1∧· · ·∧dzn

on M . Under

π|Ũi : (z(i)1, · · · , z(i)n)→ (z(i)1zi, · · · , zi, · · · , z(i)nzi),

we see that

π∗ω = π∗(
f

g
)zn−1
i dz(i)1 ∧ · · · ∧ dz(i)n.

This implies the relation. We could also see the coefficient (n− 1) from the
adjunction formula for E ⊂ M̃ : KM̃ |E = KE ⊗ L−E |E = Ln−1

E |E .
Then we decompose π∗Lk⊗L−E⊗K−1

M̃
as π∗(Lk1⊗K−1

M )⊗(π∗Lk2⊗L−nE).
By the argument for Theorem 3.6.2, the first term is semi-positive, and the
second term is positive by the above first fact. Hence the curvature of the
whole is positive for large k. That’s what we need to prove Theorem 3.6.2
for M̃ with the bundle π∗Lk ⊗ L−E . Especially, when t ∈ E, we get a peak
section s̃k,t. View it as a section of π∗Lk, or multiply s̃k,t with the standard
section σ of LE and restrict it to M̃ − E = M − {x}, and then extend it
by Hartogs lemma, we have section sk,x,t of Lk over M with sk,x,t(x) = 0
and “peak direction” t, i.e. the differential dsk,x,t viewed as a function on
projective spaces P(TxM) parametrizing the tangent directions is peaked at
point t in the sense of Theorem 3.6.2.

We will focus on the proof of Theorem 3.6.2 now. We begin by con-
sidering the Euclidean case. Take L be the trivial bundle over Cn with
the metric h(z) = e−π|z|

2
and consider x is the origin. This has the cur-

vature Θh = π∂∂̄|z|2 = π
∑
dzj ∧ dz̄j . The corresponding real (1, 1)-

form is ω = i
2πΘh corresponds to the flat metric on Cn. The line bun-

dle Lk is still trivial but with metric hk = e−kπ|z|
2
. Among the constant

sections c of Lk, we would like to find one with unit L2-norm. Notice∫
Cn k

ne−kπ|z|
2
dx1 · · · dx2n = 1, we find that the constant section sk(z) = k

n
2

satisfies the both bullets of Theorem 3.6.2 since the Gaussian distributions
converge to a Dirac delta centre at the origin. Our construction later will
be a modification of this local model.
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For general L over M and x ∈ M , we choose a small ball x ∈ B over
which L is trivial. And we fixed a Hermitian metric h such that ω = i

2πΘh

is a positive form. We fix ω as the Kähler form on M . The geometry of
(M,Lk, hk, kω) approaches the flat model above as k grows. The precise

meaning of it is: in geodesic balls of radius k−
1
4 in terms of metric ω (or

equivalently ball of radius 1√
k

in terms metric kω), the metric ω approaches

to flat metric as k →∞. We use a cut-off function ψ(x) in Cn, for example

one with derivatives supported in the annulus of radius between 1
4k
− 1

4 and
1
2k
− 1

4 , to multiply the local section sk,x from the above paragraph. The
resulting section s̃k,x of Lk is no longer holomorphic. ∂̄s̃k,x is supported
in the annulus and it is small in L2, as O(k−∞) (a polynomial of k times

e−πk
1
2 ). Now we want to solve

∂̄fk = −∂̄s̃k,x
and set s′k,x = s̃k,x + fk. We want fk as small as possible. Here we apply
the Hörmander’s technique.

We need to introduce the Bochner-Kodaira-Nakano identity. The setting
is a holomorphic Hermitian vector bundle (E, hE) over a Kähler manifold
(Here the Kähler form is specified as ω = i

2πΘh as above for metric h on L).
We recall some general facts for (E, hE). The Chern connection ∇ splits
as ∂E = π1,0 ◦ ∇ and ∂̄E = π0,1 ◦ ∇. If Θ is the curvature of the Chern
connection in E, then

∆∂̄E
= ∆∂E + [iΘ,Λ]. (3.4)

The proof of it still relies on the Kähler identities. But now (∂E+ ∂̄E)◦(∂E+
∂̄E) is no longer zero, it is the curvature Θ of the Chern connection. Since
Θ is of type (1, 1), e.g. see Proposition 3.1.2, we have ∂E ∂̄E + ∂̄E∂E = Θ.
Since the Kähler identities [Λ, ∂̄E ] = −i∂∗E and [Λ, ∂E ] = i∂̄∗E still hold, we
have

i∆∂E = −∂E(Λ∂̄E−∂̄EΛ)−(Λ∂̄E−∂̄EΛ)∂E , i∆∂̄E
= ∂̄E(Λ∂E−∂EΛ)+(Λ∂E−∂EΛ)∂̄E .

Hence the identity (3.4) holds. There are more general version of this type of
identities, where the base manifold is merely Hermitian. Then the identity
will also involve the torsion term, see [?].

Later, I will simply write ∂̄ for the corresponding vector bundle version.
Now K−1 ⊗ Lk has curvature Θ = −2πi(kω + Ric(M,ω)). On (p, q)-forms
[ω,Λ] = p+ q − n by Proposition 3.2.2. It follows that on (n, q)-forms with
values in K−1 ⊗ Lk, or equivalently, on (0, q)-forms with values in Lk,

∆∂̄ = ∆∂ + 2πqk + 2π[Ric,Λ].

Hence there is a constant C such that for f ∈ Ω0,q(M,Lk),

< ∆∂̄f, f >L2≥ (2πqk − C)||f ||2L2 . (3.5)

It implies the Kodaira vanishing.
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Theorem 3.6.4. Let L be a positive line bundle over M . There is a constant
C such that for all q > 0 and all sufficiently large k, the lowest eigenvalue
ν of ∆∂̄ acting on Ω0,q(M,Lk) satisfies ν ≥ 2πqk − C. In particular ∆∂̄ is
invertible for large k and hence Hq(M,Lk) = 0 for all q > 0.

Moreover, the first non-zero eigenvalue µ of the operator ∆∂̄ acting on
sections of Lk satisfies µ ≥ 2πk − C.

The last statement is because if f ∈ Ω0(M,Lk) is a eigenvector with
eigenvalue λ, then so is ∂̄f ∈ Ω0,1(M,Lk). We remark that the only facts
we have used are the Lk⊗K−1 is positive when k is large as well as p+q > n.
So a general form of Kodaira-Nakano vanishing theorem says that if L→M
is a positive line bundle, then Hp,q

∂̄
(M,L) = Hq(M,Ωp(L)) = 0 for p+q > n.

Same argument also applies to Lk ⊗ E where L is a positive bundle and E
is an arbitrary holomorphic line bundle.

Theorem 3.6.5. For all large k, given g ∈ Ω0,1(M,Lk) with ∂̄g = 0 then
there is a section f ∈ Ω0(M,Lk) such that ∂̄f = g. Moreover, there is a
constant C, independent of g, k such that the above solution satisfies ||f ||L2 ≤
Ck−1||g||L2.

Proof. Since Hq(M,Lk) = 0 for q = 1, we have ∂̄f = g for f = G∂̄(∂̄∗g) ∈
Ω0(M,Lk) by (vector bundle version of) Hodge decomposition. This f is
orthogonal to harmonic (or equivalently holomorphic) sections of Lk with
respect to L2 norm, as < f, h >L2=< ∂̄∗g,∆∂̄h >L2= 0.

The estimate on ||f ||L2 is because of the eigenvalue estimate in the last
part of Theorem 3.6.4:

(2πk − C)||f ||L2 ≤< ∆∂̄f, f >L2=< ∂̄∗g, f >L2= ||g||L2 .

Since ∆∂̄f = ∂̄∗g, and g is C∞, the ellipticity of ∆∂̄ shows f is a smooth
section.

Now return to the construction of section s′k,x. First we have ||∂̄s̃k,x||L2 =

O(k−∞). Now, Theorem 3.6.5 provides us with a solution to ∂̄fk = −∂̄s̃k,x
with ||fk||L2 ≤ Ck−1 ·O(k−∞). Since ||s̃k,x||L2 = 1, the holomorphic section
s′k,x = s̃k,x + fk is very close to the Euclidean model section in L2. By

applying the G̊arding’s inequality, we have ||fk||l+2 ≤ C(||fk||l + ||∂̄s̃k,x||0).
By (weak) Sobolev inequality ||u||

Cl−[n2 ]−1 ≤ C||u||l, this would show fk is

also small as O(k−∞) in C l norms.

Vx is clearly a complex vector space. Since s′k,x is non-zero at x and
any two such sections will have a linear combination in Vx. So Vx is a
codimension 1 subspace in H0(M,Lk). Moreover, s′k,x is asymptotically L2-
orthogonal to Vx as k → ∞, because it concentrates at x. We get sk,x by
projecting s′k,x to V ⊥x .
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3.6.1 Proof of Newlander-Nirenberg theorem

The Hörmander technique could also be used to prove the Newlander-
Nirenberg theorem. We follow the original presentation of Hörmander. We
assume X is an integrable almost complex manifold. Let U be a coordinate
patch in X where there is a C∞ orthonormal basis ω1, · · · , ωn for the forms
of type (1, 0). We write ∂∂̄w =

∑
wjkω

j ∧ ω̄k. Then, firstly, we need a
similar estimate as Equation (3.5). We use || · ||φ to denote the weighted L2

norm with weight e−φ.

Theorem 3.6.6. There exists a continuous function C on X such that∫
(λ− C)|f |2e−φdV ≤ 4 < ∆∂̄f, f >φ .

Here φ is an arbitrary function in C2(X), f is a (p, q+1)-form and λ is the
lowest eigenvalue of the Hermitian symmetric form

∑
φjktj t̄k.

The function φ is plurisubharmonic if the Hermitian form is positive def-
inite, i.e. > 0 when t 6= 0. For almost complex structures, it still makes
sense. And the above theorem still holds if we have ∂∂̄ = −∂̄∂ which is true
for integrable almost complex structures. We could think e−φ gives a Her-
mitian metric on the trivial bundle X×C. When φ is plurisubharmonic, the
curvature is positive. With this understood, we will need the key statement
corresponding to Theorem 3.6.5.

Theorem 3.6.7. Let X be an integrable almost complex manifold where
there exists a strictly pluriharmonic function φ such that {z; z ∈ X,φ(z) <
c} ⊂⊂ X for every c ∈ R. Then the equation ∂̄u = f has a solution
u ∈ L2

p,q(X, loc) for every f ∈ L2
p,q+1(X, loc) such that ∂̄f = 0.

Especially, this holds for Stein manifold. And it gives another proof of
Hr(X,C) = 0 for r > dimX for Stein manifolds. For the proof, we need to
replace the function φ by χ(φ) where χ is a convex increasing function such
that χ′(φ)λ− C ≥ 4. Then we will have ||u||χ(φ) ≤ ||f ||χ(φ).

Then return to our discussion. Let ψ(x) = |x|2, we have the Hermitian
form is positive definite at 0. Hence we could choose δ > 0 such that the
Hermitian form is uniformly positive definite in the ball B0,δ = {x; |x| < δ}.
So we could let φ = 1

δ2−ψ . Then for every f of type (0, 1) in B0,δ with

∂̄f = 0, we will obtain a solution of ∂̄u = f and ||u||φ ≤ ||f ||φ.
Let u1, · · · , un be linear functions with duj = ωj at 0. Let πε(x) = εx and

consider the almost complex structure defined by π∗εω
1, · · · , π∗εωn in B0,δ.

Since duj − 1
επ
∗
εω

j together with all its derivatives are O(ε), we conclude

that Dα∂̄εu
j = O(ε) for all multivector α. It follows that we can find vjε so

that ∂̄εv
j
ε = ∂̄εu

j and ||vjε ||φ = O(ε). By Sobolev lemma, all derivatives of

vjε at 0 are O(ε). Hence U j = uj − vjε are linearly independent at 0 if ε is
sufficiently small. We know ∂̄U j(xε ) = 0 since ∂̄εU

j = 0. Hence U j are our
analytic coordinates.
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3.7 Kodaira dimension and classification

Kodaira dimension provides a very successful classification scheme for
complex manifolds depending on the positivity of the canonical bundle. Its
first definition is to measure the growth rate of the sections of the pluri-
canonical bundle.

Definition 3.7.1. Suppose (M,J) is a complex m-fold. The holomorphic
Kodaira dimension κh(M,J) is defined as follows:

κh(M,J) =


−∞ if Pl(M,J) = 0 for all l ≥ 1,

0 if Pl(M,J) ∈ {0, 1}, but 6≡ 0 for all l ≥ 1,
k if Pl(M,J) ∼ clk; c > 0.

Here Pl(M,J) is the l-th plurigenus of the complex manifold (M,J)
defined by Pl(M,J) = h0(K⊗lJ ), with KJ the canonical bundle of (M,J).

This is a birational invariant, i.e. it is invariant under blow-ups and
blow-downs, which could be checked by Hartogs lemma.

The second, equivalent, definition is by the mth pluricanonical map
Φm(x) = [s0(x) : · · · : sN (x)], where si are a basis of H0(X,K⊗m). Even
if K is not ample, Φm(x) is a holomorphic map and its image is a projec-
tive subvariety of CPN . Hence, the Kodaira dimension κJ(X) of (X, J) is
defined as:

κh(X) =

{
−∞, if Pm = 0 for any m ≥ 0

max dim Φm, otherwise.

The both definitions could be stated in almost complex setting, although
it is not known whether they are equivalent as in the integrable case.

The abundance conjecture suggests the Kodaira dimension could be cal-
culated in terms of the degeneracy of the powers of canonical class KM =
c1(KJ) at least when KM is nef. This suggests the following symplectic
Kodaira dimension.

Definition 3.7.2. For a minimal symplectic 4-manifold (M4, ω) with sym-
plectic canonical class Kω, the Kodaira dimension of (M4, ω) is defined in
the following way:

κs(M4, ω) =


−∞ if Kω · [ω] < 0 or Kω ·Kω < 0,

0 if Kω · [ω] = 0 and Kω ·Kω = 0,

1 if Kω · [ω] > 0 and Kω ·Kω = 0,

2 if Kω · [ω] > 0 and Kω ·Kω > 0.

The Kodaira dimension of a non-minimal manifold is defined to be that
of any of its minimal models.
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Here Kω is defined as the first Chern class of the cotangent bundle for
any almost complex structure compatible with ω.

3.7.1 Complex dimension one

A one-dimensional complex manifold is called a Riemann surface.

Actually, there is no difference between almost complex structures and
complex structures in complex dimension one. In other words, every al-
most complex structure is integrable. It automatically follows from the
Newlander-Nirenberg theorem since the vanishing of this tensor is auto-
matic in complex dimension one. However, this essentially follows from the
existence of Isothermal coordinates.

Proof. Let S be a 2-dimensional almost complex manifold, we want to show
that for any point x ∈ S, we can choose an open neighbourhood U and an
open embedding U → C of almost complex structures.

In complex dimension one, the almost complex structure tells us how to
rotate 90 degrees counterclockwise. Hence it is given by an orientation along
with a conformal structure, which is given a Riemannian metric say g. From
the viewpoint of structure group, the structure group of S is GL(1,C) =
C∗. While a conformal structure gives the reduction of the structure group
GL(2,R) to R>0 ×O(2). An orientation further reduces it to R>0 × SO(2)
which is C∗.

Now, our assertion is equivalent to choosing an open neighbourhood of
x such that g is conformally flat, i.e. it has the form λg0 where g0 is the
standard metric on R2 = C. The latter is the statement of the existence of
Isothermal coordinate for surfaces.

Let us calculate the notions mentioned before in this particular case.

If L is a holomorphic line bundle over the Riemann surface S, the
Riemann-Roch theorem states that

h0(S,L)− h0(S,K ⊗ L−1) = deg(L) + 1− g(S),

where h0(S,L) = dimH0(S,L) and g(S) is the genus of S.

Recall that the Kodaira vanishing theorem applies to Riemann surfaces,
stating that H0(S,L) = 0 if L∗ is positive. It can be seen in two ways.
First, we have Serre duality, H i(X,L) ∼= Hn−i(X,KX ⊗ L∗)∗. Moreover, a
particular case of Kodaira-Nakano vanishing implies H i(X,K⊗L∗) = 0 for
i > 0 and L∗ positive. These two facts together apply to Riemann surface
S where n = 1, we have the result.

For the second way, by virtue of Proposition 3.1.5, a line bundle L∗ on
S is positive if and only if c1(L) = degL < 0. But if there is an s 6=
0 ∈ H0(M,L), then L is the line bundle associated to the effective divisor
D = (s), and we have c1(L) ≥ 0, a contradiction.
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When L = KJ is the canonical bundle, we have deg(KJ) = c1(KJ) =
−χ(M) = 2g−2. In particular, when S = S2, we have g = 0 and Pl(M,J) =
0 for all l, and hence κh(S2, J) = −∞. When S = T 2, the canonical bundle is
trivial since there is a nowhere vanishing (0, 1) form dz. Hence Pl(T

2, J) ≡ 1
and κh(T 2, J) = 0. Finally, when S = Σg with g ≥ 2, we know KJ is positive
and thus H0(Σg,K⊗mJ ) = 0 when m < 0. Applying Riemann-Roch theorem,
we have

h0(K⊗lJ ) = h0(K⊗lJ )− h0(K⊗(1−l)
J ) = l deg(KJ)− g + 1 = (2l − 1)(g − 1)

when l > 1. Hence its Kodaira dimension is 1. In particular, the Kodaira
dimension only depends on the topology, i.e. the genus, of the surface S.

3.7.2 Complex Surfaces

The classification of complex surfaces with respect to the Kodaira di-
mension is also very effective. Let us start with a rough list of classification.

When κh = −∞, a complex surface is rational (birational to CP 2 with
the unique complex structure) or ruled (birational to S2 × Σg with any
product complex structure) if it is Kähler (and hence projective since pg =
0); or is of Class VII which is the most mysterious class of complex surfaces.

When κh = 0, a complex surface is K3, Enriques surface, hyperelliptic
or abelian when Kähler. The canonical bundle is torsion. However, the
first Chern class is zero. There are non-Kähler ones which are called second
Kodaira surfaces or Kodaira-Thurston manifolds.

All complex surfaces with κh = 1 are elliptic surfaces. That is, they
admit elliptic fibrations.

The surfaces with κh = 2 are called surfaces of general type. These
are actually very wild class of surfaces without a reasonable classification.
There are several important properties. First, all surfaces of general type are
Kähler. Moreover, the complex structures could be deformed to projective
surfaces. Second, there are a couple of important general inequalities which
are especially important in the geography problem. The first is called the
Bogomolov-Miyaoka-Yau inequality, c2

1 ≤ 3c2. The equality holds if and
only if the surface is a complex ball quotient. The second is called the
Noether’s inequality for minimal surface: pg = h0,2 ≤ 1

2c
2
1 + 2. Surfaces

where the equality holds are called Horikawa surfaces. We can rewrite the
Noether’s inequality as b+ ≤ 2c2 + 3σ+ 5 as c2

1 = 2c2 + 3σ and b+ = 1 + 2pg.
This is equivalent to b− + 4b1 ≤ 4b+ + 9. Combining with Noether formula
12χh = 6(1− b1 + b+) = c2

1 + c2, we have 5c2
1− c2 + 36 ≥ 6b1 ≥ 0. These two

Chern numbers inequalities give the usual picture of geography of complex
surfaces with x-axis c2 and y-axis c2

1.
In dimension 4, it is a gauge theory result that if X1 and X2 are two

diffeomorphic complex surfaces, then κh(X1) = κh(X2). For higher dimen-
sions, this is no longer true. Let us take M = CP 2#8CP 2 and N is the
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Barlow surface which is a complex surface of general type homeomorphic
to M . Then M × Σg is diffeomorphic to N × Σg. This is because that,
at first, they are h−cobordant because M and N are so. Second, they are
s−cobordant because the Whitehead group Wh(M ×Σg) = Wh(N ×Σg) =
Wh(Σg) = 0. Then by the s−cobordism theorem proved independently by
Mazur, Stallings, and Barden, they are diffeomorphic to each other. On the
other hand, they are not the same as complex manifolds since they have
distinct Kodaira dimensions. The Kodaira dimension κh(M ×Σg) = −∞ as
κh(M) = −∞. However, κh(N × Σg) = 2 when g = 1 and κh(N × Σg) = 3
when g > 1. In [?], there are various examples of diffeomorphic manifolds
with different Kodaira dimensions constructed. It is worth noting that none
of them is simply connected.

However, at least when X is a projective variety, it is known that the
Kodaira dimension is invariant under the deformation of complex structures
which follows from Siu’s invariance of plurigenera.

3.7.3 BMY line

We say a bit more on the equality c2
1 = 3c2. Hirzebruch first observes

that for any ball quotient of complex dimension two, the equality holds by
his proportionality. Then, Yau shows that c2

1 = 3c2 if and only if it is a ball
quotient (and the canonical bundle is ample) as a corollary of his solution
of Calabi’s conjecture. We briefly explain Hirzebruch’s proportionality.

In differential geometry, a symmetric space is a Riemannian manifold
in which around every point there is an isometry reversing the direction of
every geodesic. It turns out that symmetric spaces are constructed mainly
as homogeneous spaces of Lie groups. For example, let G be a non compact
connected semisimple Lie group with Lie algebra g. Let θ be an involution
of G such that the fixed subgroup K of θ is compact. We can decompose
g = k ⊕ p as ±1 eigenspaces of θ on g. It is clear that gc = k + ip is a Lie
subalgebra of gC whose complexification is gC as well. We assume gc is the
Lie algebra of a compact Lie group Gc. The homogeneous space Xc = Gc/K
is also a symmetric space, which is called the dual of D = G/K. The key
example in our mind is G = SU(n, 1), K = S(U(n)×U(1)), the involution is
conjugation by diag(In, 1), and Gc = SU(n+ 1). So G/K is a complex ball
of dimension n, and Xc = CPn. We further choose a discrete torsion-free
cocompact group Γ of automorphisms of D, and let X = D/Γ.

Hirzebruch’s main result is the Chern numbers of X are proportional to
the Chern numbers of Xc = Gc/K (the constant of proportionality being

the volume of X. Apply to our example, we have c2(X)
c21(X)

= c2(CP 2)
c21(CP 2)

= 1
3 .

For the proof of Hirzebruch proportionality, we use Chern curvature
form to compute Chern numbers. The key observation is the Chern form is
invariant under the both group actions. Therefore it is sufficient to compute
it at one point. We choose the distinguished points (1 : 0 : · · · : 0) on CPn
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and 0 on ball. By our previous computation, the standard (SU(n+ 1) and
SU(1, n) invariant) Hermitian metrics on them (||σ(z)||2 = 1 + |z|2 on U0

of CPn and ||σ(z)||2 = 1 − |z|2 on B) have the opposite curvature form at
these two points, which are ± the standard Kähler form. Hence, the ratio
is (−1)dimCX times the ratio of the volumes.

3.8 Hirzebruch-Riemann-Roch Theorem

We keep our notation that H i(X,E) := H0,i(X,E) is the Dolbeault
cohomology of X with values in E, i.e. the cohomology of the complex
(Ω0,·(X,E), ∂̄E). By Hodge theory, the cohomology H i(X,E) can be rep-
resented by E-valued harmonic (0, i)-forms for any Hermitian metric on
X. We define χ(X,E) =

∑dimCX
i=0 (−1)i dimCH

i(X,E). The Hirzebruch-
Riemann-Roch Theorem applies to any holomorphic vector bundle E on a
compact complex manifold X. It states that χ(X,E) is computable in terms
of a polynomial on Chern classes of X and E. In a rougher form, there is
a polynomial P (x1, · · · , xn, y1, · · · , yn) depending only on n such that P is
homogeneous of degree 2n if we set deg xi = deg yi = 2i, and

χ(X,E) =

∫
X
P (c1(X), · · · , cn(X), c1(E), · · · , cn(E)).

Here, when i > rankE, we set ci(E) = 0.

For a precise form, we have the polynomial P is
∑
chn−j(E)tdj(X),

or equivalently, χ(X,E) =
∫
X ch(E)td(X), where Tj is the Todd poly-

nomial and ch is the Chern character. The Chern characters could also
be defined using (Chern) curvature form Ω = i

2πΘh. Then ch(E, h) :=∑
j

1
j! tr(Ω ∧ · · · ∧ Ω) and ch(E) denotes its cohomology class. It could also

be understood as the the homogeneous polynomials generated by expansion
of tr(eA) for matrix A. Similarly, The Todd classes are generated by the

homogeneous polynomials determined by det(tA)
det(I−e−tA)

=
∑

k Pk(A)tk. And

tdk(E) = [Pk(Ω)]. td(X) = td(TX) = td0(TX) + · · · . They have the
following formal power series in terms of the Chern classes

ch(E) = rk(E) + c1(E) +
c2

1 − 2c2

2
+
c3

1 − 3c1c2 + 3c3

6
+ · · · ,

td(E) = 1 +
c1

2
+
c2

1 + c2

12
+
c1c2

24
+
−c4

1 + 4c2
1c2 + c1c3 + 3c2

2 − c4

720
+ · · · .

When π : X̃ → X is a finite covering, we have π∗(ci(X)) = ci(X̃), hence
χ(X,E) is multiplicative, thus χ(X̃, π∗E) = deg(X̃/X)χ(X,E).

Exercise: Check the Hirzebruch-Riemann-Roch Theorem for vector bun-
dles over curves is the original Riemann-Roch.
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When M is a complex surface, applying HRR to trivial bundle, we have

the holomorphic Euler number χh = χ(OM ) =
c21(M)+c2(M)

12 . This is called

Noether’s formula. By definition of χh, we know χh = 1−b1+b+

2 for a Kähler
surface.

Exercise: Derive Hirzebruch signature formula c2
1 = 3σ + 2c2 for complex

surfaces from Noether’s formula.

Apply HRR to a line bundle, we have Riemann-Roch for surfaces

χ(L) = χh +
c1(L) · c1(L)− c1(L) ·KM

2
.

In particular, this gives a clear look of Kodaira dimension by setting L =
K⊗m. For higher dimensions, we also have the asymptotic Riemann-Roch
for a positive bundle L,

h0(X,L⊗m) =
cn1 (L)

n!
·mn +O(mn−1).

There is another application in higher dimensions.

Theorem 3.8.1. Any Fano manifold is simply-connected.

Proof. Fans means the anti-canonical bundle K−1
M is ample. By Kodaira

vanishing, for any q > 0,

h0,q = hq(OM ) = hn−q(K−1
M ) = 0.

So the holomorphic Euler number χh =
∑n

q=0(−1)qh0,q = h0,0 = 1.

On the other hand, Calabi-Yau theorem says that M admits a Kähler
metric of positive Ricci curvature. So π1(M) is finite by Myers’ theorem.
The universal covering M̃ , the d = |π1(M)|-fold cover of M , is still a Fano
manifold, and by Hirzebruch-Riemann-Roch with E = O, χh behaves mul-
tiplicatively under holomorphic covering. Hence 1 = χh(M̃) = dχh(M) = d.
That is M is simply connected.

More generally, we have an algebraic geometry proof given by Campana
shows that a rationally connected manifold is simply connected. There also
exist differential geometry proofs of this.

3.9 Kähler-Einstein metrics

A Riemannian metric g on a smooth manifold M is said to be Einstein
if it has constant Ricci curvature, or in other words if

r = cg.
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The existence of Kähler-Einstein metric on a complex manifold is a cen-
tral problem in Kähler geometry. Since in this case, the Ricci curvature is
proportional to the Kähler metric, or Ric(ω) is proportional to ω, the first
Chern class is either negative, zero, or positive. We can reformulate it in
equivalent ways. First, this is equivalent to solving the following Monge-
Ampère equation of φ

(ω − i
2π∂∂̄φ)n

ωn
= ecφ+F . (3.6)

Here φ, F are determined by ddc-lemma, and c is the constant such that
[Ric(ω)] = c[ω]. We have

Ric(ω)− cω =
i

2π
∂∂̄F, ω = ω′ +

i

2π
∂∂̄φ.

Then ω′ is Kähler-Einstein if and only if Ric(ω′) − Ric(ω) = cω′ − Ric(ω).
The right hand side is − i

2π (∂∂̄(F + cφ)). Then it is equivalent to Equation
(3.6) because ∂∂̄h = 0 if and only if h is a constant. And it is fixed because
the integration of ecφ+F is 1.

There is another geometrically useful formulation. We do it only for the
Fano case, i.e. when the anti-canonical bundle K−1 > 0. Given a volume
form Ω on (M,J) is equivalent to giving a Hermitian metric on K−1. More
precisely, let h be a Hermitian metric on K−1, then

Ωh = | ∂
∂z1
∧ · · · ∧ ∂

∂zn
|2h(

i

2
)ndz1dz̄1 · · · dzndz̄n.

On the other hand, the metric on K−1 coupled with its Chern connection
gives the Ricci curvature form ωh. Kähler-Einstein metrics correspond to
metrics h such that ωh > 0 and Ωh = ωnh . This is because Yau’s solution to
the Calabi conjecture says there is a unique Kähler form ω, cohomologous
to ωh such that ωn = Ω is the prescribed volume form. Hence ω = ωh which
is Fano Kähler-Einstein.

When the Chern class is negative, Aubin and Yau proved that there is
always a KE metric. When the first Chern class is zero, Yau proved there
are always Ricci flat Kähler metric (the c1 = 0 case of Calabi conjecture),
thus a KE metric. The positive Chern class case, i.e. the Fano case, is the
most difficult case. The case of complex surfaces has been settled by Gang
Tian. The complex surfaces with positive Chern class are either a product
of two copies of a projective line (which obviously has a Kähler-Einstein
metric) or a blowup of the projective plane in at most 8 points in “general
position”, in the sense that no 3 lie on a line and no 6 lie on a quadric.
The projective plane has a Kähler-Einstein metric, and the projective plane
blown up in 1 or 2 points does not, as the Lie algebra of holomorphic vector
fields is not reductive. This actually follows from a more general theorem of
Matsushima.
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Theorem 3.9.1. If X is a compact Kähler manifold of constant scalar cur-
vature and H1(X) = 0 then Aut0(X) (the component of identity in Aut(X))
is reductive, i.e. it is the complexification of a compact group.

Translate to Lie algebra, it is reductive if the Lie algebra is isomorphic
to the direct sum of its center and a semi-simple Lie algebra. Recall that a
Lie algebra g is semi-simple (i.e. it is a direct sum of simple Lie algebra) if
and only if g has no non-zero abelian ideals.

The Lie algebra of Aut(CP 2) is sl(3,C), which is semi-simple. For X =
CP 2#CP 2, then Aut(X) is the group of projective transformations which fix
a point on the projective plane, say [1 : 0 : 0]. The Lie algebra a of Aut(X)
consists of 3 × 3 complex matrices of trace 0 whose last two entries of the
first column are 0. The center is trivial. Moreover, the space of matrices in
a with zero entries in second and third rows (i.e. only the last two entries of
first row are possibly non-zero) is an abelian ideal. Hence a is not reductive
and CP 2#CP 2 does not carry Kähler-Eintein metric. Similarly, CP 2#2CP 2

does not carry Kähler-Eintein either. The matrix is −a− b 0 ∗
0 a ∗
0 0 b

 .

Tian showed that the projective plane blown up in 3, 4, 5, 6, 7, or 8 points
in general position has a Kähler-Einstein metric.

Back to Kodaira dimension. When the first Chern class is negative, it
has to be minimal otherwise c1 ·E > 0 where E is the class of an exceptional
divisor. Hence κh = κs = 2, it is of general type. However, surfaces with
negative first Chern class, or with ample canonical bundle, consist a small
portion of surfaces with general type. In general, one could contract all the
−2 rational curves on a surface to get the canonical model of the surface.
By a result of Miyaoka, these orbifolds admit Kähler-Einstein metric.

When the first Chern class is zero, again the surface is minimal. It is of
Kodaira dimension 0. Moreover, these are called the Calabi-Yau surfaces.

Finally, the first Chern class negative case corresponds to the del Pezzo
surfaces as we have discussed above.

We notice that there are no complex surfaces of Kodaira dimension 1
admits any Kähler-Einstein metric. Actually, no such surfaces could admit
Einstein metric which follows from the following Hitchin-Thorpe theorem.

Theorem 3.9.2. Any compact oriented Einstein 4-manifold (M, g) satisfies
2χ+ 3σ ≥ 0. The equality holds if and only if (M, g) is finitely covered by a
Calabi-Yau K3 surface or by a 4-torus.

Proof.

χ(M) =
1

8π2

∫
M

(
s2

24
+ |W+|2 + |W−|2 − |̊r|

2

2
)dµ
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σ(M) =
1

12π2

∫
M

(|W+|2 − |W−|2)dµ

where r̊ = r− s
4g denotes the trace-free part of the Ricci curvature. Hence for

an Einstein metric, r̊ = 0 and the inequalities 2χ±3σ ≥ 0 are apparent.

We remark that, for higher dimensions, it is still unknown whether there
are obstructions for a manifold to admit Einstein metric.

Recall that if there is an almost complex structure, by Wu’s theorem,
2χ + 3σ = K2. Here K is the canonical class. If M admits a complex or
symplectic structure, then K2 ≤ 0 with equality if and only if it is minimal.
However, by Theorem 3.9.2, K2 = 0 if and only if it is of Kodaira dimension
0. Hence, we have shown there is no symplectic or complex 4-dimensional
Einstein manifold with Kodaira dimension 1.

A similar discussion could be extended to see what is the maximal k
such that M#kCP 2 is Einstein when M is a surface of general type. It is
still unknown whether we could realize the optimal bound.
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