MA3D9 Example Sheet 1

Without otherwise mentioned, all curves are smooth and regular.

- 1. Complete all the exercises mentioned in the class and in the lecture notes.
- 2. A tractrix $\gamma:(0,\pi)\to\mathbb{R}^2$ is given by

$$\gamma(t) = (\sin t, \cos t + \ln(\tan \frac{t}{2})),$$

where t is the angle that the y axis makes with the vector $\gamma'(t)$.

- a. Show that γ is a differentiable parametrized curve, regular except at $t=\frac{\pi}{2}$.
- **b**. The length of the segment of the tangent of the tractrix between the point of tangency and the y axis is constantly equal to 1.
- 3. One often gives a plane curve in polar coordinates by $r = r(\theta), a < \theta < b$.
 - **a**. Show that the arc length is

$$\int_a^b \sqrt{r^2 + (r_\theta)^2} d\theta,$$

where r_{θ} denote the derivative relative to θ .

b. Show that the curvature is

$$\kappa(\theta) = \frac{r^2 + 2r_{\theta}^2 - rr_{\theta\theta}}{(r^2 + r_{\theta}^2)^{\frac{3}{2}}}.$$

- **c**. Calculate the curvature of Archimedes' spiral $r = c\theta$.
- 4. Let h(s) be an arbitrary differentiable function on a segment (a, b). Then there is a plane curve γ for which h(s) is the signed curvature function and s is the arc length parameter. The curve is determined unique up to a translation and a rotation.
- 5. Let $\gamma:(a,b)\to\mathbb{R}^2$ be a plane curve. Assume that there exists t_0 , $a< t_0< b$, such that the distance $||\gamma(t)||$ from the origin to the curve will be a maximum at t_0 . Prove that the curvature κ of γ at t_0 satisfies $|\kappa(t_0)| \geq \frac{1}{||\gamma(t_0)||}$.
- 6. Prove that if a curve $\gamma(s)$ lies on a unit sphere, then the following equality holds:

$$(\kappa')^2 = \kappa^2 \tau^2 (\kappa^2 - 1),$$

where κ and τ are the curvature and the torsion of the curve. (You don't need to show: actually the inverse is also true.)