MA3D9 Example Sheet 2

Without otherwise mentioned, all curves are smooth and regular.

1. Complete all the exercises mentioned in the class and in the lecture notes.
2. Let $\alpha(s), s \in[0, l]$ be a closed convex plane curve positively oriented (i.e. $\kappa_{s}>0$). The curve $\beta(s)=\alpha(s)-r \mathbf{n}(s)$, where r is a positive constant, is called a parallel curve of α. Show that
a. The length $l(\beta)=l(\alpha)+2 \pi r$.
b. The area $A(\beta)=A(\alpha)+r l+\pi r^{2}$.
c. $\kappa_{\beta}=\frac{\kappa_{\alpha}}{1+r \kappa_{\alpha}(s)}$.

Remarks for problem 2: If $\alpha(s)$ is a curve of constant width R. Then $\beta(s)=\alpha(s)+R \mathbf{n}(s)$ is its opposite. We could use this idea and calculations in the last problem to show properties of a curve of constant width:
(a) opposite points of these curve have opposite normals;
(b) $\frac{1}{\kappa_{\alpha}}+\frac{1}{\kappa_{\beta}}$ is a constant.
3. Let $\alpha(s)$ be a regular plane curve with unit-speed prametrization. Assume that κ_{s} is nonzero everywhere. The curve

$$
\beta(s)=\alpha(s)+\frac{1}{\kappa_{s}} \mathbf{n}_{\mathbf{s}}
$$

is called the evolute of α.
a. Show that the tangent at s_{0} of the evolute of α is the normal to α at s_{0}.
b. Show that a plane curve α has a vertex at s_{0} if and only if the evolute β of α has a singular point at s_{0}.
4. Let $\gamma(s), s \in[0, l]$, be a plane simple closed curve. Assume that the curvature $\kappa(s) \leq c$, where c is a constant. Prove that

$$
l(\gamma) \geq \frac{2 \pi}{c}
$$

5. Find all the vertices for the ellipse $\gamma(t)=(p \cos t, q \sin t)$ when $p \neq q$.
