MA3D9 Example Sheet 3

Without otherwise mentioned, all curves are smooth and regular.

1. Complete all the exercises mentioned in the class and in the lecture notes.
2. Verify the set $\left\{(x, y, z) \in \mathbb{R}^{3} ; x^{2}+y^{2}-z^{2}=0\right\}$ is not a regular surface.
3. Show the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

is a regular surface.
4. Compute the first fundamental forms of the following surfaces
a. $\sigma(u, v)=\left(a u \cos v, b u \sin v, u^{2}\right)$; elliptic paraboloid.
b. $\sigma(u, v)=\left(a u \cosh v, b u \sinh v, u^{2}\right)$; hyperbolic parablooid.
5. Calculate the first fundamental form, second fundamental form and area of the torus:

$$
\sigma(u, v)=((a+b \cos u) \cos v,(a+b \cos u) \sin v, b \sin u) ; 0<b<a, 0 \leq u, v \leq 2 \pi
$$

6. Calculate the first fundamental form, second fundamental form and area of explicitly given surface $z=f(x, y)$.
7. Let $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $\phi(x, y)=(u(x, y), v(x, y))$, where u and v and differentiable functions satisfy the Cauchy-Riemann equations

$$
u_{x}=v_{y}, u_{y}=-v_{x} .
$$

Show that ϕ is a conformal map from $\mathbb{R}^{2}-Q$ into \mathbb{R}^{2}, where $Q=\left\{(x, y) \in \mathbb{R}^{2} \mid u_{x}^{2}+u_{y}^{2}=0\right\}$.

