MA3D9 Example Sheet 4

Without otherwise mentioned, all curves are smooth and regular.

1. Complete all the exercises mentioned in the class and in the lecture notes.
2. Show that the mean curvature H at $p \in S$ is given by

$$
H=\frac{1}{\pi} \int_{0}^{\pi} \kappa_{n}(\theta) d \theta
$$

where $\kappa_{n}(\theta)$ is the normal curvature at p along a direction making an angle θ with a fixed direction.
3. If the surface S_{1} and S_{2} intersect along a regular curve C, then the curvature k of C at p is given by

$$
k^{2} \sin ^{2} \theta=\lambda_{1}^{2}+\lambda_{2}^{2}-2 \lambda_{1} \lambda_{2} \cos \theta,
$$

where λ_{1} and λ_{2} are the normal curvatures at p, along the tangent line to C, of S_{1} and S_{2}, respectively, and θ is the angle made up by the normal vectors of S_{1} and S_{2} at p.
4. Show that the Gaussian curvature of the surface $z=f(x, y)$, where f is a smooth function, is

$$
K=\frac{f_{x x} f_{y y}-f_{x y}^{2}}{\left(1+f_{x}^{2}+f_{y}^{2}\right)^{2}} .
$$

5. a. Show that if σ is an isothermal parametrization, that is, $E=G=\lambda(u, v)$ and $F=0$, then the Gaussian curvature

$$
K=-\frac{1}{2 \lambda} \Delta(\ln \lambda)
$$

where $\Delta \phi$ denotes the Laplacian $\frac{\partial^{2} \phi}{\partial u^{2}}+\frac{\partial^{2} \phi}{\partial v^{2}}$ of the function ϕ.
b. Calculate the Gaussian curvature of the surface (upper half-plane model) with first fundamental form

$$
\frac{d v^{2}+d u^{2}}{u^{2}}
$$

6. Show that there exists no surface $\sigma(u, v)$ such that $E=G=1, F=0$ and $L=1, M=0$ and $N=-1$.
7. Find the Gaussian curvature of each surface:
a. Paraboloid $x^{2}+y^{2}=2 p z$.
b. Torus $\sigma(u, v)=((a+b \cos u) \cos v,(a+b \cos u) \sin v, b \sin u) ; 0<b<a, 0 \leq u, v \leq 2 \pi$.
8. When $E=G=1$ and $F=\cos \theta$, show that

$$
K=-\frac{\theta_{u v}}{\sin \theta} .
$$

9. Suppose that the first and second fundamental forms of a surface patch are $E d u^{2}+G d v^{2}$ and $L d u^{2}+N d v^{2}$. Show that the principal curvatures $\kappa_{1}=\frac{L}{E}$ and $\kappa_{2}=\frac{N}{G}$ satisfy the equations

$$
\left(\kappa_{1}\right)_{v}=\frac{E_{v}}{2 E}\left(\kappa_{2}-\kappa_{1}\right),\left(\kappa_{2}\right)_{u}=\frac{G_{u}}{2 G}\left(\kappa_{1}-\kappa_{2}\right) .
$$

