MA3D9 Example Sheet 5

1. Let v and w be tangent vector fields along a curve $\gamma: I \rightarrow S$. Prove that

$$
\frac{d}{d t}<v(t), w(t)>=<\nabla_{\gamma} v, w>+\left\langle v, \nabla_{\gamma} w>\right.
$$

2. Let $\gamma(s)$ be a curve parametrized by arclength s, with nonzero curvature. Consider the parametrized surface

$$
\sigma(s, v)=\gamma(s)+v \mathbf{b}(s), s \in I,-\epsilon<v<\epsilon, \epsilon>0
$$

where \mathbf{b} is the binormal vector of γ. Prove that if ϵ is small, $\sigma(I \times(-\epsilon, \epsilon))=S$ is a regular surface over which $\gamma(I)=\sigma(I \times 0)$ is a geodesic.
3. Let T be a torus of revolution which we shall assume to be parametrized by

$$
\sigma(u, v)=((r \cos u+a) \cos v,(r \cos u+a) \sin v, r \sin u)
$$

Prove that
a. If a geodesic is tangent to the parallel $u=\frac{\pi}{2}$, then it is entirely contained in the region of T given by $-\frac{\pi}{2} \leq u \leq \frac{\pi}{2}$.
b. A geodesic that intersects the parallel $u=0$ under an angle $\theta\left(0<\theta<\frac{\pi}{2}\right)$ also intersects the parallel $u=\pi$ if $\cos \theta<\frac{a-r}{a+r}$.
Hint: use Clairaut's relation.
4. Surface of Liouville are those surfaces for which it is possible to obtain a system of local coordinates $\sigma(u, v)$ such that the coefficients of the first fundamental form are given as

$$
E=G=U(u)+V(v), F=0
$$

Prove that
a. The geodesic of a surface of Liouville may be obtained by

$$
\int \frac{d u}{\sqrt{U-c}}= \pm \int \frac{d v}{\sqrt{V+c}}+c_{1}
$$

where c and c_{1} are constants that depend on the initial conditions.
b. If $\theta, 0 \leq \theta \leq \frac{\pi}{2}$, is the angle which a geodesic makes with the curve $v=$ const, then

$$
U \sin ^{2} \theta-V \cos ^{2} \theta=\text { const } .
$$

(this is the analogue of Clairaut's relation.)

