MA4E0 Exercise Sheet 1

1. Show $\operatorname{SO}(n)$ is a Lie group of dimension $\frac{n(n-1)}{2}$.
2. Show $\operatorname{Sp}(2 n, \mathbb{R})$ is a Lie group of dimension $2 n^{2}+n$.
3. Show $\mathrm{U}(n)=\mathrm{O}(2 n) \cap \operatorname{Sp}(2 n, \mathbb{R})$.
4. Any element in $\mathrm{SO}(m), m=2 n$ or $2 n+1$, is similar to an element in

$$
\left(\begin{array}{ccccccccc}
\cos t_{1} & -\sin t_{1} & & & & \\
\sin t_{1} & \cos t_{1} & & & & \\
& & \cdot & & & \\
& & \cdot & & & \\
& & & \cdot & & \\
& & & & \cos t_{n} & -\sin t_{n} \\
& & & & \\
& & & & & & \\
& & & & & & & \\
& & & & & & \\
& & & \cos t_{n} t_{n} & -\sin t_{n} & \\
\sin t_{1} & \cos t_{1} & & & & \\
& & & \sin t_{n} & \cos t_{n} & \\
& & & & & 1
\end{array}\right)
$$

Show that these elements are path-connected to the identity matrix within $\mathrm{SO}(m)$. Use this to show that $\mathrm{SO}(m)$ is path connected.
5. Show both Lie groups $\mathrm{U}(2)$ and $\mathrm{SU}(2) \times S^{1}$ are diffeomorphic to $S^{3} \times S^{1}$. Calculate the center of both groups, and show that they have different Lie group structures.
6. Show the commutator of the vector fields on a smooth manifold satisfies the conditions of a Lie algebra, i.e.
(a) $[X, Y]=-[Y, X]$ (skew symmetry).
(b) $[a X+b Y, Z]=a[X, Z]+b[Y, Z]$ (\mathbb{R}-linearity).
(c) $[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0$ (Jacobi identity).
7. Show that both the spaces of symmetric matrices and Hermitian matrices are not Lie algebras with standard commutator.
8. When $\mathfrak{h} \subset \mathfrak{g}$ is an ideal, show the Lie bracket on \mathfrak{g} induces a Lie bracket on the quotient $\mathfrak{g} / \mathfrak{h}$.

