MA4E0 Exercise Sheet 2

- 1. Find out the Lie algebra $\mathfrak{u}(n)$ associated to the unitary group U(n).
- 2. Find out the Lie algebra $\mathfrak{sp}(2n, \mathbb{R})$ of $\operatorname{Sp}(2n, \mathbb{R})$.
- 3. (a) Prove the exponention map $\exp: \mathfrak{so}(2) \to \mathrm{SO}(2)$ is surjective.
 - (b) Prove the exponential map $\exp : \mathfrak{gl}(2,\mathbb{R}) \to \mathrm{GL}_+(2,\mathbb{R})$ is not surjective.
 - (c) Prove the exponential map $\exp : \mathfrak{sl}(2,\mathbb{R}) \to \mathrm{SL}(2,\mathbb{R})$ is not surjective.
- 4. Let $H \subset GL(3, \mathbb{R})$ be the Heisenberg group, *i.e.* the group of all 3×3 upper triangular real matrices whose diagonal entries are 1.
 - (a) Find the Lie algebra \mathfrak{h} of H.
 - (b) Find the center Z(H) of H, find its Lie algebra.
 - (c) Prove the exponential map $\exp : \mathfrak{h} \to H$ is surjective.
- 5. Let \mathfrak{g} be a two dimensional Lie algebra. Prove either \mathfrak{g} is abelian, or there exists a basis $\{X, Y\}$ of \mathfrak{g} so that [X, Y] = Y. Can you find the simply connected Lie group with the latter Lie algebra?
- 6. Suppose H is a Lie subgroup of G. Show that the Lie algebra \mathfrak{h} is a Lie subalgebra of \mathfrak{g} .
- 7. Show that $g(\exp X)g^{-1} = \exp(Ad_q X)$.