MA4E0 Exercise Sheet 3

- 1. Verify the Baker-Campbell-Hausdorff formula to the cubic term for matrix groups. That is, for $X, Y \in GL(n, \mathbb{R})$, let $\exp(\mu(X, Y)) = \exp X \cdot \exp Y$, find out the Taylor expansion of $\mu(X, Y)$ up to the cubic term.
- 2. $\operatorname{Sp}(1) = \{q \in \mathbb{H} : q\bar{q} = 1\}$. Identifying \mathbb{R}^3 with the imaginary quaternions.
 - (a) Show that for $q\bar{q} = 1$, the map $v \mapsto qv\bar{q}$ maps \mathbb{R}^3 to itself, and is an isometry.
 - (b) Verify that the resulting map $Sp(1) \rightarrow SO(3)$ is a 2 : 1 covering map.
 - (c) Show $Sp(1) = SU(2) = S^3$. Hence it is simply connected.
- 3. Look at the adjoint action of $SL(2, \mathbb{C})$ on its Lie algebra $\mathfrak{sl}(2, \mathbb{C})$:

$$\operatorname{Ad}: \operatorname{SL}(2, \mathbb{C}) \to \operatorname{Aut}(\mathfrak{sl}(2, \mathbb{C})).$$

- (a) Show that this gives a 2 : 1 covering $SL(2, \mathbb{C}) \to SO(3, \mathbb{C})$.
- (b) Show that $SL(2, \mathbb{C})$ is simply connected.
- (c) Prove

$$tr(Ad(A)) = tr^{2}(A) - 1 = tr(A^{2}) + 1$$

for all $A \in SL(2, \mathbb{C})$.

- 4. Show that the universal covering space \tilde{G} of a Lie group G is a Lie group. Moreover, the covering map $\pi : \tilde{G} \to G$ is a Lie group homomorphism.
- 5. * For Levi-Civita connection, show the Koszul formula

$$2\langle \nabla_X Y, Z \rangle = X(\langle Y, Z \rangle) + Y(\langle X, Z \rangle) - Z(\langle X, Y \rangle) - \langle Y, [X, Z] \rangle - \langle X, [Y, Z] \rangle - \langle Z, [Y, X] \rangle$$

6. There is a bijective correspondence between left-invariant metrics on a Lie group G and inner products on the Lie algebra \mathfrak{g} .

Hint: If \langle, \rangle is an inner product on \mathfrak{g} , set $\langle u, v \rangle_g = \langle (l_{g^{-1}})_* u, (l_{g^{-1}})_* v \rangle$, for all $u, v \in T_g G$.

7. * For a left-invariant metric \langle , \rangle on G and any two left-invariant vector fields X, Y, we have $Z(\langle X, Y \rangle) = 0$ for any vector field Z.